E. Renesas Electronics America Inc - UPD70F3819GA-GAM-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, CSI, EBI/EMI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	32
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 6x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3819ga-gam-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

-	18.8	Interrupt Request Signal (INTIICn) Generation Timing and Wait Control	817
-	18.9	Address Match Detection Method	819
-	18.10	Error Detection	819
-	18.11	Extension Code	819
-	18.12	Arbitration	820
_	18.13	Wakeup Function	821
	18.14	Communication Reservation	822
		18.14.1 When communication reservation function is enabled (IICFn.IICRSVn bit = 0)	822
		18.14.2 When communication reservation function is disabled (IICFn.IICRSVn bit = 1)	826
-	18.15	6Cautions	827
	18.16	Communication Operations	828
		18.16.1 Master operation in single master system	829
		18.16.2 Master operation in multimaster system	830
		18.16.3 Slave operation	833
	18.17	'Timing of Data Communication	836
			0.40
CHAP		A 19 CAN CONTROLLER	
	19.1		
		19.1.1 Features.	
		19.1.2 Overview of functions	
-	10.2	CAN Protocol	845
	19.2	10.2.1 Frame format	
		19.2.2 Frame types	
		19.2.3 Data frame and remote frame	
		1924 Frror frame	855
		19.2.5 Overload frame	
-	19.3	Functions	
		19.3.1 Determining bus priority	
		19.3.2 Bit stuffing	
		19.3.3 Multi masters	
		19.3.4 Multi cast	
		19.3.5 CAN sleep mode/CAN stop mode function	
		19.3.6 Error control function	
		19.3.7 Baud rate control function	
-	19.4	Connection with Target System	869
-	19.5	Internal Registers of CAN Controller	870
		19.5.1 CAN controller configuration	
		19.5.2 Register access type	871
		19.5.3 Register bit configuration	
-	19.6	Registers	892
-	19.7	Bit Set/Clear Function	928
	19.8	CAN Controller Initialization	930
		19.8.1 Initialization of CAN module	930
		19.8.2 Initialization of message buffer	930
		19.8.3 Redefinition of message buffer	930
		19.8.4 Transition from initialization mode to operation mode	931

Figure 4-1. Port Configuration Diagram (V850ES/JC3-H (40 pin))

PFCE34	PFC34	Specification of P34 pin alternate function
0	0	TIAA10 input
0	1	TOAA10 output
1	0	TOAA1OFF input/INTP09 input
1	1	Setting prohibited

PFCE33 ^{Note}	PFC33 ^{Note}	Specification of P33 pin alternate function
0	0	TIAA01 input
0	1	TOAA01 output
1	0	RTCDIV output
1	1	RTCCL output

Note V850ES/JE3-H only

PFCE32	PFC32	Specification of P32 pin alternate function
0	0	ASCKC0 input
0	1	SCKF4 I/O
1	0	TIAA00 input
1	1	TOAA00 output

PFCE31	PFC31	Specification of P31 pin alternate function
0	0	RXDC0 input
0	1	SIF4 input
1	0	INTP08 input
1	1	Setting prohibited

PFCE30	PFC30	Specification of P30 pin alternate function
0	0	TXDC0 output
0	1	SOF4 output
1	0	INTP07 input
1	1	Setting prohibited

(10) TAAn capture/compare register 1 (TAAnCCR1)

The TAAnCCR1 register can be used as a capture register or a compare register depending on the mode.

This register can be used as a capture register or a compare register only in the free-running timer mode, depending on the setting of the TAAnOPT0.TAAnCCS1 bit. In the pulse width measurement mode, the TAAnCCR1 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TAAnCCR1 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TAAnCCR1 register is prohibited in the following statuses. For details, see 3.4.9 (2) Accessing specific on-chip peripheral I/O registers.

- When the CPU operates with the subclock and the main clock oscillation is stopped
- When the CPU operates with the internal oscillation clock

After reset:	000	оH	R/W	1	Addre	ess:	ΤΑΑ		R1 F	FFFF	638H,	, TAA	1CCF	R1 FF	FFF	648H,
	15	14	13	12	11	10	ТАА 9	8 8	R1 F1 7	6	658H, 5	, IAA 4	4CCF 3	{1 ⊢⊦ 2	-FFF(1	678H
TAAnCCR1 (n = 0 to 2, 4)																

(b) Notes on rewriting the TAAnCCR0 register

To change the value of the TAAnCCR0 register to a smaller value, stop counting once and then change the set value.

If the value of the TAAnCCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

If the value of the TAAnCCR0 register is changed from D_1 to D_2 while the count value is greater than D_2 but less than D_1 , the count value is transferred to the CCR0 buffer register as soon as the TAAnCCR0 register has been rewritten. Consequently, the value that is compared with the 16-bit counter is D_2 .

Because the count value has already exceeded D_2 , however, the 16-bit counter counts up to FFFFH, overflows, and then counts up again from 0000H. When the count value matches D_2 , the INTTAAnCCO signal is generated.

Therefore, the INTTAAnCC0 signal may not be generated at the valid edge count of " $(D_1 + 1)$ times" or " $(D_2 + 1)$ times" as originally expected, but may be generated at the valid edge count of " $(10000H + D_2 + 1)$ times".

(c) Operation of TAAnCCR1 register

Figure 6-18. Configuration of TAAnCCR1 Register

If the set value of the TAAnCCR1 register is smaller than the set value of the TAAnCCR0 register, the INTTAAnCC1 signal is generated once per cycle.

Figure 6-19. Timing Chart When $D_{01} \ge D_{11}$

(b) When using capture/compare register as capture register

Figure 6-38. Software Processing Flow in Free-Running Timer Mode (Capture Function) (1/2)

When the TT0CE bit is set to 1, the value of the 16-bit counter is cleared from FFFFH to 0000H in synchronization with the count clock, and the counter starts counting. At this time, the output of the TOT00 pin is inverted. Additionally, the set value of the TT0CCR0 register is transferred to the CCR0 buffer register.

When the count value of the 16-bit counter matches the value of the CCR0 buffer register, the 16-bit counter is cleared to 0000H, the output of the TOT00 pin is inverted, and a compare match interrupt request signal (INTTTOCC0) is generated.

The interval can be calculated by the following expression.

Interval = (Set value of TT0CCR0 register + 1) × Count clock cycle

- <2> TT0ECM1 and TT0ECM0 bits: Timer/counter clear function upon match of the compare register The 16-bit counter performs its count operation in accordance with the set value of the TT0ECM1 and TT0ECM0 bits when the count value of the counter matches the value of the CCRn buffer register.
 - When TT0ECM1 and TT0ECM0 bits = 00
 The 16-bit counter is not cleared when its count value matches the value of the CCRn buffer register.
 - When TT0ECM1 and TT0ECM0 bits = 01

The 16-bit counter performs a count operation under the following condition when its count value matches the value of the CCR0 buffer register.

Next Count Operation	Description
Count up	16-bit counter is cleared to 0000H.
Count down	Count value of 16-bit counter is counted down.

• When TT0ECM1 and TT0ECM0 bits = 10

The 16-bit counter performs a count operation under the following condition when its count value matches the value of the CCR1 buffer register.

Next Count Operation	Description
Count up	Count value of 16-bit counter is counted up.
Count down	16-bit counter is cleared to 0000H.

• When TT0ECM1 and TT0ECM0 bits = 11

The 16-bit counter performs a count operation under the following condition when its count value matches the value of the CCR0 buffer register.

Next Count Operation	Description
Count up	16-bit counter is cleared to 0000H.
Count down	Count value of 16-bit counter is counted down.

The 16-bit counter performs a count operation under the following condition when its count value matches the value of the CCR1 buffer register.

Next Count Operation	Description
Count up	Count value of 16-bit counter is counted up.
Count down	16-bit counter is cleared to 0000H.

11.3 Registers

The real-time counter is controlled by the following 18 registers.

(1) Real-time counter control register 0 (RC1CC0)

The RC1CC0 register selects the real-time counter input clock. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

After res	et: 00H	R/W	Address	: FFFFFAI	DDH				
	7	6	5	4	3	2	1	0	
RC1CC0	RC1PWR	RC1CKS	0	0	0	0	0	0	
	RC1PWR			Real-time c	ounter oper	ation contr	ol]
	0			nter operati	on.				
	1	Enables re	al-time co	ounter oper	ation.				
									1
	RC1CKS			Opera	tion clock s	election			
	0	Selects fxT	as operat	ion clock.					
	1	Selects fer	G as opera	ation clock					
Cautions 1. Follo 1 → 0 2. The F bit = bit free	w the des)) the real RC1CKS 0). Furth om 0 to 1	scription i l-time cou bit can be ermore, re is prohibi	n 11.4.8 nter whi e rewritte ewriting ted.	Initializi le it is op en only v the RC10	ng real-tir perating. vhen the CKS bit at	ne count real-time : the sam	er when counter e time as	stopping is stoppe s setting t	(RC1PWR = ed (RC1PWR he RC1PWR

(2) Real-time counter control register 1 (RC1CC1)

The RC1CC1 register is an 8-bit register that starts or stops the real-time counter, controls the RTCCL and RTC1HZ pins, selects the 12-hour or 24-hour system, and sets the fixed-cycle interrupt function. This register can be read or written in 8-bit or 1-bit units. Reset sets this register to 00H.

16.7 Dedicated Baud Rate Generator

The dedicated baud rate generator consists of a source clock selector block and an 8-bit programmable counter, and generates a serial clock during transmission and reception with UARTCn. Regarding the serial clock, a dedicated baud rate generator output can be selected for each channel.

There is an 8-bit counter for transmission and another one for reception.

(1) Baud rate generator configuration

Figure 16-18. Configuration of Baud Rate Generator

(a) Base clock

When the UCnCTL0.UCnPWR bit is 1, the clock selected by the UCnCTL1.UCnCKS3 to UCnCTL1.UCnCKS0 bits is supplied to the 8-bit counter. This clock is called the base clock (fuclk).

(b) Serial clock generation

A serial clock can be generated by setting the UCnCTL1 register and the UCnCTL2 register (n = 0 to 4). The base clock is selected by UCnCTL1.UCnCKS3 to UCnCTL1.UCnCKS0 bits. The frequency division value for the 8-bit counter can be set using the UCnCTL2.UCnBRS7 to UCnCTL2.UCnBRS0 bits.

The communication reservation flowchart is illustrated below.

Figure 18-17. Communication Reservation Flowchart

(3) CAN0 global automatic block transmission control register (C0GMABT)

The COGMABT register is used to control the automatic block transmission (ABT) operation.

a) Read									
	15	14	13	12	11	10	9	8	
COGMABT	0	0	0	0	0	0	0	0	
	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	ABTCLR	ABTTRG	
b) Write									
.,	15	14	13	12	11	10	9	8	
COGMABT	0	0	0	0	0	0	Set ABTCLR	Set ABTTRG	
	7	6	5	4	3	2	1	0	
Caution E t r a) Read	0 Before changir he C0GMABT egister is initia	0 ng the norn register to alized to 0	0 mal operation the defaul 000H.	0 on mode w It value (00	0 ith ABT to 00H). Afte	0 the initiali r setting,	o zation mode	Clear ABTTRG e, be sure to t the COGM	o se AB1
Caution E t r a) Read	0 Before changir he COGMABT egister is initia	0 ng the norm register to alized to 0	0 mal operation the defaul 000H.	0 on mode w It value (00	0 th ABT to DOH). Afte	0 the initiali r setting, ar status bit	2ation mode	Clear ABTTRG e, be sure to t the C0GM	o se AB1
Caution E t r a) Read ABTCLR 0	0 Before changir he COGMABT egister is initia Clearing the au	0 ng the norn register to alized to 0 / / tomatic tran	0 mal operation o the defaul 000H. Automatic block smission engi	0 on mode w It value (00	0 ith ABT to 00H). Afte n engine cle ed.	0 the initiali r setting, ar status bit	o zation mode confirm that	Clear ABTTRG e, be sure to t the COGM	o se AB
Caution E t r a) Read ABTCLR 0 1	0 Before changir he COGMABT egister is initia Clearing the au The automatic t	0 ng the norn register to alized to 0 // tomatic tran ransmission	0 mal operation o the defaul 000H. Automatic block smission engine in engine is bei	0 on mode w It value (00 ek transmission ne is completing cleared.	0 ith ABT to 00H). Afte n engine cle ed.	0 the initiali r setting, ar status bit	o zation mode confirm that	Clear ABTTRG e, be sure to t the COGM	o se AB
Caution E t r a) Read ABTCLR 0 1 Remarks	0 Before changin he COGMABT egister is initia Clearing the au The automatic to 1. Set the AB The operat 2. When the ABTCLR b	o ag the norr register to alized to 0 tomatic tran ransmission TCLR bit to ion is not g automatic it is automatic	0 mal operation of the defaul 000H. Automatic block smission engine in engine is being of 1 while the guaranteed if block trans atically clear	0 on mode w it value (00 ck transmission ne is completing cleared.	0 Th ABT to DOH). After on engine cleared ed. it is cleared gine is cleared gine is cleared gine is cleared	0 the initiali or setting, ar status bit ar status bit to 0. to 1 while f ared by se requested	0 zation mode confirm that he ABTTRG tting the AB clearing proc	Clear ABTTRG e, be sure to t the COGM bit is set to TCLR bit to ressing is co	1. 1. 1.
Caution E t r a) Read ABTCLR 0 1 Remarks	0 Before changin he COGMABT egister is initia Clearing the au The automatic to The automatic to 1. Set the AB The operat 2. When the ABTCLR b	0 In the norm register to alized to 0 // tomatic tran rransmission TCLR bit to ion is not g automatic it is automatic	0 mal operation of the defaul 000H. Automatic block smission engine is being of 1 while the guaranteed if block trans atically clear Automa	0 on mode w It value (00 ck transmission ne is completing cleared. ABTTRG b f the ABTCL mission engleting ed to 0 as s tic block transmission	0 Th ABT to DOH). After on engine cleared ed. it is cleared gine is cleared gine is cleared gine is cleared gine is cleared gine is cleared	0 the initiali or setting, ar status bit d to 0. to 1 while the ared by se requested us bit	0 zation mode confirm that he ABTTRG tting the AB clearing proc	Clear ABTTRG e, be sure to t the COGM bit is set to TCLR bit to ressing is co	1. 1. 1.
Caution E t r a) Read ABTCLR 0 1 Remarks	0 Before changir he COGMABT egister is initia Clearing the au The automatic to 1. Set the AB The operat 2. When the ABTCLR b Automatic block	o ag the norr register to alized to 0 tomatic tran ransmission TCLR bit to ion is not g automatic it is automatic it is automatic	0 mal operation of the default of th	0 on mode w It value (00 ok transmission ne is completing cleared. ABTTRG b f the ABTCL mission engletic block trans	0 Th ABT to DOH). After on engine cleared ed. it is cleared R bit is set gine is cleared con as the smission stat	0 the initiali r setting, ar status bit ar status bit to 0. to 1 while f ared by se requested us bit	0 zation mode confirm that he ABTTRG tting the AB clearing proc	Clear ABTTRG	2 se AB 1. ⇒ 1, mpl

(17) CAN0 module transmit history list register (C0TGPT)

The C0TGPT register is used to read the transmit history list.

	15	14	13	12	11	10	9	8	
COTGPT	TGPT7	TGPT6	TGPT5	TGPT4	TGPT3	TGPT2	TGPT1	TGPT0	
	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	THPM	TOVF	
(1-))) (-:+									
(b) Write	15	14	13	12	11	10	9	8	
COTGPT	0	0	0	0	0	0	0	0	
	7	6	5	4	3	2	1	0	
	0	0	0	0	0	0	0	Clear TOVF	
O to 31 When the C0TGPT register is read, the contents of the element indexed by the read pointer (TGPT) of the transmit history list are read. These contents indicate the number of the message									
	(TGPT)	of the transm	it history list	are read. The	ese contents	indicate the r	number of the	e message	
	(TGPT) buffer to	of the transm which a data	it history list a frame or a re	are read. The emote frame	ese contents was transmit	indicate the r ted last.	number of the	e message	
THPM ^{Note 1}	(TGPT) buffer to	of the transm which a data	it history list a frame or a ro	are read. The emote frame Transmit histo	ese contents was transmit	indicate the r ted last. atch	number of the	e message	
THPM ^{Note 1} 0	(TGPT) buffer to The tran	of the transm which a data smit history li	it history list a frame or a re ist has at leas	are read. The emote frame Transmit histo	ese contents was transmitt ory pointer ma ige buffer nun	indicate the r ted last. atch nber that has	number of the	e message	
THPM ^{Note 1} 0 1	(TGPT) buffer to The tran The tran	of the transm which a data smit history li smit history li	it history list a frame or a ru ist has at leas ist has no me	are read. The emote frame Transmit histe st one messa essage buffer	ese contents was transmitt ory pointer ma ge buffer nun numbers tha	indicate the r ted last. atch nber that has t have not be	number of the	e message	
THPM ^{Note 1} 0 1 TOVF ^{Note 2}	(TGPT) buffer to The tran The tran	of the transm which a data smit history li smit history li	it history list a frame or a re ist has at leas ist has no me	are read. The emote frame Transmit histe st one messa essage buffer Fransmit histe	ese contents was transmitt ory pointer ma ige buffer nun numbers tha ory list overflo	indicate the r ted last. atch nber that has t have not be w bit	number of the	e message	
THPM ^{Note 1} 0 1 TOVF ^{Note 2} 0	(TGPT) buffer to The tran The tran All the m message the trans	of the transm which a data smit history li smit history li nessage buffe e buffers to w smit history lis	it history list a frame or a re- ist has at leas ist has no me er numbers th hich a new d st (the transm	are read. The emote frame Transmit histo st one messa essage buffer Fransmit histor rat have not b ata frame or hit history list	ese contents was transmitt ory pointer ma ge buffer nun numbers tha ory list overflo peen read are remote frame has a vacant	indicate the r ted last. atch nber that has t have not be w bit preserved. A has been tra element).	number of the not been rea en read. All the numbe	e message ad. ers of the recorded to	
THPM ^{Note 1} 0 1 TOVF ^{Note 2} 0 1	(TGPT) buffer to The tran The tran All the m message the trans At least COTGPT overwritt stored a complete	of the transm which a data smit history li smit history li nessage buffe buffers to w smit history lis 7 entries have 7). The first 6 ten by newly f t position LOI ely recovered	it history list a frame or a re- ist has at leas ist has no me ist has no me er numbers th hich a new d st (the transm e been stored is entries are s transmitted m PT-1 when TC l in the order	are read. The emote frame Transmit histo st one messa essage buffer Fransmit histo at have not b ata frame or hit history list d since the ho sequentially s hessages a n DVF bit is set that they wer	ese contents was transmitt ory pointer ma ge buffer nun numbers tha ory list overflo peen read are remote frame has a vacant ost processor tored wherea umber of time to 1. As a con e received.	indicate the r ted last. atch nber that has t have not be w bit preserved has been tra element). serviced the s the last ent es because a nsequence re	All the number THL last time THL last time try might have buffer number care	e message ad. ers of the recorded to e (i.e. read e been bers are not be	

(13) UF0 device descriptor registers 0 to 17 (UF0DD0 to UF0DD17)

These registers store the value to be returned in response to the GET_DESCRIPTOR Device request.

These registers can be read or written in 8-bit units. However, data can be written to these registers only when the EPONKA bit is set to 1.

- Cautions 1. To rewrite these registers, set the EP0NKA bit to 1 before reading the register contents, and rewrite the register contents after confirming that the bit has been set, in order to prevent conflict between a read access and a write access.
 - 2. Use the value defined by USB Specification Ver. 2.0 and the latest Class Specification as the set value.

	7	6	5	4	3	2	1	0	Address	After reset
UF0DDn									See Table 21-5.	Undefined
(n = 0 to 17)									-	

Symbol	Address	Field Name	Contents
UF0DD0	002001A2H	bLength	Size of this descriptor
UF0DD1	002001A4H	bDescriptorType	Device descriptor type
UF0DD2	002001A6H	bcdUSB	Value below decimal point of Rev. number of USB specification
UF0DD3	002001A8H		Value above decimal point of Rev. number of USB specification
UF0DD4	002001AAH	bDeviceClass	Class code
UF0DD5	002001ACH	bDeviceSubClass	Subclass code
UF0DD6	002001AEH	bDeviceProtocol	Protocol code
UF0DD7	002001B0H	bMaxPacketSize0	Maximum packet size of Endpoint0
UF0DD8	002001B2H	idVendor	Lower value of vendor ID
UF0DD9	002001B4H		Higher value of vendor ID
UF0DD10	002001B6H	idProduct	Lower value of product ID
UF0DD11	002001B8H		Higher value of product ID
UF0DD12	002001BAH	bcdDevice	Lower value of device release number
UF0DD13	002001BCH		Higher value of device release number
UF0DD14	002001BEH	iManufacturer	Index of string descriptor describing manufacturer
UF0DD15	002001C0H	iProduct	Index of string descriptor describing product
UF0DD16	002001C2H	ISerialNumber	Index of string descriptor describing device serial number
UF0DD17	002001C4H	BNumConfigurations	Number of settable configurations

Table 20-5. Mapping and Data of UF0 Device Descriptor Registers

(1) Initial settings for a bulk transfer (OUT: EP2, EP4)

(a) Initial settings for DMAC

- The DSAn registers (n = 0 to 3) are set to 00210000H (for EP2) or 00220000H (for EP4).
- The DADCn registers (n = 0 to 3) are set to 0080H.
- (8-bit transfer, transfer source address: fixed, transfer destination address: incremental)
- The DTFRn registers (n = 0 to 3) are set to 0000H.
- The UFDRQEN register is set up according to the DMA channel to be used. (For details, see 20.6.10 (1) USBF DMA request enable register (UFDRQEN).)

(b) Initial settings for EPC

- The UF0IDR register is set to 12H (for EP2) or 22H (for EP4) (demand mode).
- The UF0IM0.DMAEDM bit = 0
- The UF0IM3.BKO1NLM bit = 0 (for EP2)
- The UF0IM3.BKO1DTM bit = 0 (for EP2)
- The UF0IM3.BKO2NLM bit = 0 (for EP4)
- The UF0IM3.BKO2DTM bit = 0 (for EP4)

29.2 Operation

The regulators of the V850ES/JC3-H and V850ES/JE3-H always operate in any mode (normal operation mode, HALT mode, IDLE1 mode, IDLE2 mode, STOP mode, subclock operation mode, sub IDLE mode, or during reset).

Be sure to connect a capacitor (4.7 μ F (Recommend value)) to the REGC pin to stabilize the regulator output. A diagram of the regulator pin connection method is shown below.

[Program example (when using CA850 Ver. 3.10 or later)]

CHAPTER 32 ELECTRICAL SPECIFICATIONS

32.1 Absolute Maximum Ratings

$(T_A = 25^{\circ}C) (1/2)$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	$V_{DD} = EV_{DD} = UV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	EVDD	$V_{DD} = EV_{DD} = UV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	UVDD	$V_{DD} = EV_{DD} = UV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	AV _{REF0}	$V_{DD} = EV_{DD} = UV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	AV _{REF1}	$V_{DD} = EV_{DD} = UV_{DD} = AV_{REF0} = AV_{REF1}$	-0.5 to +4.6	V
	Vss	Vss = AVss	–0.5 to +0.5	V
	AVss	Vss = AVss	–0.5 to +0.5	V
Input voltage	Vii	P60 to P65, P92 to P94, P96, P97, P910 to P913, PDL5, RESET, FLMD0	-0.5 to EV _{DD} + $0.5^{Note 1}$	V
	VI2	UDMF, UDPF	-0.5 to UV _{DD} + 0.5 ^{Note 1}	V
	Vı3	P10	-0.5 to AV _{REF1} + 0.5 ^{Note 1}	V
	V _{I4}	X1, X2, XT1, XT2	-0.5 to VRO ^{Note 2} + 0.5^{Note}	V
			1	
	Vı5	P02, P03, P30 to P37, P40 to P42, P52 to P56	-0.5 to +6.0	V
Analog input voltage	VIAN	P70 to P79	-0.5 to AV _{REF0} + 0.5 ^{Note 1}	V

Cautions 1. Do not directly connect the output (or I/O) pins of IC products to each other, or to VDD, Vcc, and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage. Therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

Notes 1. Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.

2. On-chip regulator output voltage (2.5 V (TYP.))

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

			(6/34)
Symbol	Name	Unit	Page
C0MDATA115	CAN0 message data byte 1 register 15	CAN	920
C0MDATA116	CAN0 message data byte 1 register 16	CAN	920
C0MDATA117	CAN0 message data byte 1 register 17	CAN	920
C0MDATA118	CAN0 message data byte 1 register 18	CAN	920
C0MDATA119	CAN0 message data byte 1 register 19	CAN	920
C0MDATA120	CAN0 message data byte 1 register 20	CAN	920
C0MDATA121	CAN0 message data byte 1 register 21	CAN	920
C0MDATA122	CAN0 message data byte 1 register 22	CAN	920
C0MDATA123	CAN0 message data byte 1 register 23	CAN	920
C0MDATA124	CAN0 message data byte 1 register 24	CAN	920
C0MDATA125	CAN0 message data byte 1 register 25	CAN	920
C0MDATA126	CAN0 message data byte 1 register 26	CAN	920
C0MDATA127	CAN0 message data byte 1 register 27	CAN	920
C0MDATA128	CAN0 message data byte 1 register 28	CAN	920
C0MDATA129	CAN0 message data byte 1 register 29	CAN	920
C0MDATA130	CAN0 message data byte 1 register 30	CAN	920
C0MDATA131	CAN0 message data byte 1 register 31	CAN	920
C0MDATA200	CAN0 message data byte 2 register 00	CAN	920
C0MDATA201	CAN0 message data byte 2 register 01	CAN	920
C0MDATA202	CAN0 message data byte 2 register 02	CAN	920
C0MDATA203	CAN0 message data byte 2 register 03	CAN	920
C0MDATA204	CAN0 message data byte 2 register 04	CAN	920
C0MDATA205	CAN0 message data byte 2 register 05	CAN	920
C0MDATA206	CAN0 message data byte 2 register 06	CAN	920
C0MDATA207	CAN0 message data byte 2 register 07	CAN	920
C0MDATA208	CAN0 message data byte 2 register 08	CAN	920
C0MDATA209	CAN0 message data byte 2 register 09	CAN	920
C0MDATA210	CAN0 message data byte 2 register 10	CAN	920
C0MDATA211	CAN0 message data byte 2 register 11	CAN	920
C0MDATA212	CAN0 message data byte 2 register 12	CAN	920
C0MDATA213	CAN0 message data byte 2 register 13	CAN	920
C0MDATA214	CAN0 message data byte 2 register 14	CAN	920
C0MDATA215	CAN0 message data byte 2 register 15	CAN	920
C0MDATA216	CAN0 message data byte 2 register 16	CAN	920
C0MDATA217	CAN0 message data byte 2 register 17	CAN	920
COMDATA218	CAN0 message data byte 2 register 18	CAN	920
COMDATA219	CAN0 message data byte 2 register 19	CAN	920
COMDATA220	CAN0 message data byte 2 register 20	CAN	920
C0MDATA221	CAN0 message data byte 2 register 21	CAN	920

