E. Renesas Electronics America Inc - UPD70F3818GA-GAM-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, CSI, EBI/EMI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	32
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 6x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3818ga-gam-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(c) Internal ROM (64 KB)

64 KB are allocated to addresses 00000000H to 0000FFFFH in the following products. Accessing addresses 00010000H to 000FFFFFH is prohibited.

• *µ* PD70F3811, 70F3816, 70F3822

(d) Internal ROM (128 KB)

128 KB are allocated to addresses 00000000H to 0001FFFFH in the following products. Accessing addresses 00020000H to 000FFFFFH is prohibited.

• μPD70F3812, 70F3817, 70F3823

(1) Setting data to special registers

Set data to the special registers in the following sequence.

- <1> Disable DMA operation.
- <2> Prepare data to be set to the special register in a general-purpose register.
- <3> Write the data prepared in <2> to the PRCMD register.
- <4> Write the setting data to the special register (by using the following instructions).
 - Store instruction (ST/SST instruction)
 - Bit manipulation instruction (SET1/CLR1/NOT1 instruction)

(<5> to <9> Insert NOP instructions (5 instructions).)^{Note}

<10> Enable DMA operation if necessary.

[Example] With PSC register (setting standby mode)

```
ST.B r11, PSMR[r0] ; Set PSMR register (setting IDLE1, IDLE2, and STOP modes).
<1>CLR1 0, DCHCn[r0]
                              ; Disable DMA operation. n = 0 to 3
<2>MOV0x02, r10
<3>ST.B r10, PRCMD[r0] ; Write PRCMD register.
<4>ST.B r10, PSC[r0] ; Set PSC register.
<5>NOP<sup>Note</sup>
                               ; Dummy instruction
<6>NOP<sup>Note</sup>
                              ; Dummy instruction
< 7 > \text{NOP}^{Note}
                               ; Dummy instruction
<\!8\!>\!\mathrm{NOP}^{Note}
                               ; Dummy instruction
< 9 > \text{NOP}^{Note}
                               ; Dummy instruction
<10>SET1 0, DCHCn[r0] ; Enable DMA operation. n = 0 to 3
(next instruction)
```

There is no special sequence to read a special register.

- **Note** Five NOP instructions or more must be inserted immediately after setting the IDLE1 mode, IDLE2 mode, or STOP mode (by setting the PSC.STP bit to 1).
- Cautions 1. When a store instruction is executed to store data in the command register, interrupts are not acknowledged. This is because it is assumed that steps <3> and <4> above are performed by successive store instructions. If another instruction is placed between <3> and <4>, and if an interrupt is acknowledged by that instruction, the above sequence may not be established, causing malfunction.
 - Although dummy data is written to the PRCMD register, use the same general-purpose register used to set the special register (<4> in Example) to write data to the PRCMD register (<3> in Example). The same applies when a general-purpose register is used for addressing.

(7) Port setting

Set a port as illustrated below.

(2) Operation timing in one-shot pulse output mode

(a) Notes on rewriting TAB1CCRm register

To change the set value of the TAB1CCRm register to a smaller value, stop counting once, and then change the set value.

If the value of the TAB1CCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

When the TAB1CCR0 register is rewritten from D_{00} to D_{01} and the TAB1CCRk register from D_{k0} to D_{k1} where $D_{00} > D_{01}$ and $D_{k0} > D_{k1}$, if the TAB1CCRk register is rewritten when the count value of the 16-bit counter is greater than D_{k1} and less than D_{k0} and if the TAB1CCR0 register is rewritten when the count value is greater than D_{01} and less than D_{00} , each set value is reflected as soon as the register has been rewritten and compared with the count value. The counter counts up to FFFFH and then counts up again from 0000H. When the count value matches D_{k1} , the counter generates the INTTAB1CCk signal and asserts the TOAB1k pin. When the count value matches D_{01} , the counter generates the INTTAB1CCO signal, deasserts the TOAB1k pin, and stops counting.

Therefore, the counter may output a pulse with a delay period or active period different from that of the oneshot pulse that is originally expected.

Remark k = 1 to 3

(b) Operation if TT0CCR0 register is set to FFFFH

If the TT0CCR0 register is set to FFFFH, the 16-bit counter counts up to FFFFH. The counter is cleared to 0000H in synchronization with the next count-up timing. The INTTT0CC0 signal is generated and the output of the TOT00 pin is inverted. At this time, an overflow interrupt request signal (INTTT0OV) is not generated, nor is the overflow flag (TT0OPT0.TT0OVF bit) set to 1.

(a) Setting procedure

(i) Setting of high-impedance control operation

- <1> Set the HZA0DCMn, HZA0DCNn, and HZA0DCPn bits.
- <2> Set the HZA0DCEn bit to 1 (enable high-impedance control).

(ii) Changing setting after enabling high-impedance control operation

- <1> Clear the HZA0DCEn bit to 0 (to stop the high-impedance control operation).
- <2> Change the setting of the HZA0DCMn, HZA0DCNn, and HZA0DCPn bits.
- <3> Set the HZA0DCEn bit to 1 (to enable the high-impedance control operation again).

(iii) Resuming output when pins are in high-impedance state

If the HZA0DCMn bit is 1, set the HZA0DCCn bit to 1 to clear the high-impedance state after the valid edge of the external pin is detected. However, the high-impedance state cannot be cleared unless this bit is set while the input level of the external pin is inactive.

- <1> Set the HZA0DCCn bit to 1 (command signal to clear the high-impedance state).
- <2> Read the HZA0DCFn bit and check the flag status.
- <3> Return to <1> if the HZA0DCFn bit is 1. The input level of the external pin must be checked. The pin can function as an output pin if the HZA0DCFn bit is 0.

(iv) Making pin go into high-impedance state by software

The HZA0DCTn bit must be set to 1 by software to make the pin go into a high-impedance state while the input level of the external pin is inactive. The following procedure is an example in which the setting is not dependent upon the setting of the HZA0DCMn bit.

- <1> Set the HZA0DCTn bit to 1 (high-impedance output command).
- <2> Read the HZA0DCFn bit to check the flag status.
- <3> Return to <1> if the HZA0DCFn bit is 0. The input level of the external pin must be checked. The pin is in a high-impedance state if the HZA0DCFn bit is 1.

However, if the external pin is not used with the HZA0DCPn bit and HZA0DCNn bit cleared to 0, the pin goes into a high-impedance state when the HZA0DCTn bit is set to 1.

Remark n = 0, 1

Figure 10-10. 100% PWM Output Waveform (With Dead Time)

Figure 10-26. Basic Operation in Batch Mode

(b) Rewriting TAB1CCR0 register

When rewriting the TAB1CCR0 register in the batch rewrite mode, the output waveform differs depending on whether transfer occurs at the crest (match between the 16-bit counter value and TAB1CCR0 register value) or at the valley (match between the 16-bit counter value and 0001H). Usually, it is recommended to rewrite the TAB1CCR0 register while the 16-bit counter is counting down, and transfer the register value at the transfer timing of the crest timing.

Figure 10-28 shows an example of rewriting the TAB1CCR0 register while the 16-bit counter is counting up (during period <1> in Figure 10-27). Figure 10-29 shows an example of rewriting the TAB1CCR0 register while the counter is counting down (during period <2> in Figure 10-27).

Figure 10-27. Basic Operation of 16-Bit Counter

Figure 14-7. Timing Example of One-Shot Scan Mode Operation (ADA0S Register = 03H)

17.6.5 Single transfer mode (slave mode, reception mode)

MSB first (CFnCTL0.CFnDIR bit = 0), communication type 1 (CFnCTL1.CFnCKP and CFnCTL1.CFnDAP bits = 00), communication clock (f_{CCLK}) = external clock (\overline{SCKFn}) (CFnCTL1.CFnCKS2 to CFnCTL1.CFnCKS0 bits = 111), transfer data length = 8 bits (CFnCTL2.CFnCL3 to CFnCTL2.CFnCL0 bits = 0000)

(1) Operation flow

(1) Operation flow

(2) CAN0 global clock selection register (C0GMCS)

The COGMCS register is used to select the CAN module system clock.

	7	6	5	4	3	2	1	0
COGMCS	0	0	0	0	CCP3	CCP2	CCP1	CCP0
CCP3	CCP2	CCP1	CCP0		CAN modul	e system cloo	ck (fcanmod)	
0	0	0	0	fcan/1				
0	0	0	1	fcan/2				
0	0	1	0	fcan/3				
0	0	1	1	fcan/4				
0	1	0	0	fcan/5				
0	1	0	1	fcan/6				
0	1	1	0	fcan/7				
0	1	1	1	fcan/8				
1	0	0	0	fcan/9				
1	0	0	1	fcan/10				
1	0	1	0	fcan/11				
1	0	1	1	fcan/12				
1	1	0	0	fcan/13				
1	1	0	1	fcan/14				
1	1	1	0	fcan/15				
1	1	1	1	fcan/16 (Def	ault value)			
Caution M	ake sure tha	at fxx = 32 to	9 48 MHz.					
Remark fc.	AN = fxx/2							

(9) CAN0 module error counter register (C0ERC)

The C0ERC register indicates the count value of the transmission/reception error counter.

	15	14	13	12	11	10	9	8	
C0ERC	REPS	REC6	REC5	REC4	REC3	REC2	REC1	REC0	
	7	6	5	4	3	2	1	0	
	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0	
REPS			Re	eception erro	r passive sta	tus bit			
0	The valu	e of the rece	ption error co	ounter is not e	error passive	(< 128)			
1	The valu	The value of the reception error counter is in the error passive range (\geq 128)							
REC6 to REC	0	Reception error counter bit							
0 to 127		Number of reception errors. These bits reflect the status of the reception error counter. The number of errors is defined by the CAN protocol.							
	NFO.RECS		RECS0 bit :	= 11B).			e reception	error passiv	
TEC7 to TEC0 Transmission error counter bit 0 to 255 Number of transmission errors. These bits reflect the status of the transmission error counter. The number of errors is defined by the CAN protocol.									

20.4 Cautions

(1) Clock accuracy

To operate the USB function controller, the internal clock (6 MHz external clock × internal clock multiplied by 8 = 48 MHz internal clock) or external clock (external clock input to UCLK pin (fuse = 48 MHz)) must be used as the USB clock. When the internal clock is used as the USB clock, use a resonator with an accuracy of 6 MHz ±500 ppm (max.). When the external clock is used, apply a clock with an accuracy of 48 MHz ±500 ppm (max.) to the UCLK pin. If the USB clock accuracy drops, the transmission data cannot satisfy the USB rating.

(2) Stopping the USB clock

When the main clock (fxx) has been selected as the USB function controller clock and it is necessary to stop the USB function controller, be sure to stop the USB function controller (by setting bits 1 and 0 of the UFCKMSK register to 1) first before stopping the main clock (fxx).

If the main clock (fxx) is stopped without first stopping the USB function controller, a malfunction might occur due to noise in the clock pulse when the main clock (fxx) is restarted.

Similarly, when an external clock whose signal is input from the EXCLK pin is selected as the USB function controller clock, measures must be taken to prevent noise from being generated in the clock pulse by the external circuit. If this is not feasible, then the USB function controller must be stopped first before stopping the main clock (fxx).

Figure 20-31. Example of Processing After Power Application/Power Failure (3/3)

Туре	Classification	Default Priority	Name	Trigger	Generating Unit	Exception Code	Handler Address	Restored PC	Interrupt Control Register
Reset	Interrupt	-	RESET	RESET pin input/reset input by internal source	RESET	0000H	00000000H	Undefined	_
Non- maskable	Interrupt	_	NMI ^{Note 1}	NMI pin valid edge input	Pin	0010H	00000010H	nextPC	_
		-	INTWDT2	WDT2 overflow	WDT2	0020H	00000020H	Note 2	_
Software	Exception	_	TRAP0n ^{Note 3}	TRAP instruction	-	004nH ^{Note 3}	00000040H	nextPC	_
exception		-	TRAP1n ^{№te 3}	TRAP instruction	-	005nH ^{Note 3}	00000050H	nextPC	-
Exception trap	Exception	_	ILGOP/ DBG0	Illegal opcode/DBTRAP instruction	-	0060H	00000060H	nextPC	-
Maskable	Interrupt	0	INTLVI	Low voltage detection	POCLVI	0080H	00000080H	nextPC	LVIIC
		3	INTP02	External interrupt pin input edge detection (INTP02)	Pin	00B0H	000000B0H	nextPC	PIC02
		6	INTP05	External interrupt pin input edge detection (INTP05)	Pin	00E0H	000000E0H	nextPC	PIC05
		8	INTP07	External interrupt pin input edge detection (INTP07)	Pin	0100H	00000100H	nextPC	PIC07
		9	INTP08	External interrupt pin input edge detection (INTP08)	Pin	0110H	00000110H	nextPC	PIC08
		10	INTP09	External interrupt pin input edge detection (INTP09)	Pin	0120H	00000120H	nextPC	PIC09
		11	INTP10	External interrupt pin input edge detection (INTP10)	Pin	0130H	00000130H	nextPC	PIC10
		12	INTP11	External interrupt pin input edge detection (INTP11)	Pin	0140H	00000140H	nextPC	PIC11
		15	INTP14	External interrupt pin input edge detection (INTP14)	Pin	0170H	00000170H	nextPC	PIC14
		16	INTP15	External interrupt pin input edge detection (INTP15)	Pin	0180H	00000180H	nextPC	PIC15
		17	INTP16	External interrupt pin input edge detection (INTP16)	Pin	0190H	00000190H	nextPC	PIC16

Table 22-2. Interrupt Sources (1/4)

Notes 1. V850ES/JE3-H only

2. For restoring in the case of INTWDT2, see 22.2.2 (2) From INTWDT2 signal.

3. n = 0 to FH

Remark JC3-H: V850ES/JC3-H, JE3-H: V850ES/JE3-H

Туре	Classification	Default Priority	Name	Trigger	Generating Unit	Exception Code	Handler Address	Restored PC	Interrupt Control Register
Maskable	Interrupt	25	INTTAB1OV ^{Note 1}	TAB1 overflow	TAB1	0210H	00000210H	nextPC	TAB1OVIC
	26 INTTAB1CC0 ^{Note 2}		TAB1 capture 0/ compare 0 match	TAB1 0220H 00000220H			nextPC	TAB1CCIC0	
		27	INTTAB1CC1	TAB1 capture 1/ compare 1 match	TAB1	0230H	00000230H	nextPC	TAB1CCIC1
	28	INTTAB1CC2	TAB1 capture 2/ compare 2 match	TAB1	0240H	00000240H	nextPC	TAB1CCIC2	
		29	INTTAB1CC3	TAB1 capture 3/ compare 3 match	TAB1	0250H	00000250H	nextPC	TAB1CCIC3
	30	INTTT0OV	TMT0 overflow	тмто	0260H	00000260H	nextPC	TT00VIC	
		31	INTTTOCC0	TMT0 capture 0/ compare 0 match	тмто	0270H	00000270H	nextPC	TT0CCIC0
		32	INTTTOCC1	TMT0 capture 1/ compare 1 match	тмто	0280H	00000280H	nextPC	TT0CCIC1
		33	INTTT0EC	TMT0 encoder input	тмто	0290H	00000290H	nextPC	TT0ECIC
		34	INTTAA0OV	TAA0 overflow	TAA0	02A0H	000002A0H	nextPC	TAA0OVIC
		35	INTTAA0CC0	TAA0 capture 0/ compare 0 match	TAA0	02B0H	000002B0H	nextPC	TAA0CCIC0
		36	INTTAA0CC1	TAA0 capture 1/ compare 1 match	TAA0	02C0H	000002C0H	nextPC	TAA0CCIC1
		37	INTTAA1OV	TAA1 overflow	TAA1	02D0H	000002D0H	nextPC	TAA1OVIC
		38	INTTAA1CC0	TAA1 capture 0/ compare 0 match	TAA1	02E0H	000002E0H	nextPC	TAA1CCIC0
		39	INTTAA1CC1	TAA1 capture 1/ compare 1 match	TAA1	02F0H	000002F0H	nextPC	TAA1CCIC1
		40	INTTAA2OV	TAA2 overflow	TAA2	0300H	00000300H	nextPC	TAA2OVIC
		41	INTTAA2CC0	TAA2 capture 0/ compare 0 match	TAA2	0310H	00000310H	nextPC	TAA2CCIC0
		42	INTTAA2CC1	TAA2 capture 1/ compare 1 match	TAA2	0320H	00000320H	nextPC	TAA2CCIC1
		52	INTTM0EQ0	TMM0 compare match	тммо	03C0H	000003C0H	nextPC	TM0EQIC0
		53	INTTM1EQ0	TMM1 compare match	TMM1	03D0H	000003D0H	nextPC	TM1EQIC0
		54	INTTM2EQ0	TMM2 compare match	TMM2	03E0H	000003E0H	nextPC	TM2EQIC0
		55	INTTM3EQ0	TMM3 compare match	ТММЗ	03F0H	000003F0H	nextPC	TM3EQIC0
		56	INTCF0R /INTIIC1	CSIF0 reception completion/ CSIF0 reception error/ IIC1 transfer completion	CSIF0/ IIC1	0400H	00000400H	nextPC	CF0RIC/ IICIC1
		57	INTCF0T	CSIF0 consecutive transmission write enable	CSIF0	0410H	00000410H	nextPC	CF0TIC

Table 22-2. Interrupt Sources (2/4)

Notes 1. When using TAB1 in the 6-phase PWM output mode, functions as the zero match interrupt (TAB1TIOD) request from TMQOP.

2. When using TAB1 in the 6-phase PWM output mode, functions as the compare match interrupt (TAB1TICD0) request from TMQOP.

Mnemonic	Operand	Opcode	Operation		Execution			Flags						
					i	Cloc	k	CY	ov	S	Z	SA		
LD.H	disp16[reg1],reg2	rrrrr111001RRRRR	adr←GR[reg1]+sign-extend(disp16)			r 1	I Note	CΥ	Ov	5	Z	SA		
		dddddddddddddd Note 8	GR[reg2]←sign-extend(Load-memory(adr,Halfword))				11							
LDSR	reg2,regID	rrrrr111111RRRRR	SR[regID]←GR[reg2]	Other than regID = PSW	1	1	1							
		000000000100000 Note 12		regID = PSW	1	1	1	×	×	×	×	×		
LD.HU	disp16[reg1],reg2	rrrrr111111RRRRR	adr←GR[reg1]+sign-extend	d(disp16)	1	1	Note					-		
		dddddddddddd	GR[reg2]←zero-extend(Loa				11							
		Note 8												
LD.W	disp16[reg1],reg2	rrrrr111001RRRRR dddddddddddddd	adr←GR[reg1]+sign-extend GR[reg2]←Load-memory(a		1	1	Note 11							
		Note 8												
MOV	reg1,reg2	rrrr000000RRRRR	GR[reg2]←GR[reg1]		1	1	1							
	imm5,reg2	rrrrr010000iiiii	GR[reg2]←sign-extend(imr	n5)	1	1	1							
	imm32,reg1	00000110001RRRR 	GR[reg1]←imm32	2	2	2								
MOVEA	imm16,reg1,reg2	rrrrr110001RRRRR	GR[reg2]←GR[reg1]+sign-extend(imm16)				1							
MOVHI	imm16,reg1,reg2	rrrrr110010RRRRR	GR[reg2]←GR[reg1]+(imm16 Ⅱ 0¹⁵)			1	1							
MUL	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01000100000	GR[reg3] ∥ GR[reg2]←GR[Note 14	1	4	5								
	imm9,reg2,reg3	rrrrr111111iiii wwww01001111100	GR[reg3] II GR[reg2]←GR[1	4	5								
MULH	reg1,reg2	Note 13	GR[reg2]←GR[reg2] ^{№σε 6} xG	R[reg1] ^{Note 6}	1	1	2					-		
	imm5,reg2	rrrrr010111iiiii	GR[reg2]←GR[reg2] ^{Note 6} xsi		1	1	2							
MULHI	imm16,reg1,reg2	rrrrr110111RRRRR	GR[reg2]←GR[reg1] ^{№ote 6} xirr	nm16	1	1	2							
MULU	reg1,reg2,reg3	rrrrr111111RRRRR wwwww01000100010	GR[reg3] ∥ GR[reg2]←GR[Note 14	reg2]xGR[reg1]	1	4	5							
	imm9,reg2,reg3	rrrrr111111iiii wwwww01001IIII10	GR[reg3] ∥ GR[reg2]←GR[reg2]xzero-extend(imm9)	1	4	5							
		Note 13			_							L		
NOP		00000000000000000	Pass at least one clock cyc		1	1	1							
NOT	reg1,reg2	rrrrr000001RRRRR	GR[reg2]←NOT(GR[reg1])		1	1	1		0	×	×	<u> </u>		
NOT1	bit#3,disp16[reg1]	01bbb111110RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend Z flag←Not(Load-memory- Store-memory-bit(adr,bit#3	bit(adr,bit#3))	3 Note 3	3 Note 3	3 Note 3				×			
	reg2,[reg1]	rrrrr111111RRRRR	adr←GR[reg1]	,3/	3	3	3				×	\vdash		
		000000011100010	Z flag—Not(Load-memory- Store-memory-bit(adr,reg2,		Note 3	Note 3	Note 3							

(6/6)

Mnemonic	Operand	Opcode	Operation	Ex	ecut	ion		I	Flags		0/0)
					Clock						
				i	r	Ι	СҮ	ov	s	Z	SAT
SUB	reg1,reg2	rrrr001101RRRRR	GR[reg2]←GR[reg2]–GR[reg1]	1	1	1	×	×	×	×	
SUBR	reg1,reg2	rrrr001100RRRRR	GR[reg2]←GR[reg1]–GR[reg2]	1	1	1	×	×	×	×	
SWITCH	reg1	00000000010RRRR	adr←(PC+2) + (GR [reg1] logically shift left by 1) PC←(PC+2) + (sign-extend (Load-memory (adr,Halfword)) logically shift left by 1	5	5	5					
SXB	reg1	00000000101RRRRR	GR[reg1]←sign-extend (GR[reg1] (7 : 0))	1	1	1					
SXH	reg1	00000000111RRRRR	GR[reg1]←sign-extend (GR[reg1] (15 : 0))	1	1	1					
TRAP	vector	000001111111111	EIPC ←PC+4 (Restored PC) EIPSW ←PSW ECR.EICC ←Interrupt code PSW.EP ←1 PSW.ID ←1 PC ←00000040H (when vector is 00H to 0FH) 00000050H (when vector is 10H to 1FH)	3	3	3					
TST	reg1,reg2	rrrrr001011RRRRR	result←GR[reg2] AND GR[reg1]	1	1	1		0	×	×	
TST1	bit#3,disp16[reg1]	11bbb111110RRRRR ddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) Z flag←Not (Load-memory-bit (adr,bit#3))	3 Note 3	3 Note 3	3 Note 3				×	
	reg2, [reg1]	rrrr111111RRRRR 0000000011100110	adr←GR[reg1] Z flag←Not (Load-memory-bit (adr,reg2))	3 Note 3	3 Note 3	3 Note 3				×	
XOR	reg1,reg2	rrrr001001RRRRR	GR[reg2]←GR[reg2] XOR GR[reg1]	1	1	1		0	×	×	
XORI	imm16,reg1,reg2	rrrrr110101RRRRR	GR[reg2]←GR[reg1] XOR zero-extend (imm16)	1	1	1		0	×	×	
ZXB	reg1	00000000100RRRR	GR[reg1]←zero-extend (GR[reg1] (7 : 0))	1	1	1					
ZXH	reg1	00000000110RRRRR	GR[reg1]←zero-extend (GR[reg1] (15 : 0))	1	1	1					$ \neg$

Notes 1. dddddddd: Higher 8 bits of disp9.

- 2. 3 if there is an instruction that rewrites the contents of the PSW immediately before.
- 3. If there is no wait state (3 + the number of read access wait states).
- 4. n is the total number of list12 load registers. (According to the number of wait states. Also, if there are no wait states, n is the total number of list12 registers. If n = 0, same operation as when n = 1)
- 5. RRRRR: other than 00000.
- 6. The lower halfword data only are valid.
- 7. ddddddddddddddddd: The higher 21 bits of disp22.
- 8. dddddddddddd: The higher 15 bits of disp16.
- 9. According to the number of wait states (1 if there are no wait states).
- 10. b: bit 0 of disp16.
- 11. According to the number of wait states (2 if there are no wait states).

