E·XF Renesas Electronics America Inc - UPD70F3817GA-GAM-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, CSI, EBI/EMI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 6x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3817ga-gam-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(1) Port n register (Pn)

Data is input from or output to an external device by writing or reading the Pn register. The Pn register consists of a port latch that holds output data, and a circuit that reads the status of pins. Each bit of the Pn register corresponds to one pin of port n, and can be read or written in 1-bit units.

ŀ	After reset	: 00H (outpu	ut latch)	R/W				
	7	6	5	7	3	2	1	0
Pn	Pn7	Pn6	Pn5	Pn4	Pn3	Pn2	Pn1	Pn0
-								
ī								
	Pnm		Cc	ontrol of out	put data (ir	n output mo	ode)	
	Pnm 0	Outputs 0		ontrol of out	put data (ir	n output mo	ode)	

Data is written to or read from the Pn register as follows, regardless of the setting of the PMCn register.

Table 4-7. Writing/Reading Pn Register

Setting of PMn Register	Writing to Pn Register	Reading from Pn Register
Output mode (PMnm = 0)	Data is written to the output latch ^{Note} . In the port mode (PMCn = 0), the contents of the output latch are output from the pins.	The value of the output latch is read.
Input mode (PMnm = 1)	Data is written to the output latch. The pin status is not affected ^{Note} .	The pin status is read.

Note The value written to the output latch is retained until a new value is written to the output latch.

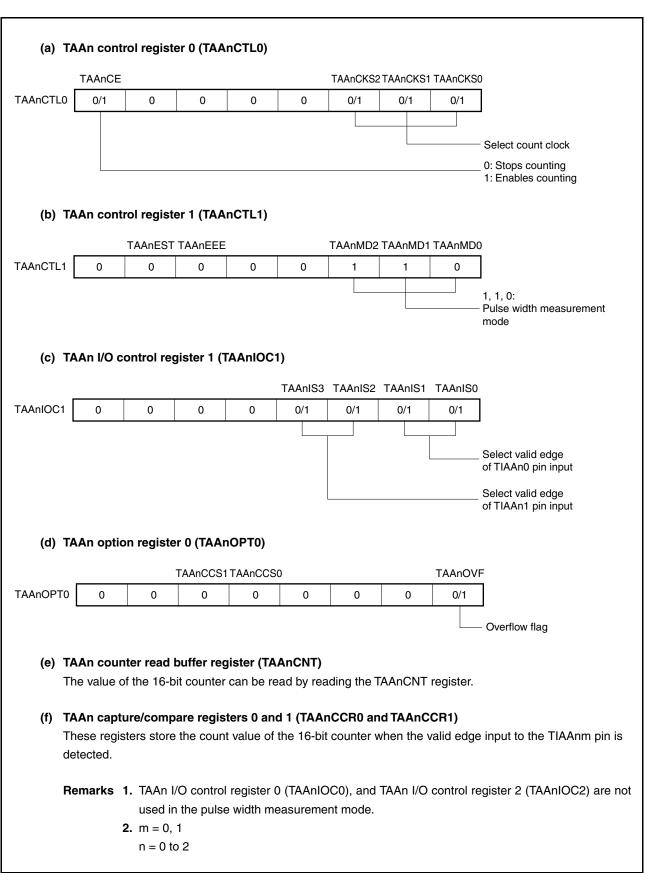


Figure 6-41. Register Setting in Pulse Width Measurement Mode

(10) TAB1 capture/compare register 2 (TAB1CCR2)

The TAB1CCR2 register can be used as a capture register or a compare register depending on the mode.

This register can be used as a capture register or a compare register only in the free-running timer mode, according to the setting of the TAB1OPT0.TAB1CCS2 bit. In the pulse width measurement mode, the TAB1CCR2 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TAB1CCR2 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TAB1CCR2 register is prohibited in the following statuses. For details, see 3.4.9 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	After res	et: 0	000H	F	R/W	Ad	dress	: 1	TAB10	CCR2	FFF	=F56A	٩H				
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TAB1CCR2	TAB1CCR2																

8.6.9 Encoder count function

The encoder count function includes an encoder compare mode (see 8.6.10 Encoder compare mode (TT0MD3 to TT0MD0 bits = 1000)).

Mode	TT0CCR0 Register	TT0CCR1 Register
Encoder compare mode	Compare only	Compare only

(1) Count-up/-down control

Counting up or down by the 16-bit counter is controlled by the phase of input encoder signals (TENC00 and TENC01) and settings of the TT0CTL2.TT0UDS1 and TT0CTL2.TT0UDS0 bits.

When the encoder count function is used, the internal count clock and external event count input (EVTT0) cannot be used. Set the TT0CTL0.TT0CKS2 to TT0CTL0.TT0CKS0 bits to 000 and the TT0CTL1.TT0EEE bit to 0.

(2) Setting initial value of 16-bit counter

The initial count value set to the TT0TCW register when the TT0CTL2.TT0ECC bit = 0 is transferred to the 16-bit counter immediately after the counter starts its operation (TT0CTL0.TT0CE bit = $0 \rightarrow 1$), and the counter starts the operation after it detects the valid edge of the encoder input signal (TENC00 or TENC01).

(3) Basic operation

The TT0CCRn register generates a compare match interrupt request signal (INTTT0CCn) when the count value of the 16-bit counter matches the value of the CCRn buffer register.

(4) Clear operation

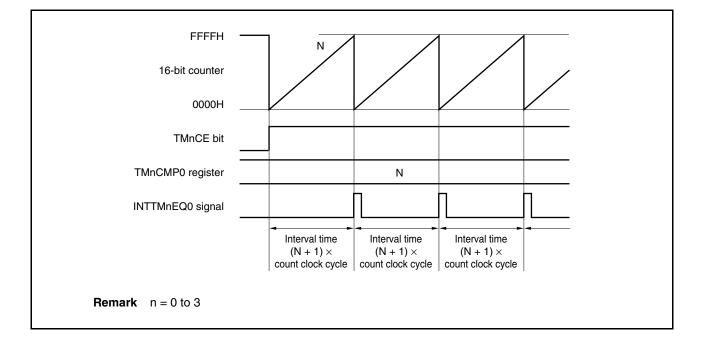
The 16-bit counter is cleared when the following conditions are satisfied in the encoder compare mode.

- When the value of the 16-bit counter matches the value of the compare register (the TT0CTL2.TT0ECM1 and TT0CTL2.TT0ECM0 bits are set)
- When the edge of the encoder clear input signal (TECR0) is detected (the TT0ECS1 and TT0ECS0 bits are set when the TT0IOC3.TT0SCE bit = 0)
- When the clear level condition of the TENC00, TENC01, and TECR0 pins is detected (the TT0ZCL, TT0BCL, and TT0ACL bits are set when the TT0SCE bit = 1)

Remark n = 0, 1

(2) Interval timer mode operation timing

Caution Do not set the TMnCMP0 register to FFFFH.


(a) Operation if TMnCMP0 register is set to 0000H

If the TMnCMP0 register is set to 0000H, the INTTMnEQ0 signal is generated at each count clock. The value of the 16-bit counter is always 0000H.

Count clock		
16-bit counter	<u> </u>	Х оооон Х оооон
TMnCE bit		
TMnCMP0 register	0000H	
INTTMnEQ0 signal		
		Interval time Count clock cycle Count clock cycle
Remark n = 0 to 3		

(b) Operation if TMnCMP0 register is set to N

If the TMnCMP0 register is set to N, the 16-bit counter counts up to N. The counter is cleared to 0000H in synchronization with the next count-up timing and the INTTMnEQ0 signal is generated.

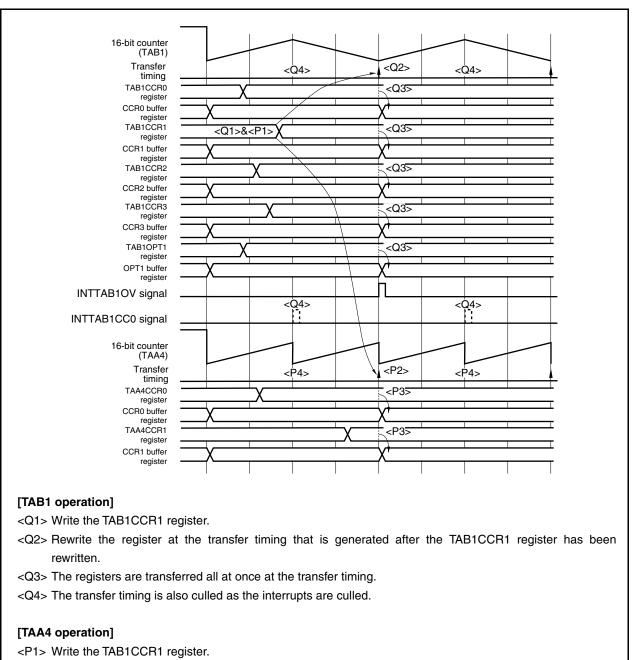


Figure 10-31. Basic Operation in Intermittent Batch Rewrite Mode

- <P2> Rewrite the register at the transfer timing that is generated after the TAB1CCR1 register has been rewritten.
- <P3> The registers are transferred all at once at the transfer timing.
- <P4> The transfer timing is also culled as the interrupts are culled.
- **Remark** This is an example of the operation when the TAB1OPT1.TAB1ICE bit = 1, TAB1OPT1.TAB1IOE bit = 1, and TAB1OPT1.TAB1ID4 to TAB1OPT1.TAB1ID0 bits = 00001.

16.6 Operation

16.6.1 Data format

Full-duplex serial data reception and transmission is performed.

As shown in Figure 16-7, one data frame of transmit/receive data consists of a start bit, character bits, parity bit, and stop bit(s).

Specification of the character bit length within 1 data frame, parity selection, specification of the stop bit length, and specification of MSB/LSB-first transfer are performed using the UCnCTL0 register.

Moreover, control of UART output/inverted output for the TXDCn bit is performed using the UCnOPT0.UCnTDL bit.

- Start bit.....1 bit
- Character bits7 bits/8 bits
- Parity bitEven parity/odd parity/0 parity/no parity
- Stop bit1 bit/2 bits

Address	Symbol	Bit 7/15	Bit 6/14	Bit 5/13	Bit 4/12	Bit 3/11	Bit 2/10	Bit 1/9	Bit 0/8		
03FEC05AH	COBRP				TQPRS7 to	o TQPRS0					
03FEC05CH	COBTR	0	0	0	0		TSEG13 to	o TSEG10			
03FEC05DH		0	0	SJW1,	SJW0	0	TSE	G22 to TSE	G20		
03FEC05EH	COLIPT		LIPT7 to LIPT0								
03FEC060H	CORGPT (W)	0	0	0	0	0	0	0	Clear ROVF		
03FEC061H		0	0	0	0	0	0	0	0		
03FEC060H	CORGPT (R)	0	0	0	0	0	0	RHPM	ROVF		
03FEC061H					RGPT7 to	o RGPT0					
03FEC062H	COLOPT				LOPT7 to	o LOPT0					
03FEC064H	COTGPT (W)	0	0	0	0	0	0	0	Clear TOVF		
03FEC065H		0	0	0	0	0	0	0	0		
03FEC064H	C0TGPT (R)	0	0	0	0	0	0	THPM	TOVF		
03FEC065H					TGPT7 to	o TGPT0					
03FEC066H	COTS (W)	0	0	0	0	0	Clear TSLOCK	Clear TSSEL	Clear TSEN		
03FEC067H		0	0	0	0	0	Set TSLOCK	Set TSSEL	Set TSEN		
03FEC066H	COTS (R)	0	0	0	0	0	TSLOCK	TSSEL	TSEN		
03FEC067H		0	0	0	0	0	0	0	0		
03FEC068H to 03FEC0FFH	_			Access p	prohibited (re	served for fu	ture use)				

Table 19-18. CAN Module Register Bit Configuration (2/2)

(c) GET_DESCRIPTOR() request

If the subject descriptor has a length that is a multiple of wMaxPacketSize, a Null packet is returned to indicate the end of the data stage. If the length of the descriptor at this time is less than the wLength value, the entire descriptor is returned; if the length of the descriptor is greater than the wLength value, the descriptor up to the wLength value is returned.

- Default state: The value stored in UF0 device descriptor register n (UF0DDn) and UF0 configuration/interface/endpoint descriptor register m (UF0CIEm) is returned (n = 0 to 17, m = 0 to 255) when the GET_DESCRIPTOR() request has been received.
- Addressed state: The value stored in the UF0DDn register and UF0CIEm register is returned when the GET_DESCRIPTOR() request has been received.
- Configured state: The value stored in the UF0DDn register and UF0CIEm register is returned when the GET_DESCRIPTOR() request has been received.

A descriptor of up to 256 bytes can be stored in the UF0CIEm register. To return a descriptor of more than 256 bytes, set the CDCGDST bit of the UF0MODC register to 1 and process the GET_DESCRIPTOR() request by FW.

Store the value of the total number of bytes of the descriptor set by the UF0CIEm register -1 in the UF0 descriptor length register (UF0DSCL). The transfer data is controlled by the value of this data +1 and wLength.

(d) GET_INTERFACE() request

If either of wValue and wLength is other than that shown in Table 20-3, or if wIndex is other than that set by the UF0 active interface number register (UF0AIFN), a STALL response is made in the data stage.

- Default state: A STALL response is made in the data stage when the GET_INTERFACE() request has been received.
- Addressed state: A STALL response is made in the data stage when the GET_INTERFACE() request has been received.
- Configured state: The value stored in the UF0 interface n register (UF0IFn) corresponding to the wIndex value is returned (n = 0 to 4) when the GET_INTERFACE() request has been received.

(3) EPC request data register

Address	Function Register Name	Symbol	R/W	Manir	oulatabl	a Rita	(1/13) Default Value
AUUIESS		Symbol	F7/ VV	1 1	8	е ыіз 16	
00200144H	UF0 device status register L	UF0DSTL	R/W		√		00H
0020014CH	UF0 EP0 status register L	UF0E0SL	R/W		\checkmark		00H
00200150H	UF0 EP1 status register L	UF0E1SL	R/W				00H
00200154H	UF0 EP2 status register L	UF0E2SL	R/W				00H
00200158H	UF0 EP3 status register L	UF0E3SL	R/W				00H
0020015CH	UF0 EP4 status register L	UF0E4SL	R/W		\checkmark		00H
00200168H	UF0 EP7 status register L	UF0E7SL	R/W		\checkmark		00H
00200180H	UF0 address register	UF0ADRS	R		\checkmark		00H
00200182H	UF0 configuration register	UF0CNF	R		\checkmark		00H
00200184H	UF0 interface 0 register	UF0IF0	R		\checkmark		00H
00200186H	UF0 interface 1 register	UF0IF1	R		\checkmark		00H
00200188H	UF0 interface 2 register	UF0IF2	R		\checkmark		00H
0020018AH	UF0 interface 3 register	UF0IF3	R		\checkmark		00H
0020018CH	UF0 interface 4 register	UF0IF4	R		\checkmark		00H
002001A0H	UF0 descriptor length register	UF0DSCL	R/W		\checkmark		00H
002001A2H	UF0 device descriptor register 0	UF0DD0	R/W		\checkmark		Undefined
002001A4H	UF0 device descriptor register 1	UF0DD1	R/W		\checkmark		Undefined
002001A6H	UF0 device descriptor register 2	UF0DD2	R/W		\checkmark		Undefined
002001A8H	UF0 device descriptor register 3	UF0DD3	R/W		\checkmark		Undefined
002001AAH	UF0 device descriptor register 4	UF0DD4	R/W		\checkmark		Undefined
002001ACH	UF0 device descriptor register 5	UF0DD5	R/W		\checkmark		Undefined
002001AEH	UF0 device descriptor register 6	UF0DD6	R/W		\checkmark		Undefined
002001B0H	UF0 device descriptor register 7	UF0DD7	R/W		\checkmark		Undefined
002001B2H	UF0 device descriptor register 8	UF0DD8	R/W		\checkmark		Undefined
002001B4H	UF0 device descriptor register 9	UF0DD9	R/W		\checkmark		Undefined
002001B6H	UF0 device descriptor register 10	UF0DD10	R/W		\checkmark		Undefined
002001B8H	UF0 device descriptor register 11	UF0DD11	R/W		\checkmark		Undefined
002001BAH	UF0 device descriptor register 12	UF0DD12	R/W		\checkmark		Undefined
002001BCH	UF0 device descriptor register 13	UF0DD13	R/W		\checkmark		Undefined
002001BEH	UF0 device descriptor register 14	UF0DD14	R/W				Undefined
002001C0H	UF0 device descriptor register 15	UF0DD15	R/W		\checkmark		Undefined
002001C2H	UF0 device descriptor register 16	UF0DD16	R/W		\checkmark		Undefined
002001C4H	UF0 device descriptor register 17	UF0DD17	R/W		\checkmark		Undefined
002001C6H	UF0 configuration/interface/endpoint descriptor register 0	UF0CIE0	R/W		\checkmark		Undefined
002001C8H	UF0 configuration/interface/endpoint descriptor register 1	UF0CIE1	R/W		\checkmark		Undefined
002001CAH	UF0 configuration/interface/endpoint descriptor register 2	UF0CIE2	R/W		\checkmark		Undefined
002001CCH	UF0 configuration/interface/endpoint descriptor register 3	UF0CIE3	R/W		V		Undefined

(8) UF0 EP status 0 register (UF0EPS0)

This register indicates the USB bus status and the presence or absence of register data.

This register is read-only, in 8-bit units.

The related bits are invalid if each endpoint is not supported by the setting of the UF0EnIM register (n = 1 to 4, 7) and the current setting of the interface.

It takes five USB clocks to reflect the status on this register after the UF0FIC0 and UF0FIC1 registers have been set. If it is necessary to read the status correctly, therefore, separate writing to the UF0FIC0 and UF0FIC1 registers from reading from the UF0EPS0, UF0EPS1, UF0EPS2, UF0E0N, and UF0EN registers by at least four USB clocks.

_	7	6	5	4	3	2	1	0	Address	After rese
UF0EPS0	0	IT1	BKOUT2	BKOUT1	BKIN2	EP0R	0020000EH	00H		
Bit position		Bit name					Function			
6	IT1		bit of the be creat the IT1E UF0INT transmis 1: Da	e UF0DEN ted even if DEND bit of 1 register i	D register t data is not f the UF0D s 0, this bit e register.	to 1, the sta written to t END regist is set to 1	atus in whic he register er is set to by hardwar	ch data is in (Null data t 1 even whe	. By setting the the UF0INT1 re ransmission). A en the counter o ared to 0 after co	egister can Is soon as f the
5, 4	BK	DUTn	When th 1 by hau register not set t 1: Da	ne FIFO co rdware. It is (FIFO) cor	nfiguring th s automation nected to the Null data is e register.	ne UF0BOn cally cleare the CPU si received (t	t register is d to 0 by ha de has bee oggling the	toggled, th ardware wh en complete	connected to the is bit is automati en reading the L d (counter value s not take place	ically set to JF0BOn = 0). It is
3, 2	ВКІ	Nn	By setting the UFC transmiss while the to 0 when 1: De	ng the BKIr)BIn registe ssion). As	DED bit of r can be cr soon as the of the UF0E operation e register.	f the UF0D reated ever e BKInDED BIn register is performe	END regist n if data is r b bit of the t is 0, this bit ed.	er to 1, the not written t JF0DEND	onnected to the status in which o o the register (N register has bee by hardware. It	data is in Iull data n set to 1

(33) UF0 mode control register (UF0MODC)

This register controls CPUDEC processing.

This register can be read or written in 8-bit units.

By setting each bit of this register, the setting of the UF0MODS register can be changed. The bit of this register is automatically cleared to 0 only at hardware reset and when the MRST bit of the UF0GRP register has been set to 1.

Even if the bit of this register has automatically been set to 1 by hardware, the setting by FW takes precedence. Be sure to clear bits 7 and 5 to 2 to "0". If they are set to 1, the operation is not guaranteed.

Caution This register is provided for debugging purposes. Usually, do not set this register except for verifying the operation or when a special mode is used.

	7	6	5	4	3	2	1	0	Address	After reset
	0	CDC	0	0	0	0	0	0	00200074H	00H
JFOMODC		GDST								
		-								
Bit position	В	it name					Function			
6	CDC	GDST	Set this I	oit to 1 to s	witch the G	ET_DESC	RIPTOR C	onfiguratio	n request to CPI	JDEC
			processi	ng. By set	ting this bit	to 1, the C	DCGD bit	of the UF0	MODS register c	an be
			forcibly s	et to 1.						
			1: Fo	cibly char	ige the GET	L_DESCRI	PTOR Con	figuration r	equest to CPUD	EC
			pro	cessing (s	sets the CD	CGD bit of	the UF0M0	ODS regist	er to 1).	
			0: Au	tomatically	v process th	e GET_DE	SCRIPTO	R Configur	ation request (de	efault
			vol	ue).						

(2) EPn DMA control register 2 (UF0E1DC2 to UF0E4DC2)

The UF0E1DC2 to UF0E4DC2 register controls the DMA transfer of end point n (EPn). (n = 1 to 4) The UF0E1DC2 to UF0E4DC2 register can be read or written in 16-bit units.

After reset: 00	00H R/W	Address: 002	200502H					
_	15	14	13	12	11	10	9	8
UF0E1DC2	EP1	EP1	EP1	EP1	EP1	EP1	EP1	EP1
	TCNT15	TCNT14	TCNT13	TCNT12	TCNT11	TCNT10	TCNT9	TCNT8
	7	6	5	4	3	2	1	0
ĺ				1				
	EP1 TCNT7	EP1 TCNT6	EP1 TCNT5	EP1 TCNT4	EP1 TCNT3	EP1 TCNT2	EP1 TCNT1	EP1 TCNT0
	10111	TOITTO	TOITTO	101114	TOITTO	TONTE	TOILL	TONTO
After reset: 00	00H R/W	Address: 002	200506H					
-	15	14	13	12	11	10	9	8
UF0E2DC2	EP2	EP2	EP2	EP2	EP2	EP2	EP2	EP2
	TCNT15	TCNT14	TCNT13	TCNT12	TCNT11	TCNT10	TCNT9	TCNT8
-	7	6	5	4	3	2	1	0
	EP2	EP2	EP2	EP2	EP2	EP2	EP2	EP2
	EP2 TCNT7	EP2 TCNT6	EP2 TCNT5	EP2 TCNT4	EP2 TCNT3	EP2 TCNT2	EP2 TCNT1	EP2 TCNT0
After reset: 00	TCNT7		TCNT5					
After reset: 00	TCNT7	TCNT6	TCNT5					
After reset: 00 UF0E3DC2	TCNT7 00H R/W	TCNT6 Address: 002	TCNT5 20050AH	TCNT4	TCNT3	TCNT2	TCNT1	TCNT0
r	TCNT7 00H R/W 15	TCNT6 Address: 002 14	TCNT5 20050AH 13	TCNT4	11	10	TCNT1 9	TCNT0 8
r	TCNT7 00H R/W 15 EP3	TCNT6 Address: 002 14 EP3	TCNT5 20050AH 13 EP3	TCNT4 12 EP3	TCNT3 11 EP3	10 EP3	9 EP3	TCNT0 8 EP3
After reset: 00 UF0E3DC2	TCNT7 00H R/W 15 EP3	TCNT6 Address: 002 14 EP3	TCNT5 20050AH 13 EP3	TCNT4 12 EP3	TCNT3 11 EP3	10 EP3	9 EP3	TCNT0 8 EP3
r	TCNT7 00H R/W 15 EP3 TCNT15 7 EP3	TCNT6 Address: 002 14 EP3 TCNT14 6 EP3	TCNT5 20050AH 13 EP3 TCNT13 5 EP3	TCNT4 12 EP3 TCNT12 4 EP3	11 EP3 TCNT11 3 EP3	TCNT2 10 EP3 TCNT10 2 EP3	9 EP3 TCNT9 1 EP3	TCNT0 8 EP3 TCNT8 0 EP3
r	TCNT7 00H R/W 15 EP3 TCNT15 7	TCNT6 Address: 002 14 EP3 TCNT14 6	TCNT5 20050AH 13 EP3 TCNT13 5	12 EP3 TCNT12 4	11 EP3 TCNT11 3	10 EP3 TCNT10 2	9 EP3 TCNT9 1	8 EP3 TCNT8 0
r	TCNT7 00H R/W 15 EP3 TCNT15 7 EP3 TCNT7	TCNT6 Address: 002 14 EP3 TCNT14 6 EP3 TCNT6	TCNT5 20050AH 13 EP3 TCNT13 5 EP3 TCNT5	TCNT4 12 EP3 TCNT12 4 EP3	11 EP3 TCNT11 3 EP3	TCNT2 10 EP3 TCNT10 2 EP3	9 EP3 TCNT9 1 EP3	TCNT0 8 EP3 TCNT8 0 EP3
UF0E3DC2	TCNT7 00H R/W 15 EP3 TCNT15 7 EP3 TCNT7	TCNT6 Address: 002 14 EP3 TCNT14 6 EP3 TCNT6 Address: 002	TCNT5 20050AH 13 EP3 TCNT13 5 EP3 TCNT5	TCNT4 12 EP3 TCNT12 4 EP3	11 EP3 TCNT11 3 EP3	TCNT2 10 EP3 TCNT10 2 EP3	9 EP3 TCNT9 1 EP3	TCNT0 8 EP3 TCNT8 0 EP3
UF0E3DC2	TCNT7 00H R/W 15 EP3 TCNT15 7 EP3 TCNT7 00H R/W 15	TCNT6 Address: 002 14 EP3 TCNT14 6 EP3 TCNT6 Address: 002 14	TCNT5 20050AH 13 EP3 TCNT13 5 EP3 TCNT5 20050EH 13	12 EP3 TCNT12 4 EP3 TCNT4	11 EP3 TCNT11 3 EP3 TCNT3 11	10 EP3 TCNT10 2 EP3 TCNT2	9 EP3 TCNT9 1 EP3 TCNT1 9	8 EP3 TCNT8 0 EP3 TCNT0 8
UF0E3DC2	TCNT7 00H R/W 15 EP3 TCNT15 7 2 EP3 TCNT7 7 00H R/W	TCNT6 Address: 002 14 EP3 TCNT14 6 EP3 TCNT6 Address: 002	TCNT5 20050AH 13 EP3 TCNT13 5 EP3 TCNT5 20050EH	12 EP3 TCNT12 4 EP3 TCNT4	11 EP3 TCNT11 3 EP3 TCNT3	10 EP3 TCNT10 2 EP3 TCNT2	9 EP3 TCNT9 1 EP3 TCNT1	8 EP3 TCNT8 0 EP3 TCNT0
UF0E3DC2	TCNT7 00H R/W 15 EP3 TCNT15 7 EP3 TCNT7 00H R/W 15 EP4	TCNT6 Address: 002 14 EP3 TCNT14 6 EP3 TCNT6 Address: 002 14 EP4	TCNT5 20050AH 13 EP3 TCNT13 5 EP3 TCNT5 20050EH 13 EP4	TCNT4 12 EP3 TCNT12 4 EP3 TCNT4	11 EP3 TCNT11 3 EP3 TCNT3	TCNT2 10 EP3 TCNT10 2 EP3 TCNT2 10 EP4	TCNT1 9 EP3 TCNT9 1 EP3 TCNT1 9 EP4	TCNT0 8 EP3 TCNT8 0 EP3 TCNT0 8 EP4
UF0E3DC2	TCNT7 00H R/W 15 EP3 TCNT15 7 EP3 TCNT7 00H R/W 15 EP4	TCNT6 Address: 002 14 EP3 TCNT14 6 EP3 TCNT6 Address: 002 14 EP4	TCNT5 20050AH 13 EP3 TCNT13 5 EP3 TCNT5 20050EH 13 EP4	TCNT4 12 EP3 TCNT12 4 EP3 TCNT4	11 EP3 TCNT11 3 EP3 TCNT3	TCNT2 10 EP3 TCNT10 2 EP3 TCNT2 10 EP4	TCNT1 9 EP3 TCNT9 1 EP3 TCNT1 9 EP4	TCNT0 8 EP3 TCNT8 0 EP3 TCNT0 8 EP4
UF0E3DC2	TCNT7 00H R/W 15 EP3 TCNT15 7 2 EP3 TCNT7 00H 00H R/W 15 EP4 TCNT15 15	TCNT6 Address: 002 14 EP3 TCNT14 6 EP3 TCNT6 Address: 002 14 EP4 TCNT14	TCNT5 20050AH 13 EP3 TCNT13 5 EP3 TCNT5 20050EH 13 EP4 TCNT13	12 EP3 TCNT12 4 EP3 TCNT4 12 EP3 TCNT4	11 EP3 TCNT11 3 EP3 TCNT3 11 EP4 TCNT11	10 EP3 TCNT10 2 EP3 TCNT2 10 EP3 TCNT2	TCNT1 9 EP3 TCNT9 1 EP3 TCNT1 9 EP4 TCNT9	TCNT0 8 EP3 TCNT8 0 EP3 TCNT0 8 EP4 TCNT8

Address	Register					Bit			
		<7>	<6>	5	4	3	2	1	0
FFFFF110H	LVIIC	LVIIF	LVIMK	0	0	0	LVIPR2	LVIPR1	LVIPR0
FFFFF116H	PIC02	PIF02	PMK02	0	0	0	PPR022	PPR021	PPR020
FFFFF11CH	PIC05	PIF05	PMK05	0	0	0	PPR052	PPR051	PPR050
FFFFF120H	PIC07	PIF07	PMK07	0	0	0	PPR072	PPR071	PPR070
FFFFF122H	PIC08	PIF08	PMK08	0	0	0	PPR082	PPR081	PPR080
FFFFF124H	PIC09	PIF09	PMK09	0	0	0	PPR092	PPR091	PPR090
FFFFF126H	PIC10	PIF10	PMK10	0	0	0	PPR102	PPR101	PPR100
FFFFF128H	PIC11	PIF11	PMK11	0	0	0	PPR112	PPR111	PPR110
FFFFF12EH	PIC14	PIF14	PMK14	0	0	0	PPR142	PPR141	PPR140
FFFFF130H	PIC15	PIF15	PMK15	0	0	0	PPR152	PPR151	PPR150
FFFFF132H	PIC16	PIF16	PMK16	0	0	0	PPR162	PPR161	PPR160
FFFFF142H	TAB1OVIC ^{Note}	TAB1OVIF	TAB1OVMK	0	0	0	TAB1OVPPR2	TAB1OVPPR1	TAB1OVPPR0
FFFFF144H	TAB1CCIC0 Note	TAB1CCIF0	TAB1CCMK0	0	0	0	TAB1CCPPR02	TAB1CCPPR01	TAB1CCPPR00
FFFFF146H	TAB1CCIC1 Note	TAB1CCIF1	TAB1CCMK1	0	0	0	TAB1CCPPR12	TAB1CCPPR11	TAB1CCPPR10
FFFFF148H	TAB1CCIC2 Note	TAB1CCIF2	TAB1CCMK2	0	0	0	TAB1CCPPR22	TAB1CCPPR21	TAB1CCPPR20
FFFFF14AH	TAB1CCIC3 ^{Note}	TAB1CCIF3	TAB1CCMK3	0	0	0	TAB1CCPPR32	TAB1CCPPR31	TAB1CCPPR30
FFFFF14CH	TT0OVIC ^{Note}	TT00VIF	TT00VMK	0	0	0	TT00VPPR2	TT00VPPR1	TT0OVPPR0
FFFFF14EH	TT0CCIC0	TT0CCIF0	ттоссмко	0	0	0	TT0CCPPR02	TT0CCPPR01	TT0CCPPR00
FFFFF150H	TT0CCIC1	TT0CCIF1	TT0CCMK1	0	0	0	TT0CCPPR12	TT0CCPPR11	TT0CCPPR10
FFFFF152H	TTOIECIC	TT0IECIF	TTOIECMK	0	0	0	TT0IECPPR2	TT0IECPPR1	TT0IECPPR0
FFFFF154H	TAA0OVIC	TAA0OVIF	TAA0OVMK	0	0	0	TAA0OVPPR2	TAA0OVPPR1	TAA0OVPPR0
FFFFF156H	TAA0CCIC0	TAA0CCIF0	ТАА0ССМК0	0	0	0	TAA0CCPPR02	TAA0CCPPR01	TAA0CCPPR00
FFFFF158H	TAA0CCIC1	TAA0CCIF1	TAA0CCMK1	0	0	0	TAA0CCPPR12	TAA0CCPPR11	TAA0CCPPR10
FFFFF15AH	TAA1OVIC	TAA1OVIF	TAA1OVMK	0	0	0	TAA1OVPPR2	TAA1OVPPR1	TAA1OVPPR0
FFFFF15CH	TAA1CCIC0	TAA1CCIF0	TAA1CCMK0	0	0	0	TAA1CCPPR02	TAA1CCPPR01	TAA1CCPPR00
FFFFF15EH	TAA1CCIC1	TAA1CCIF1	TAA1CCMK1	0	0	0	TAA1CCPPR12	TAA1CCPPR11	TAA1CCPPR10
FFFFF160H	TAA2OVIC	TAA2OVIF	TAA2OVMK	0	0	0	TAA2OVPPR2	TAA2OVPPR1	TAA2OVPPR0
FFFFF162H	TAA2CCIC0	TAA2CCIF0	TAA2CCMK0	0	0	0	TAA2CCPPR02	TAA2CCPPR01	TAA2CCPPR00
FFFFF164H	TAA2CCIC1	TAA2CCIF1	TAA2CCMK1	0	0	0	TAA2CCPPR12	TAA2CCPPR11	TAA2CCPPR10
FFFFF178H	TM0EQIC0	TM0EQIF0	TM0EQMK0	0	0	0	TM0EQPR02	TM0EQPR01	TM0EQPR00
FFFFF17AH	TM1EQIC0	TM1EQIF0	TM1EQMK0	0	0	0	TM1EQPR02	TM1EQPR01	TM1EQPR00
FFFFF17CH	TM2EQIC0	TM2EQIF0	TM2EQMK0	0	0	0	TM2EQPR02	TM2EQPR01	TM2EQPR00
FFFFF17EH	TM3EQIC0	TM3EQIF0	TM3EQMK0	0	0	0	TM3EQPR02	TM3EQPR01	TM3EQPR00
FFFFF180H	CF0RIC/ IICIC1	CF0RIF/ IICIF1	CF0RMK/ IICMK1	0	0	0	CF0RPPR2/ IICPPR12	CF0RPPR1/ IICPPR11	CF0RPPR0/ IICPPR10
FFFFF182H	CF0TIC	CF0TIF	CF0TMK	0	0	0	CF0TPPR2	CF0TPPR1	CF0TPPR0
FFFFF188H	CF2RIC	CF2RIF	CF2RMK	0	0	0	CF2RPPR2	CF2RPPR1	CF2RPPR0
FFFFF18AH	CF2TIC	CF2TIF	CF2TMK	0	0	0	CF2TPPR2	CF2TPPR1	CF2TPPR0
FFFFF18CH	CF3RIC	CF3RIF	CF3RMK	0	0	0	CF3RPPR2	CF3RPPR1	CF3RPPR0
FFFFF18EH	CF3TIC	CF3TIF	CF3TMK	0	0	0	CF3TPPR2	CF3TPPR1	CF3TPPR0
FFFFF190H	CF4RIC	CF4RIF	CF4RMK	0	0	0	CF4RPPR2	CF4RPPR1	CF4RPPR0
FFFFF192H	CF4TIC	CF4TIF	CF4TMK	0	0	0	CF4TPPR2	CF4TPPR1	CF4TPPR0

Table 22-3. Interrupt Control Register (xxICn) (1/2)

Note V850ES/JE3-H only

CHAPTER 24 STANDBY FUNCTION

24.1 Overview

The power consumption of the system can be effectively reduced by using the standby modes in combination and selecting the appropriate mode for the application. The available standby modes are listed in Table 24-1.

Mode	Functional Outline		
HALT mode	Mode in which only the operating clock of the CPU is stopped		
IDLE1 mode	Mode in which all the operations of the internal circuits except the oscillator, PLL ^{Note} , and flash memory are stopped		
IDLE2 mode	Mode in which all the operations of internal circuits except the oscillator are stopped		
STOP mode	Mode in which all the operations of internal circuits except the subclock oscillator are stopped		
Subclock operation mode	Mode in which the subclock is used as the internal system clock		
Sub-IDLE mode	Mode in which all the operations of internal circuits except the oscillator are stopped, in the subclock operation mode		

Table 24-1. Standby Modes

Note The PLL holds the previous operating status.

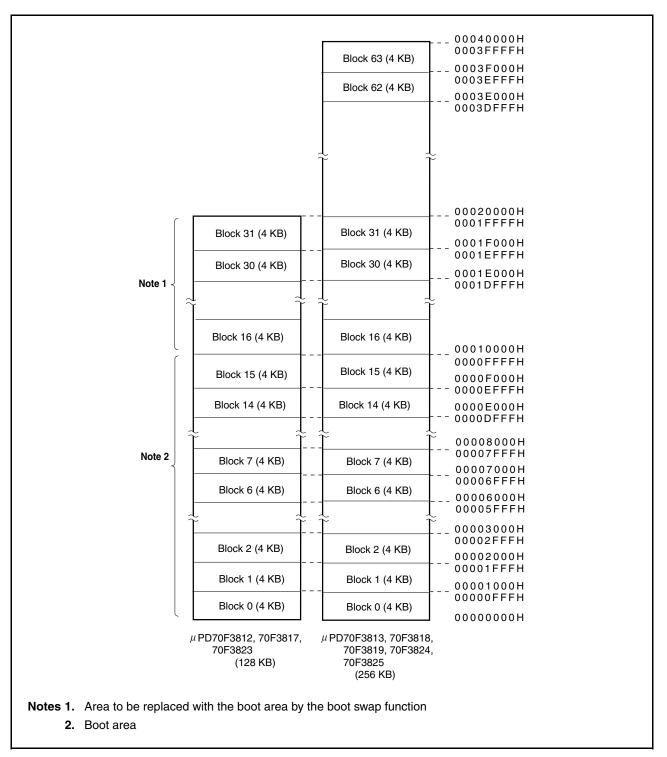
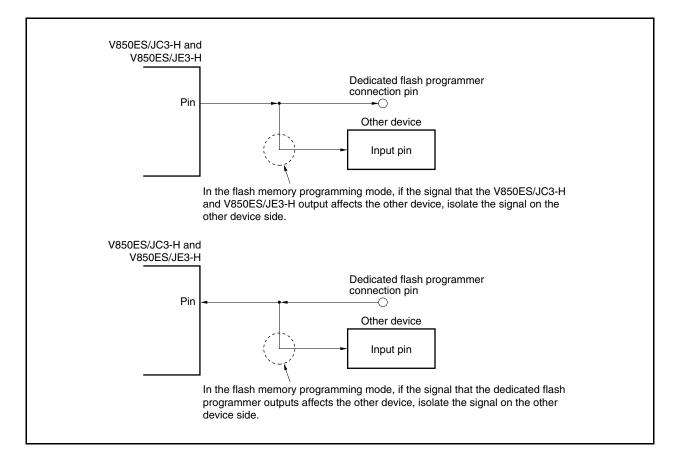


Figure 30-1. Flash Memory Mapping (2/2)

Pin No.	Pin Name	Recommended Connection		
29	P96/TIAA21/TOAA21/INTP11	-		
30	P97/SIF1/TIAA20/TOAA20	-		
31	PDL5/FLMD1	Connect to FLMD1 (output) pin of the programmer		
32	P910/SIF3/TXDC2/INTP14	When CSI (CSIF3) is used : connect to SO (output) pin of the programmer When CSI (CSIF3) is not used : pull-down ^{Note}		
33	P911/SOF3/RXDC2/INTP15	When CSI (CSIF3) is used : connect to SI (input) pin of the programmer When CSI (CSIF3) is not used : pull-down ^{Note}		
34	P912/SCKF3	When CSI (CSIF3) is used : connect to SCK (output) pin of the programmer When CSI (CSIF3) is not used : pull-down ^{Note}		
35	P913/TOAB1OFF/INTP16 (HS)	When CSI-HS (CSIF3) is used : connect to H/S (input) pin of the programmer When CSI-HS (CSIF3) is not used : pull-down ^{Note}		
36	P74/ANI4	-		
37	P73/ANI3	-		
38	P72/ANI2	-		
39	P71/ANI1	-		
40	P70/ANI0	-		


Table 30-6. Wiring of V850ES/JC3-H (40 pin) Flash Writing Adapters (2/2)

Note Independently connect to $V_{\mbox{\scriptsize SS}}$ or $V_{\mbox{\scriptsize DD}}$ via a resistor.

(b) Malfunction of other device

When the dedicated flash programmer (output or input) is connected to a serial interface pin (input or output) that is connected to another device (input), the signal is output to the other device, causing the device to malfunction. To avoid this, isolate the connection to the other device.

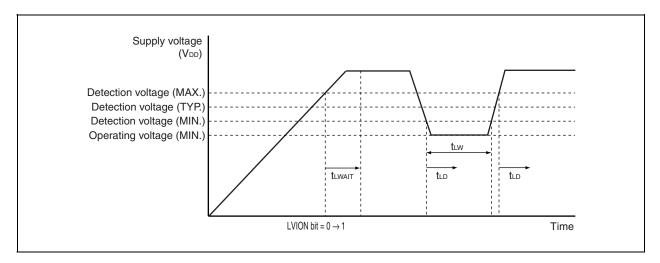
(11) D/A converter

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{UV}_{DD} = \text{AV}_{\text{REF0}} = \text{AV}_{\text{REF1}}, 3.0 \text{ V} \leq \text{AV}_{\text{REF1}} \leq 3.6 \text{ V}, \text{V}_{\text{SS}} = \text{AV}_{\text{SS}} = 0 \text{ V}, \text{CL} = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					8	bit
Overall error ^{Note 1}		R = 2 MΩ			±1.2	%FSR
Settling time		C = 20 pF			3	μs
Output resistor	Ro	Output data 55H		6.42		kΩ
Reference voltage	AV _{REF1}		3.0		3.6	V
AVREF1 currentNote 2	AIREF1	D/A conversion operating		1	2.5	mA
		D/A conversion stopped			5	μA

Notes 1. Excluding quantization error (±0.5 %LSB).

2. Value of 1 channel of D/A converter


Remark R is the output pin load resistance and C is the output pin load capacitance.

(12) LVI circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{V}_{DD} = \text{EV}_{DD} = \text{UV}_{DD} = \text{AV}_{REF0} = \text{AV}_{REF1}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V}, \text{CL} = 50 \text{ pF})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		2.85	2.95	3.05	V
Response time ^{Note}	tld	After V _{DD} reaches V _{LVI0} (MAX.), or after V _{DD} has dropped to V _{LVI0} (MAX.)		0.2	2.0	ms
Minimum pulse width	t∟w		0.2			ms
Reference voltage stabilization wait time	t lwait	After VDD reaches 2.85 V(MIN.)		0.1	0.2	ms

Note Time required to detect the detection voltage and output an interrupt or reset signal.

	1		(11/34
Symbol	Name	Unit	Page
COMDATA522	CAN0 message data byte 5 register 22	CAN	920
C0MDATA523	CAN0 message data byte 5 register 23	CAN	920
C0MDATA524	CAN0 message data byte 5 register 24	CAN	920
COMDATA525	CAN0 message data byte 5 register 25	CAN	920
COMDATA526	CAN0 message data byte 5 register 26	CAN	920
COMDATA527	CAN0 message data byte 5 register 27	CAN	920
COMDATA528	CAN0 message data byte 5 register 28	CAN	920
COMDATA529	CAN0 message data byte 5 register 29	CAN	920
C0MDATA530	CAN0 message data byte 5 register 30	CAN	920
C0MDATA531	CAN0 message data byte 5 register 31	CAN	920
COMDATA600	CAN0 message data byte 6 register 00	CAN	920
C0MDATA601	CAN0 message data byte 6 register 01	CAN	920
C0MDATA602	CAN0 message data byte 6 register 02	CAN	920
C0MDATA603	CAN0 message data byte 6 register 03	CAN	920
COMDATA604	CAN0 message data byte 6 register 04	CAN	920
COMDATA605	CAN0 message data byte 6 register 05	CAN	920
COMDATA606	CAN0 message data byte 6 register 06	CAN	920
C0MDATA607	CAN0 message data byte 6 register 07	CAN	920
COMDATA608	CAN0 message data byte 6 register 08	CAN	920
COMDATA609	CAN0 message data byte 6 register 09	CAN	920
C0MDATA610	CAN0 message data byte 6 register 10	CAN	920
C0MDATA611	CAN0 message data byte 6 register 11	CAN	920
C0MDATA612	CAN0 message data byte 6 register 12	CAN	920
C0MDATA613	CAN0 message data byte 6 register 13	CAN	920
C0MDATA614	CAN0 message data byte 6 register 14	CAN	920
C0MDATA615	CAN0 message data byte 6 register 15	CAN	920
C0MDATA616	CAN0 message data byte 6 register 16	CAN	920
C0MDATA617	CAN0 message data byte 6 register 17	CAN	920
C0MDATA618	CAN0 message data byte 6 register 18	CAN	920
C0MDATA619	CAN0 message data byte 6 register 19	CAN	920
COMDATA620	CAN0 message data byte 6 register 20	CAN	920
C0MDATA621	CAN0 message data byte 6 register 21	CAN	920
C0MDATA622	CAN0 message data byte 6 register 22	CAN	920
COMDATA623	CAN0 message data byte 6 register 23	CAN	920
COMDATA624	CAN0 message data byte 6 register 24	CAN	920
COMDATA625	CAN0 message data byte 6 register 25	CAN	920
COMDATA626	CAN0 message data byte 6 register 26	CAN	920
COMDATA627	CAN0 message data byte 6 register 27	CAN	920
COMDATA628	CANO message data byte 6 register 28	CAN	920
COMDATA629	CANO message data byte 6 register 29	CAN	920
COMDATA630	CANO message data byte 6 register 30	CAN	920

