

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, CSI, EBI/EMI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 6x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3814ga-r-gam-ax

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(5) TAAn I/O control register 2 (TAAnIOC2)

The TAAnIOC2 register is an 8-bit register that controls the valid edge of the external event count input signal (TIAAn0 pin) and external trigger input signal (TIAAn0 pin).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

	set: 00H	R/W	Address:		C2 FFFFF6 C2 FFFFF6	534H, TAA1I 554H	OC2 FFF	FF644H,
	7	6	5	4	3	2	1	0
TAAnIOC2 (n = 0 to 2)	0	0	0	0	TAAnEES1	TAAnEES0 T	AAnETS1	TAAnETS0
	TAAnEES1	TAAnEES0	External e	vent coun	t input signal	(TIAAn0 pin) valid edg	ge setting
	0	0	No edge o	detection	(external ev	ent count inv	valid)	
	0	1	Detection	of rising	edge			
	1	0	Detection	of falling	edge			
	1	1	Detection	of both e	dges			
		TAAnETS0	External	trigger in	put signal (T	וAAn0 pin) א	alid edge	setting
	0	0	No edge o	detection	(external trig	ger invalid)		
	0	1	Detection		•			
	1	0	Detection	•	•			
		I	Detection	of both e	dges			
	Cautions	 Rewring TAAr same rewring to 0 a The Taa the Taa even TAAr 	rite the hETS0 bit e value c iting was and then TAAnEES AAnCTL1 t count m hCTL1.TA	TAAnE s when an be w mistake set the I 1 and TA 1.TAAnE node (TA AnMD0	ES1, TAA the TAAn(ritten whe enly perfor bits again. AnEES0 I EE bit = 1 AnCTL1.T bits = 001	AnEES0, CTL0.TAAr en the TAA med, clear oits are val or when the GAnMD2 to has been oits are val	CE bit = AnCE bit the TAA lid only the extern to set.	= 0. (The = 1.) If AnCE bit when nal

(11) TAAn counter read buffer register (TAAnCNT)

The TAAnCNT register is a read buffer register that can read the count value of the 16-bit counter. If this register is read when the TAAnCTL0.TAAnCE bit = 1, the count value of the 16-bit timer can be read. This register is read-only, in 16-bit units.

The value of the TAAnCNT register is cleared to 0000H when the TAAnCE bit = 0. If the TAAnCNT register is read at this time, the value of the 16-bit counter (FFFFH) is not read, but 0000H is read.

Reset clears the TAAnCE bit to 0. Therefore, the value of the TAAnCNT register is cleared to 0000H.

Caution Accessing the TAAnCNT register is prohibited in the following statuses. For details, see 3.4.9 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TAAnCNT	After res	set: 0	000H	F	8	Addre	ess:		AOCN A2CN								
(n = 0 to 2, 4)	-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

(8) TMT0 option register 0 (TT0OPT0)

The TT0OPT0 register is an 8-bit register that sets the capture/compare operation and detects overflows. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After re	oot: 0011											
After re	set: 00H 7	R/W /	Address: FFF 5	4	3	2	1	<0>				
TT0OPT0	0	0	TT0CCS1	TTOCCSO	0	0	0	TT00VF				
	TT0CCS1		TT0CC	CR1 register	capture/c	ompare se	election					
	0	Selecte	d as compare	e register								
	1	1	d as capture	• •	-			bit = 0)				
	The TT0	The TT0CCS1 bit setting is valid only in the free-running timer mode.										
					. ,		:					
	TTOCCS0			CR0 register	capture/c	ompare se	election					
	1		d as compare		ared by th			hit = 0				
		1 Selected as capture register (cleared by the TT0CTL0.TT0CE bit = 0) The TT0CCS0 bit setting is valid only in the free-running timer mode.										
		The Troccoo bit setting is valid only in the free-running timer mode.										
	тто	OVF		TMT0 overflow detection flag								
	Set (1)		Overflow	Overflow occurred								
	Reset (0))	0 written to TT0OVF bit or TT0CTL0.TT0CE bit = 0									
	 The TTOOVF bit is set to 1 when the 16-bit counter value overflows from FFFFH to 0000H in the free-running timer mode or the pulse width measurement mode. An overflow interrupt request signal (INTTTOOV) is generated when the TTOOVF bit is set to 1. The INTTTOOV signal is not generated in modes other than the free-running timer mode and the pulse width measurement mode. The TTOOVF bit is not cleared to 0 even when the TTOOVF bit or the TTOOPTO register are read when the TTOOVF bit = 1. Before clearing the TTOOVF bit to 0 after generation of the INTTTOOV signal, be sure to confirm (by reading) that the TTOOVF bit is set to 1. The TTOOVF bit can be both read and written, but the TTOOVF bit cannot be set to 1 by software. Writing 1 has no effect on the operation of TMTO. 											
	Cautions	san mis aga	write the T ne value ca stakenly pe sin. sure to set	an be writt rformed, c	en whe lear the	n the TT TT0CE b	0CE bit = bit to 0 ar	= 1.) If rev				

(1) Basic counter operation

This section explains the basic operation of the 16-bit counter. For details, refer to the description of the operation in each mode.

(a) Count start operation

• Encoder compare mode

A count operation is controlled by TENC00 and TENC01 phases. The 16-bit counter initial setting is performed by transferring the set value of the TT0TCW register to the 16-

bit counter and the count operation is started. (When the TT0CTL2.TT0ECC bit = 0, the TT0TCW register set value is transferred to the 16-bit counter at the timing when the TT0CTL0.TT0CE bit changes from 0 to 1.)

Triangular-wave PWM mode

The 16-bit counter starts counting from the initial value FFFFH.

It counts up FFFFH, 0000H, 0001H, 0002H, 0003H, and so on.

Following the count-up operation, the counter counts down upon a match between the 16-bit count value and the CCR0 buffer register.

• Mode other than above

The 16-bit counter starts counting from the initial value FFFFH. It counts up FFFFH, 0000H, 0001H, 0002H, 0003H, and so on.

(b) Clear operation

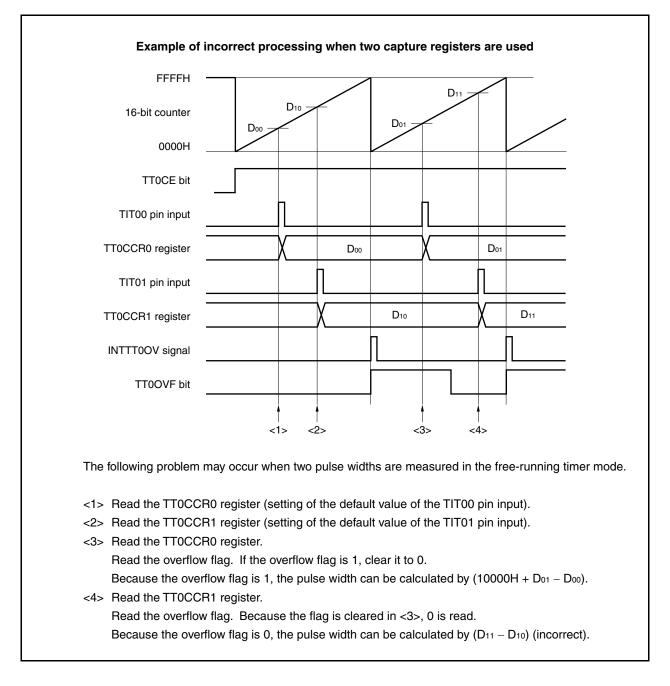
The 16-bit counter is cleared to 0000H when its value matches the value of the compare register, when its value is captured, when the edge of the encoder clear signal is detected, and when the clear level condition of the TENC00, TENC01, and TECR0 pins is detected. The count operation from FFFFH to 0000H that takes place immediately after the counter has started counting or when the counter overflows is not a clear operation. Therefore, the INTTTOCC0 and INTTTOCC1 interrupt signals are not generated.

(c) Overflow operation

The 16-bit counter overflows when it counts up from FFFFH to 0000H in the free-running mode, pulse width measurement mode, and encoder compare mode. If the counter overflows in the free-running mode and pulse width measurement mode, the TT0OPT0.TT0OVF bit is set to 1 and an interrupt request signal (INTTT0OV) is generated.

If the counter overflows in the encoder compare mode, the TT0OPT1.TT0EOF bit is set to 1 and an interrupt request signal (INTTT0OV) is generated.

Note that the INTTTOOV signal is not generated under the following conditions.


- Immediately after a count operation has been started
- If the counter value matches the compare value FFFFH and is cleared
- When FFFFH is captured and cleared to 0000H in the pulse width measurement mode

Caution After the overflow interrupt request signal (INTTT0OV) has been generated, be sure to check that the overflow flag (TT0OVF, TT0EOF bits) is set to 1.

(c) Processing of overflow when two capture registers are used

Care must be exercised in processing the overflow flag when two capture registers are used. First, an example of incorrect processing is shown below.

When two capture registers are used, and if the overflow flag is cleared to 0 by one capture register, the other capture register may not obtain the correct pulse width.

Use software when using two capture registers. An example of how to use software is shown below.

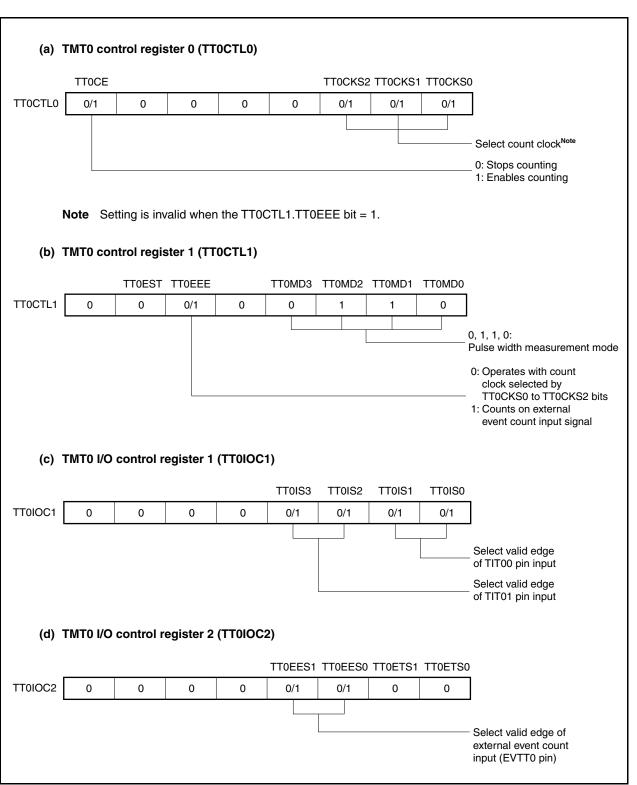
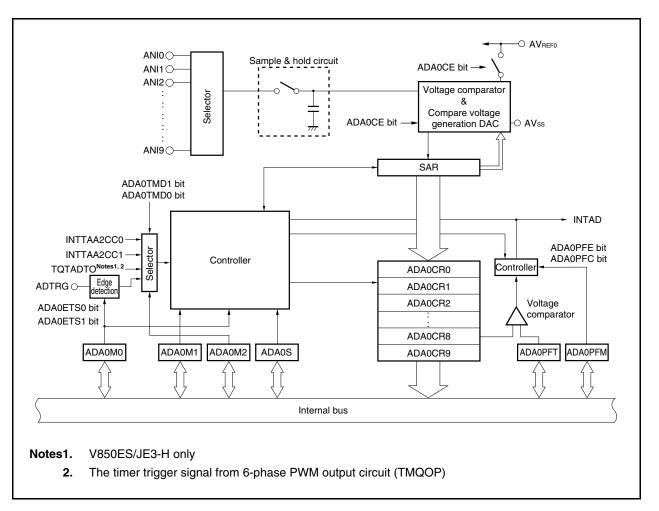


Figure 8-41. Register Setting in Pulse Width Measurement Mode (1/2)

F6	F5 to F0	RC1SUBC Correction Value	Frequency of Connected Clock (Including Steady-State Deviation)
0	000000	No correction	_
0	000001	No correction	_
0	000010	Increments RC1SUBC count value by 2 once every 20 seconds	32.76810000 kHz
0	000011	Increments RC1SUBC count value by 4 once every 20 seconds	32.76820000 kHz
0	000100	Increments RC1SUBC count value by 6 once every 20 seconds	32.76830000 kHz
0	111011	Increments RC1SUBC count value by 120 once every 20 seconds	32.77400000 kHz
0	111110	Increments RC1SUBC count value by 122 once every 20 seconds	32.77410000 kHz
0	111111	Increments RC1SUBC count value by 124 once every 20 seconds	32.77420000 kHz (upper limit)
1	000000	No correction	_
1	000001	No correction	_
1	000010	Decrements RC1SUBC count value by 124 once every 20 seconds	32.76180000 kHz (lower limit)
1	000011	Decrements RC1SUBC count value by 122 once every 20 seconds	32.76190000 kHz
1	000100	Decrements RC1SUBC count value by 120 once every 20 seconds	32.76200000 kHz
1	11011	Decrements RC1SUBC count value by 6 once every 20 seconds	32.76770000 kHz
1	11110	Decrements RC1SUBC count value by 4 once every 20 seconds	32.76780000 kHz
1	11111	Decrements RC1SUBC count value by 2 once every 20 seconds	32.76790000 kHz

Table 11-7. Range of Frequencies That Can Be Corrected When DEV Bit = 0


Table 11-8. Range of Frequencies That Can Be Corrected When DEV Bit = 1

F6	F5 to F0	RC1SUBC Correction Value	Frequency of Connected Clock (Including Steady-State Deviation)
0	000000	No correction	_
0	000001	No correction	_
0	000010	Increments RC1SUBC count value by 2 once every 60 seconds	32.76803333 kHz
0	000011	Increments RC1SUBC count value by 4 once every 60 seconds	32.76806667 kHz
0	000100	Increments RC1SUBC count value by 6 once every 60 seconds	32.76810000 kHz
0	111011	Increments RC1SUBC count value by 120 once every 60 seconds	32.77000000 kHz
0	111110	Increments RC1SUBC count value by 122 once every 60 seconds	32.77003333 kHz
0	111111	Increments RC1SUBC count value by 124 once every 60 seconds	32.77006667 kHz (upper limit)
1	000000	No correction	_
1	000001	No correction	_
1	000010	Decrements RC1SUBC count value by 124 once every 60 seconds	32.76593333 kHz (lower limit)
1	000011	Decrements RC1SUBC count value by 122 once every 60 seconds	32.76596667 kHz
1	000100	Decrements RC1SUBC count value by 120 once every 60 seconds	32.76600000 kHz
1	11011	Decrements RC1SUBC count value by 6 once every 60 seconds	32.76790000 kHz
1	11110	Decrements RC1SUBC count value by 4 once every 60 seconds	32.76793333 kHz
1	11111	Decrements RC1SUBC count value by 2 once every 60 seconds	32.76796667 kHz

14.3 Configuration

The block diagram of the A/D converter is shown below.

The A/D converter includes the following hardware.

Table 14-1.	Configuration of	A/D Converter
-------------	------------------	---------------

Item	Configuration
Analog inputs	10 channels (ANI0 to ANI9 pins)
Registers	Successive approximation register (SAR) A/D conversion result registers 0 to 9 (ADA0CR0 to ADA0CR9) A/D conversion result registers 0H to 9H (ADCR0H to ADCR9H): Only higher 8 bits can be read
Control registers	A/D converter mode registers 0 to 2 (ADA0M0 to ADA0M9) A/D converter channel specification register 0 (ADA0S) Power fail compare mode register (ADA0PFM) Power fail compare threshold value register (ADA0PFT)

(12) Compare voltage generation DAC

This compare voltage generation DAC is connected between AV_{REF0} and AV_{SS} and generates a voltage for comparison with the analog input signal.

(13) ANI0 to ANI9 pins

These are analog input pins for the 10 A/D converter channels and are used to input analog signals to be converted into digital signals. Pins other than the one selected as the analog input by the ADA0S register can be used as input port pins.

Caution Make sure that the voltages input to the ANI0 to ANI9 pins do not exceed the rated values. In particular if a voltage of AV_{REF0} or higher is input to a channel, the conversion value of that channel becomes undefined, and the conversion values of the other channels may also be affected.

(14) AVREFO pin

This is the pin used to input the reference voltage of the A/D converter. Always make the potential at this pin the same as that at the V_{DD} pin even when the A/D converter is not used.

The signals input to the ANI0 to ANI9 pins are converted to digital signals based on the voltage applied between the AV_{REF0} and AV_{SS} pins.

(15) AVss pin

This is the ground potential pin of the A/D converter. Always make the potential at this pin the same as that at the Vss pin even when the A/D converter is not used.

16.3.4 Mode switching between UARTC4, CSIF0, and I²C01

In the V850ES/JC3-H and V850ES/JE3-H, UARTC4, CSIF0, and I²C01 share the same pin and therefore cannot be used simultaneously. Set UARTC4 in advance, using the PMC4, PFC4, and PMCE4 registers, before use.

Caution The transmit/receive operation of UARTC4, CSIF0, and I²C01 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After re	set: 00H	R/W	Address: I	FFFF446	4			
	7	6	5	4	3	2	1	0
PMC3	PMC37	PMC36	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30
A ()		544						
After res	set: 00H	R/W	Address: F	·FFFF466F	1			
	7	6	5	4	3	2	1	0
PFC3	PFC37 ^{Note1}	PFC36 ^{Note1}	PFC35 ^{Note2}	PFC34	PFC33 ^{Note2}	PFC32	PFC31	PFC30
After res	set: 00H	R/W	Address: F	FFFF706H	4			
	7	6	5	4	3	2	1	0
PFCE3	PFCE37 ^{Note1}	PFCE36 ^{Note1}	PFCE35 ^{Note2}	PFCE34	PFCE33 ^{Note2}	PFCE32	PFCE31	PFCE30
	PMC37 ^{Note1} PFCE37 ^{Note1} PFC37 ^{Note1} Operation mode							
	0	×	×	Port I/O m	node			
	1	0	0	RXDC3 (l	JARTC3)			
	1	0	1	SDA00 (I ²				
	1	1	0	CRXD0 (0	CAN0) ^{Note3}			
	DMC2cNote1	PFCE36 ^{Note1}	DECocNote1			peration m	ada	
	PMC36	×	×	Port I/O m			JUE	
	1	0	0	TXDC3 (L				
	1	0	1	SCL00 (I ²				
	1	1	0	CTXD0 (0	,			
				0.7.20 (0				
	Notes1.	V850ES	/JC3-H (4	8 pin) V8	50ES/JE3	-H only		
	2.		/JE3-H on		2020/020			
	3.		-3819, 70	•	ly			
	Remark	× = don'	t care					

Figure 16-5. UARTC4, CSIF0 and I²C01 Mode Switch Settings

19.5.2 Register access type

Address	Register Name	Symbol	R/W	Bit Ma	anipulatior	n Units	After Reset
				1 Bit	8 Bits	16 Bits	
03FEC000H	CAN0 global control register	COGMCTRL	R/W			\checkmark	0000H
03FEC002H	CAN0 global clock selection register	COGMCS			\checkmark		0FH
03FEC006H	CAN0 global automatic block transmission register	COGMABT				\checkmark	0000H
03FEC008H	CAN0 global automatic block transmission delay register	COGMABTD			\checkmark		00H
03FEC040H	CAN0 module mask 1 register	C0MASK1L				\checkmark	Undefined
03FEC042H		C0MASK1H				\checkmark	Undefined
03FEC044H	CAN0 module mask 2 register	C0MASK2L				\checkmark	Undefined
03FEC046H		C0MASK2H				\checkmark	Undefined
03FEC048H	CAN0 module mask 3 register	C0MASK3L				\checkmark	Undefined
03FEC04AH		C0MASK3H				\checkmark	Undefined
03FEC04CH	CAN0 module mask 4 register	C0MASK4L				\checkmark	Undefined
03FEC04EH		C0MASK4H				\checkmark	Undefined
03FEC050H	CAN0 module control register	COCTRL				\checkmark	0000H
03FEC052H	CAN0 module last error code register	COLEC			\checkmark		00H
03FEC053H	CAN0 module information register	COINFO	R		\checkmark		00H
03FEC054H	CAN0 module error counter register	C0ERC				\checkmark	0000H
03FEC056H	CAN0 module interrupt enable register	COIE	R/W			\checkmark	0000H
03FEC058H	CAN0 module interrupt status register	COINTS				\checkmark	0000H
03FEC05AH	CAN0 module bit-rate prescaler register	COBRP			\checkmark		FFH
03FEC05CH	CAN0 module bit-rate register	COBTR				\checkmark	370FH
03FEC05EH	CAN0 module last in-pointer register	COLIPT	R		\checkmark		Undefined
03FEC060H	CAN0 module receive history list register	CORGPT	R/W			\checkmark	xx02H
03FEC062H	CAN0 module last out-pointer register	COLOPT	R		\checkmark		Undefined
03FEC064H	CAN0 module transmit history list register	COTGPT	R/W			\checkmark	xx02H
03FEC066H	CAN0 module time stamp register	COTS				\checkmark	0000H

Table 19-16. Register Access Types (1/17)

(2/2)

o) Write	
•	
Clear TOVF	Setting of TOVF bit
0	TOVF bit is not changed.
1	TOVF bit is cleared to 0.

(18) CAN0 module time stamp register (C0TS)

The COTS register is used to control the time stamp function.

(a) Read	15	14	10	10	4.4	10	0	0
	15	14	13	12	11	10	9	8
COTS	0	0	0	0	0	0	0	0
	7	6	5	4	3	2	1	0
	0	0	0	0	0	TSLOCK	TSSEL	TSEN
(b) Write	15 0	14 0	13 0	12 0	11 0	10 Set	9 Set	8 Set
						TSLOCK	TSSEL	TSEN
	7	6	5	4	3	2	1	0
	0	0	0	0	0	Clear TSLOCK	Clear TSSEL	Clear TSEN

Address	Function Register Name	Symbol	R/W	Manipulatable Bits			Default Value
				1	8	16	
00200302H	UF0 configuration/interface/endpoint descriptor register 158	UF0CIE158	R/W		V		Undefined
00200304H	UF0 configuration/interface/endpoint descriptor register 159	UF0CIE159	R/W		V		Undefined
00200306H	UF0 configuration/interface/endpoint descriptor register 160	UF0CIE160	R/W		V		Undefined
00200308H	UF0 configuration/interface/endpoint descriptor register 161	UF0CIE161	R/W		V		Undefined
0020030AH	UF0 configuration/interface/endpoint descriptor register 162	UF0CIE162	R/W		\checkmark		Undefined
0020030CH	UF0 configuration/interface/endpoint descriptor register 163	UF0CIE163	R/W		\checkmark		Undefined
0020030EH	UF0 configuration/interface/endpoint descriptor register 164	UF0CIE164	R/W		V		Undefined
00200310H	UF0 configuration/interface/endpoint descriptor register 165	UF0CIE165	R/W	√			Undefined
00200312H	UF0 configuration/interface/endpoint descriptor register 166	UF0CIE166	R/W		\checkmark		Undefined
00200314H	UF0 configuration/interface/endpoint descriptor register 167	UF0CIE167	R/W		\checkmark		Undefined
00200316H	UF0 configuration/interface/endpoint descriptor register 168	UF0CIE168	R/W		V		Undefined
00200318H	UF0 configuration/interface/endpoint descriptor register 169	UF0CIE169	R/W		\checkmark		Undefined
0020031AH	UF0 configuration/interface/endpoint descriptor register 170	UF0CIE170	R/W		V		Undefined
0020031CH	UF0 configuration/interface/endpoint descriptor register 171	UF0CIE171	R/W		\checkmark		Undefined
0020031EH	UF0 configuration/interface/endpoint descriptor register 172	UF0CIE172	R/W	√		Undefined	
00200320H	UF0 configuration/interface/endpoint descriptor register 173	UF0CIE173	R/W		V		Undefined
00200322H	UF0 configuration/interface/endpoint descriptor register 174	UF0CIE174	R/W		V		Undefined
00200324H	UF0 configuration/interface/endpoint descriptor register 175	UF0CIE175	R/W		V		Undefined
00200326H	UF0 configuration/interface/endpoint descriptor register 176	UF0CIE176	R/W		V		Undefined
0200328H	UF0 configuration/interface/endpoint descriptor register 177	UF0CIE177	R/W		V		Undefined
020032AH	UF0 configuration/interface/endpoint descriptor register 178	UF0CIE178	R/W		V		Undefined
020032CH	UF0 configuration/interface/endpoint descriptor register 179	UF0CIE179	R/W		\checkmark		Undefined

(3/4)

Bit position	Bit name	Function
1	BKI2NK	This bit controls NAK to Endpoint3 (bulk 2 transfer (IN)).
		1: Do not transmit NAK.
		0: Transmit NAK (default value).
		This bit is cleared to 0 only when the FIFO connected to the SIE side of the UF0BI2
		register (64-byte FIFO of bank configuration) cannot receive data. It is set to 1 when a
		toggle operation is performed (the data of the UF0BI2 register is retained until
		transmission has been correctly completed). The bank is changed (toggle operation)
		when the following conditions are satisfied.
		 Data is correctly written to the FIFO connected to the CPU bus side (writing has
		been completed and the FIFO is full or the UF0DEND register is set).
		 The value of the FIFO counter connected to the SIE side is 0.
		This bit is automatically set to 1 and data transmission is started when the FIFO on the
		CPU side becomes full and a FIFO toggle operation is performed as a result of writing
		data to the FIFO. However, if the FIFO on the CPU side becomes full as a result of writin
		data to it by DMA while the BKI2T bit of the UF0DEND register is cleared to 0, the toggle
		operation is not performed because the condition of the toggle operation is not satisfied
		until the BKI2DED bit of the UF0DEND register is set to 1. To send a short packet that
		does not make the FIFO on the CPU side full, set the BKI2DED bit to 1 after completing
		writing data. When the BKI2DED bit is set to 1, a toggle operation is performed and at the
		same time, this bit is automatically set to 1. This bit is also cleared to 0 as soon as the
		UF0BI2 register has been cleared.

Cautions 1. If DMA is enabled while data is being written to the UF0Bl2 register in the PIO mode, a DMA request is immediately issued.

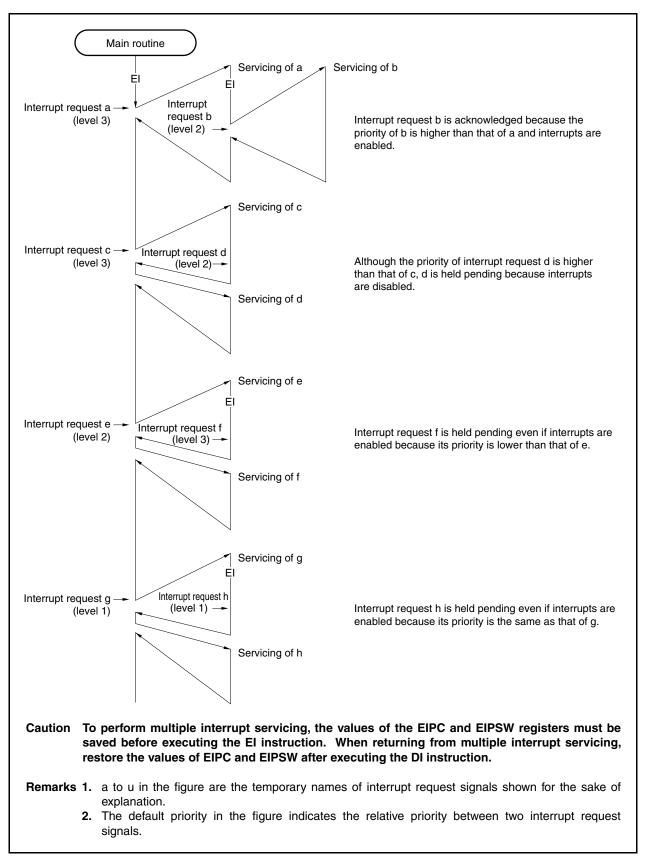
- 2. If 64-byte data is written in the DMA transfer mode, the DMA request signal becomes inactive. If the BKI2NK bit is then set to 1, data is transmitted in synchronization with an IN token. The DMA request signal becomes active again as long as the DMA request is not masked as soon as the FIFO is toggled. If the BKI2NK bit is not set, data is not transmitted even if an IN token has been received. In this case, set the BKI2DED bit of the UF0DEND register to 1.
- 3. If the TC signal is received in the DMA transfer mode, the DMA request signal becomes inactive. At the same time, the DMA request is masked. If the BKI2NK bit is not set to 1, data is not transmitted even if an IN token is received. When the BKI2DED bit of the UF0DEND register is set to 1 by FW, data is transmitted in synchronization with the IN token. To execute DMA transfer again, unmask the DMA request.

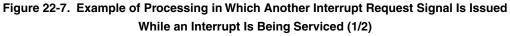
(6) UF0 EP4 status register L (UF0E4SL)

This register stores the value that is to be returned in response to the GET_STATUS Endpoint4 request.

This register can be read or written in 8-bit units. Note, however, that data can be written to this register only when the EP0NKA bit is set to 1.

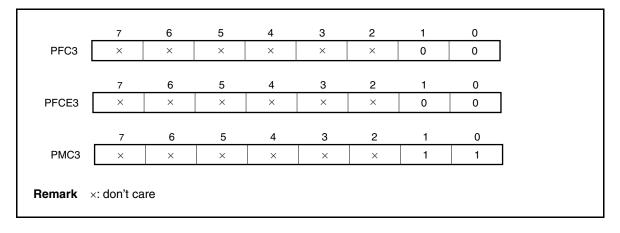
If an error occurs in Endpoint4, the E4HALT bit is set to 1. A write access to this register is ignored while a USBside access to Endpoint4 is being received.

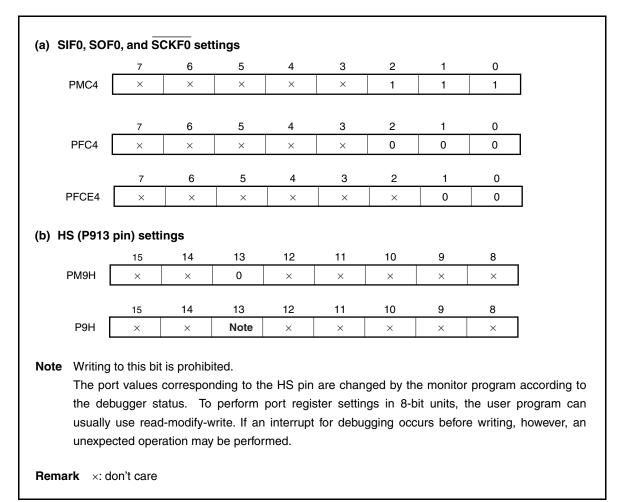

The hardware automatically transmits the contents of this register to the host when it has received the GET_STATUS Endpoint4 request. If Endpoint4 has stalled, the UF0BO2 register is cleared and the BKO2NK bit is cleared to 0.


Because writing this register is always masked when transfer to Endpoint4, rather than control transfer, is executed, be sure to check this register to see if data has been correctly written to it.

Caution To rewrite this register, set the EP0NKA bit to 1 before reading the register contents, and rewrite the register contents after confirming that the bit has been set, in order to prevent conflict between a read access and a write access.

	7	6	5	4	3	2	1	0	Address	After reset	
UF0E4SL	0	0	0	0	0	0	0	E4HALT	0020015CH	00H	
	1										
Bit position	В	lit name					Function				
0	E4H.								t4 request, rface to		




• Port registers when UARTC0 is used

When UARTC0 is used, port registers are set to make the TXDC0 and RXDC0 pins valid by the debug monitor program. Do not change the following register settings with the user program during debugging. (The same value can be overwritten.)

• Port registers when CSIF0 is used

When CSIF0 is used, port registers are set to make the SIF0, SOF0, SCKF0, and HS (P913) pins valid by the debug monitor program. Do not change the following register settings with the user program during debugging. (The same value can be overwritten.)

32.5.2 Supply current

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Supply current ^{Notes 1, 2}	Idd1	Normal operation	fxx = 48 MHz (fx = 6 MHz) Peripheral function operating			60	mA
			fxx = 48 MHz (fx = 6 MHz) USBF operating		42		mA
	Idd2	HALT mode	fxx = 48 MHz (fx = 6 MHz) Peripheral function operating		33	42	mA
	Idd3	IDLE1 mode	fxx = 48 MHz (fx = 6 MHz), PLL on		4	7	mA
	Idd4	IDLE2 mode	fxx = 6 MHz (fx = 6 MHz), PLL off		0.5	0.8	mA
	Idd5	Subclock operation mode	fxr = 32.768 kHz, main clock stopped, internal oscillator stopped		120	600	μA
	Idde	Sub-IDLE mode	fxr = 32.768 kHz, main clock stopped, internal oscillator stopped		13	95	μA
	Idd7	STOP mode	Subclock stopped, internal oscillator stopped		10	90	μA
			Subclock operating, internal oscillator stopped		13	95	μA
	IDD8	Flash memory programming mode	fxx = 48 MHz (fx = 6 MHz)		65	70	mA

$(T_A = -40 \text{ to } +85^{\circ}C, V_{DD} = EV_{DD} = UV_{DD} = AV_{REF0} = AV_{REF1}, V_{SS} = AV_{SS} = 0 V)$

Notes 1. Total of V_{DD}, EV_{DD}, and UV_{DD} currents. Currents flowing through the output buffers, A/D converter, D/A converter, and on-chip pull-down resistor are not included.

2. The V_DD of the TYP. value is 3.3 V.

APPENDIX C INSTRUCTION SET LIST

C.1 Conventions

(1) Register symbols used to describe operands

Register Symbol	Explanation			
reg1	General-purpose registers: Used as source registers.			
reg2	General-purpose registers: Used mainly as destination registers. Also used as source register in some instructions.			
reg3	General-purpose registers: Used mainly to store the remainders of division results and the higher 32 bits of multiplication results.			
bit#3	3-bit data for specifying the bit number			
immX	X bit immediate data			
dispX	X bit displacement data			
regID	System register number			
vector	5-bit data that specifies the trap vector (00H to 1FH)			
сссс	4-bit data that shows the conditions code			
sp	Stack pointer (r3)			
ер	Element pointer (r30)			
listX	X item register list			

(2) Register symbols used to describe opcodes

Register Symbol	Explanation				
R	1-bit data of a code that specifies reg1 or regID				
r	1-bit data of the code that specifies reg2				
w	1-bit data of the code that specifies reg3				
d	1-bit displacement data				
I	1-bit immediate data (indicates the higher bits of immediate data)				
i	1-bit immediate data				
сссс	4-bit data that shows the condition codes				
CCCC	4-bit data that shows the condition codes of Bcond instruction				
bbb	3-bit data for specifying the bit number				
L	1-bit data that specifies a program register in the register list				

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renessas.com/" for the latest and detailed information.
Renessas Electronics America Inc.
2801 Scott Boulevard Samta Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renessas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renessas Electronics Carope Limited
Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1828-585-100, Fax: +44-1628-585-000
Renessas Electronics Curope Limited
Tot: +44-1768-588-100, Fax: +44-1628-585-000
Renessas Electronics (China) Co., Ltd.
Room 1709, Vouantum Plaza, No.27 ZhicChunLu Haidian District, Beijing 100191, P.R.China
Tel: +49-211-5603-1, Fax: +49-211-6503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-1650-1, Fax: +49-21-1650-1, Fax: +49-21-1650-1, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-24, Fax: +49-21-450-2450-24, Fax: +49-21-450-2450-24, Fax: +49-21-450-2450-4, Fax: +49-21-450-24, Fax: +4

© 2014 Renesas Electronics Corporation. All rights reserved. Colophon 3.0