

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuns	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1579t-i-so

Email: info@E-XFL.COM

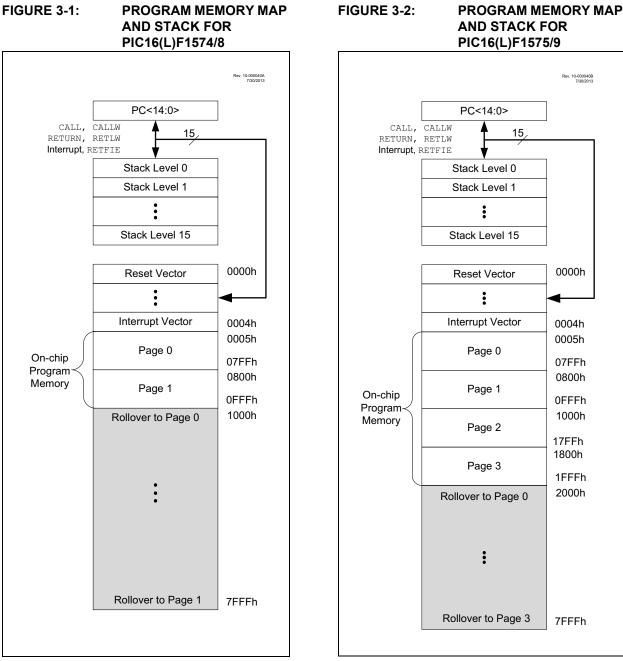
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2:PIC16(L)F1574/5 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/ADCACT ⁽¹⁾ /CK ⁽¹⁾	RC4	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	ADCACT	TTL/ST	—	ADC Auto-conversion Trigger input.
	СК	ST	CMOS	USART synchronous clock.
RC5/RX ^(1,3)	RC5	TTL/ST	CMOS/OD	General purpose input with IOC and WPU.
	RX	ST	_	USART asynchronous input.
OUT ⁽²⁾	C10UT	_	CMOS	Comparator output.
	C2OUT	_	CMOS	Comparator output.
	PWM10UT	-	CMOS	PWM1 output.
	PWM2OUT	-	CMOS	PWM2 output.
	PWM3OUT	_	CMOS	PWM3 output.
	PWM4OUT	-	CMOS	PWM4 output.
	CWG1A	_	CMOS	Complementary Output Generator Output A.
	CWG1B	_	CMOS	Complementary Output Generator Output B.
	TX/CK	-	CMOS	USART asynchronous TX data/synchronous clock output.
	DT ⁽³⁾	_	CMOS	USART synchronous data output.
VDD	Vdd	Power	—	Positive supply.
Vss	Vss	Power	—	Ground reference.

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C


 HV = High Voltage
 XTAL = Crystal
 Levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 12-1.

3: These USART functions are bidirectional. The output pin selections must be the same as the input pin selections.

PIC16(L)F1574/5/8/9

15

0000h

0004h

0005h

07FFh

0800h

0FFFh

1000h

17FFh 1800h

1FFFh 2000h

7FFFh

TABLE 3-5: PIC16(L)F1578 MEMORY MAP, BANKS 0-7

	BANK0		, BANK1		BANK2		BANK3		BANK4		BANK5		BANK6		BANK7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	ODCONB	30Dh	SLRCONB	38Dh	INLVLB
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh	-	10Fh	_	18Fh	_	20Fh	_	28Fh	_	30Fh	_	38Fh	—
010h	_	090h	-	110h	_	190h	_	210h	_	290h	_	310h	_	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	—	291h	—	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	—	292h	—	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	_	293h	_	313h	—	393h	IOCAF
014h	—	094h	—	114h	CM2CON1	194h	PMDATH	214h	_	294h	_	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	_	295h	_	315h	—	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	_	296h	_	316h		396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	_	297h	_	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	—	298h	—	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	_	299h	_	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	—	29Ah	—	31Ah		39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRGL	21Bh	—	29Bh	—	31Bh		39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	—	29Ch	—	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RCSTA	21Dh	—	29Dh	—	31Dh	—	39Dh	—
01Eh		09Eh	ADCON1	11Eh	—	19Eh	TXSTA	21Eh	_	29Eh	_	31Eh		39Eh	—
01Fh	_	09Fh	ADCON2	11Fh	—	19Fh	BAUDCON	21Fh	_	29Fh	_	31Fh	_	39Fh	_
020h	General Purpose	0A0h	General Purpose	120h	General Purpose	1A0h	General Purpose	220h	General Purpose	2A0h	General Purpose	320h 32Fh 330h	General Purpose Register 16 Bytes	3A0h	Unimplemented Read as '0'
06Fh	Register 80 Bytes	0EFh	Register 80 Bytes	16Fh	Register 80 Bytes	1EFh	Register 80 Bytes	26Fh	Register 80 Bytes	2EFh	Register 80 Bytes	36Fh	Unimplemented Read as '0'	3EFh	Read as 0
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
0.011	Common RAM	5. 611	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh	2.011	Accesses 70h – 7Fh	2. 011	Accesses 70h – 7Fh	0.011	Accesses 70h – 7Fh	5. 0.1	Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1578.

3.3.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-14 can be addressed from any Bank.

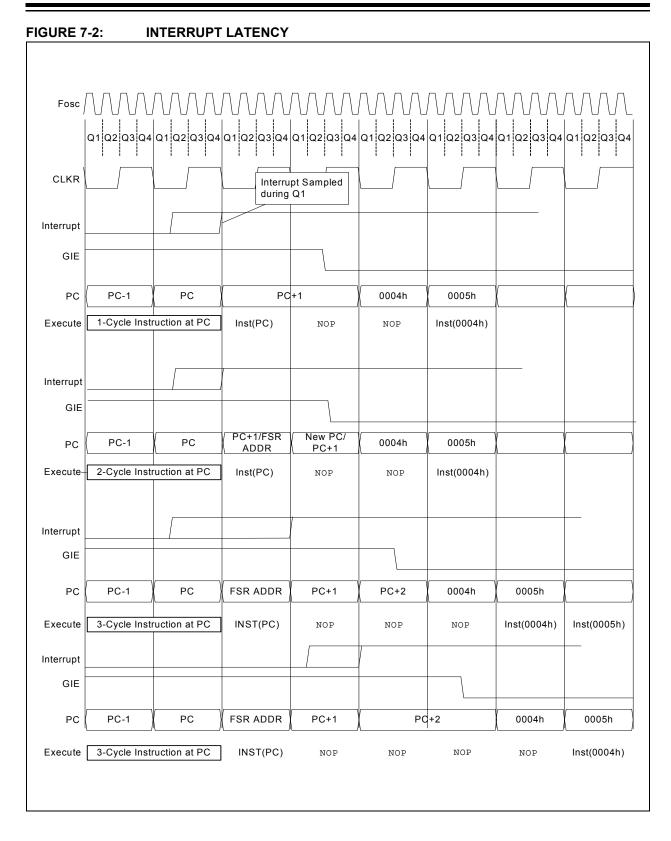

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 0-31										
x00h or x80h	INDF0		Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								uuuu uuuu
x01h or x81h	INDF1		this location ical register)		nts of FSR1H	/FSR1L to ad	ddress data i	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC) I	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	_			TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Data Memory Address 0 Low Pointer								0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	Indirect Data Memory Address 0 High Pointer							0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Da	Indirect Data Memory Address 1 Low Pointer							0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	_	-	_			BSR<4:0>			0 0000	0 0000
x09h or x89h	WREG	Working Register								0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	Write Buffer for the upper 7 bits of the Program Counter							-000 0000	-000 0000	
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-14: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is cleared					
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-0	TUN<5:0>:	Frequency Tunir	ng bits				
	100000 = N	Ainimum frequer	псу				
	•						
	•						
	111111 =						
	000000 = C	Oscillator module	e is running at	the factory-cali	brated frequen	cy.	
	000001 =						
	•						
	•						
	011110 =						
	011111 = 🛚	Maximum freque	ncy				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

9.6 Register Definitions: Watchdog Control

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	—			WDTPS<4:0>			SWDTEN
oit 7							bit (
.egend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'	
		x = Bit is unkr	nown	-n/n = Value at			other Resets
'1' = Bit is set '0' = Bit is cleared							
it 7-6	-	nted: Read as ')>: Watchdog Ti		alaat hita(1)			
oit 5-1		-	Ther Period S	elect bits, ,			
		Prescale Rate		interval (1:22)			
	11111 = R	eserved. Results		intervar (1.52)			
	•						
	•						
	10011 = R	eserved. Results	s in minimum	interval (1:32)			
	10010 = 1 :	8388608 (2 ²³) (Interval 256s	nominal)			
	10001 = 1:4194304 (2 ²²) (Interval 128s nominal)						
	10000 = 1 :	2097152 (2 ²¹) (1 1048576 (2 ²⁰) (1	Interval 64s r	iominal)			
	01111 = 1:	1048576 (2 ²⁰) (1	Interval 32s r	nominal)			
	01110 = 1:	524288 (2 ¹⁹) (In	iterval 16s no	ominal)			
		262144 (2 ¹⁸) (In 131072 (2 ¹⁷) (In					
		65536 (Interval		,			
		32768 (Interval					
		16384 (Interval		nal)			
		8192 (Interval 2					
		4096 (Interval 1					
		2048 (Interval 6					
		1024 (Interval 3		·			
		512 (Interval 16 256 (Interval 8 r					
		128 (Interval 4 r					
		64 (Interval 2 m	,				
		32 (Interval 1 m	,				
oit O	SWDTEN: S	Software Enable/	Disable for V	Vatchdog Timer bi	it		
	<u>If WDTE<1:</u> ()> = 1x:		·			
	This bit is ig	nored.					
	If WDTE<1:						
	1 = WDT is						
	0 = WDT is <u>If WDTE<1:</u> (

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	
(1)	CFGS	LWLO ⁽³⁾	FREE	WRERR	WREN	WR	RD	
bit 7							bit (
Legend:								
R = Reada	able bit	W = Writable b	it	U = Unimpleme	nted bit, read as	s 'O'		
	n only be set	x = Bit is unkno		•	-	√alue at all other Ⅰ	Resets	
'1' = Bit is	set	'0' = Bit is clea	red	HC = Bit is clear				
h :+ 7		tod. Dood on (1)						
bit 7	-	ted: Read as '1'						
bit 6	•	guration Select bit Configuration, Use		ID Registers				
		Flash program me		ID Registers				
bit 5	LWLO: Load	Write Latches On	ly bit ⁽³⁾					
		1 = Only the addressed program memory write latch is loaded/updated on the next WR command						
		ressed program m	•	h is loaded/update	ed and a write of	all program mem	ory write latche	
		itiated on the nex						
bit 4	•	am Flash Erase E						
		s an erase operati s an write operatio			rdware cleared	upon completion)		
bit 3		gram/Erase Error						
		n indicates an im		or erase sequend	e attempt or te	rmination (bit is s	et automatical	
		et attempt (write '	,	,				
	0 = The prog	gram or erase ope	ration completed	d normally.				
bit 2	•	am/Erase Enable						
	•	rogram/erase cyc programming/eras		lach				
bit 1	WR: Write Co	0 0	ing of program i	10311				
		a program Flash	orogram/erase o	peration				
		ration is self-timed	0	•	re once operatio	on is complete.		
		bit can only be se	, ,					
	0 = Program	/erase operation	to the Flash is co	omplete and inact	ive.			
bit 0	RD: Read Co							
		a program Flash r	ead. Read takes	s one cycle. RD is	cleared in hard	lware. The RD bit	can only be se	
	•	red) in software. t initiate a prograr	n Flash read.					
Note 1:	Unimplemented bit							
2:	•		by hardware whe	en a program mer	nory write or era	ase operation is st	arted (WR = 1	
3:		e WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1 the LWLO bit is ignored during a program memory erase operation (FREE = 1).						

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u		
—	_	LATA5	LATA4	—	LATA2	LATA1	LATA0		
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	ther Resets		
'1' = Bit is set '0' = Bit is cleared									
bit 7-6	Unimpleme	nted: Read as '	כ'						

bit 7-6	Unimplemented: Read as '0'
bit 5-4	LATA<5:4>: RA<5:4> Output Latch Value bits ⁽¹⁾

- bit 3 Unimplemented: Read as '0'
- bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾
- **Note 1:** Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—		ANSA4	_	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to

allow external control of the voltage on the pin.

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
ANSC7 ⁽²⁾	ANSC6 ⁽²⁾		_	ANSC3	ANSC2	ANSC1	ANSC0	
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6	0 = Digital I/	O. Pin is assigr	ned to port or o	og or Digital Fu digital special fu og input ⁽¹⁾ . Digi	inction.		ectively ^(1, 2)	
bit 5-4	bit 5-4 Unimplemented: Read as '0'							
bit 3-0	 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 					ectively ⁽¹⁾		
Note 1: Wh	nen setting a pir	•	•	esponding TRIS	S bit must be se	et to Input mod	e in order to	

allow external control of the voltage on the pin. 2: ANSC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 11-21: WPUC: WEAK PULL-UP PORTC REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUC7 ⁽³⁾	WPUC6 ⁽³⁾	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUC<7:0>: Weak Pull-up Register bits⁽³⁾

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

3: WPUC<7:6> are available on PIC16(L)F1578/9 only.

REGISTER 13-4:	IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER ⁽¹⁾
----------------	--

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	—	—	—
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit	:	U = Unimpleme	ented bit, read as '	כי	
u = Bit is unchar	nged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Va	lue at all other Re	esets
'1' = Bit is set '0' = Bit is cleared			ed				

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
 - 0 = Interrupt-on-Change disabled for the associated pin.

bit 3-0	Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
IOCBN7	IOCBN6	IOCBN5	IOCBN4	—	-	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 **IOCBN<7:4>**: Interrupt-on-Change PORTB Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

- 0 = Interrupt-on-Change disabled for the associated pin.
- bit 3-0 Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0
IOCBF7	IOCBF6	IOCBF5	IOCBF4	—	—	—	—
bit 7	-						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits
	1 = An enabled change was detected on the associated pin.
	Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was
	detected on RBx.
	0 = No change was detected, or the user cleared the detected change.

bit 3-0 Unimplemented: Read as '0'

Note 1: PORTB functions available on PIC16(L)F1578/9 devices only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	121
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
IOCAF	—	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	143
IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	143
IOCAP	—	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	143
IOCBP ⁽²⁾	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	_	_	144
IOCBN ⁽²⁾	IOCBN7	IOCBN6	IOCBN5	IOCBN4	_	_	_	_	144
IOCBF ⁽²⁾	IOCBF7	IOCBF6	IOCBF5	IOCBF4	_	_	_	_	144
IOCCP	IOCCP7 ⁽²⁾	IOCCP6 ⁽²⁾	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	145
IOCCN	IOCCN7 ⁽²⁾	IOCCN6 ⁽²⁾	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	145
IOCCF	IOCCF7 ⁽²⁾	IOCCF6 ⁽²⁾	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	145
TRISA	_	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	120
TRISC	TRISC7 ⁽²⁾	TRISC7 ⁽²⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	131

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1578/9 only.

23.3 Offset Modes

The Offset modes provide the means to adjust the waveform of a slave PWM module relative to the waveform of a master PWM module in the same device.

23.3.1 INDEPENDENT RUN MODE

In Independent Run mode (OFM = 00), the PWM module is unaffected by the other PWM modules in the device. The PWMxTMR associated with the PWM module in this mode starts counting as soon as the EN bit associated with this PWM module is set and continues counting until the EN bit is cleared. Period events reset the PWMxTMR to zero after which the timer continues to count.

A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 23-8.

23.3.2 SLAVE RUN MODE WITH SYNC START

In Slave Run mode with Sync Start (OFM = 01), the slave PWMxTMR waits for the master's OF_match event. When this event occurs, if the EN bit is set, the PWMxTMR begins counting and continues to count until software clears the EN bit. Slave period events reset the PWMxTMR to zero after which the timer continues to count.

A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 23-9.

23.3.3 ONE-SHOT SLAVE MODE WITH SYNC START

In One-Shot Slave mode with Synchronous Start (OFM = 10), the slave PWMxTMR waits until the master's OF_match event. The timer then begins counting, starting from the value that is already in the timer and continues to count until the period match event. When the period event occurs, the timer resets to zero and stops counting. The timer then waits until the next master OF_match event, after which it begins counting again to repeat the cycle. An OF_match event that occurs before the slave PWM has completed the previously triggered period will be ignored. A slave period that is greater than the master period, but less than twice the master period, will result in a slave output every other master period.

Note: During the time the slave timers are resetting to zero, if another Offset Match event is received, it is possible that the slave PWM would not recognize this match event and the slave timers would fail to begin counting again. This would result in missing duty cycles from the output of the slave PWM. To prevent this from happening, avoid using the same period for both the master and slave PWM's.

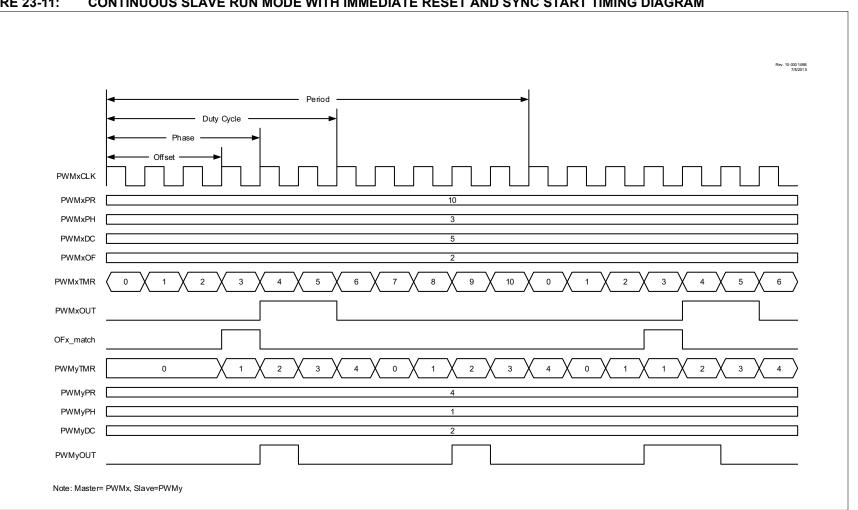
A detailed timing diagram of this mode used with Standard PWM mode is shown in Figure 23-10.

23.3.4 CONTINUOUS RUN SLAVE MODE WITH SYNC START AND TIMER RESET

In Continuous Run Slave mode with Synchronous Start and Timer Reset (OFM = 11) the slave PWMxTMR is inhibited from counting after the slave PWM enable is set. The first master OF match event starts the slave PWMxTMR. Subsequent master OF_match events reset the slave PWMxTMR timer value back to 1 after which the slave PWMxTMR continues to count. The next master OF match event resets the slave PWMxTMR back to 1 to repeat the cycle. Slave period events that occur before the master's OF match event will reset the slave PWMxTMR to zero after which the timer will continue to count. Slaves operating in this mode must have a PWMxPH register pair value equal to or greater than 1, otherwise, the phase match event will not occur precluding the start of the PWM output duty cycle.

The offset timing will persist If both the master and slave PWMxPR values are the same and the Slave Offset mode is changed to Independent Run mode while the PWM module is operating.

A detailed timing diagram of this mode used in Standard PWM mode is shown in Figure 23-11.


Note:	Unexpected results will occur if the slave
	PWM_clock is a higher frequency than the
	master PWM_clock.

23.3.5 OFFSET MATCH IN CENTER-ALIGNED MODE

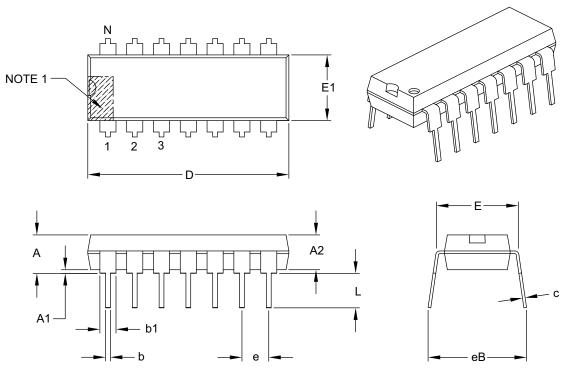
When a master is operating in Center-Aligned mode the offset match event depends on which direction the PWMxTMR is counting. Clearing the OFO bit of the PWMxOFCON register will cause the OF_match event to occur when the timer is counting up. Setting the OFO bit of the PWMxOFCON register will cause the OF_match event to occur when the timer is counting down. The OFO bit is ignored in non-center-aligned modes.

The OFO bit is double buffered and requires setting the LDA bit to take effect when the PWM module is operating.

Detailed timing diagrams of Center-Aligned mode using offset match control in Independent Slave with Sync Start mode can be seen in Figure 23-12 and Figure 23-13.

PIC16(L)F1574/5/8/9

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	_	ANSA4	—	ANSA2	ANSA1	ANSA0	121
CWG1CON0	G1EN	_	_	G1POLB	G1POLA	_	_	G1CS0	253
CWG1CON1	G1ASD	LB<1:0>	G1ASDLA<1:0>				254		
CWG1CON2	G1ASE	G1ARSEN	_	—	G1ASDSC2	G1ASDSC1	G1ASDSPPS	_	255
CWG1DBF	_	_	CWG1DBF<5:0>					256	
CWG1DBR	_	_	CWG1DBR<5:0>					256	
TRISA		—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	120


Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by CWG. **Note 1:** Unimplemented, read as '1'.

30.2 Package Details

The following sections give the technical details of the packages.

14-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

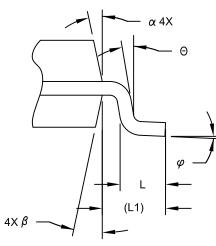
	Units		INCHES		
Dimens	ion Limits	MIN	NOM	MAX	
Number of Pins	Ν	14			
Pitch	е		.100 BSC		
Top to Seating Plane	А	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	_	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.735	.750	.775	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

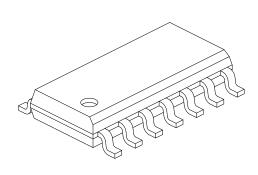
Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

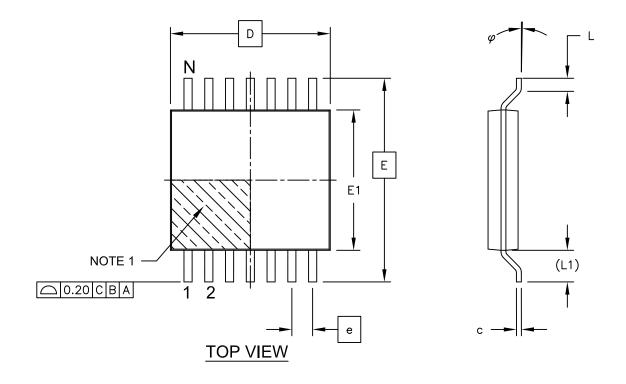
Microchip Technology Drawing C04-005B

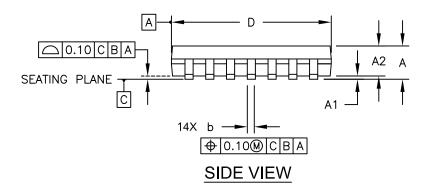
14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lir	nits	MIN	NOM	MAX		
Number of Pins	N		14			
Pitch	е	1.27 BSC				
Overall Height	A	-	-	1.75		
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	-	0.25		
Overall Width	E	6.00 BSC				
Molded Package Width	E1	3.90 BSC				
Overall Length	D	8.65 BSC				
Chamfer (Optional)	h	0.25	-	0.50		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.04 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	c	0.10	-	0.25		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

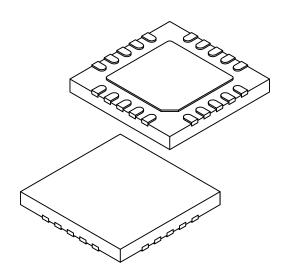

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-065C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-087C Sheet 1 of 2

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N	20			
Pitch	е		0.50 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.60	2.70	2.80	
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.60	2.70	2.80	
Terminal Width	b	0.20	0.25	0.30	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0190-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.