E. Renesas Electronics America Inc - UPD70F3825GB-GAH-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, CSI, EBI/EMI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	45
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 10x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3825gb-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

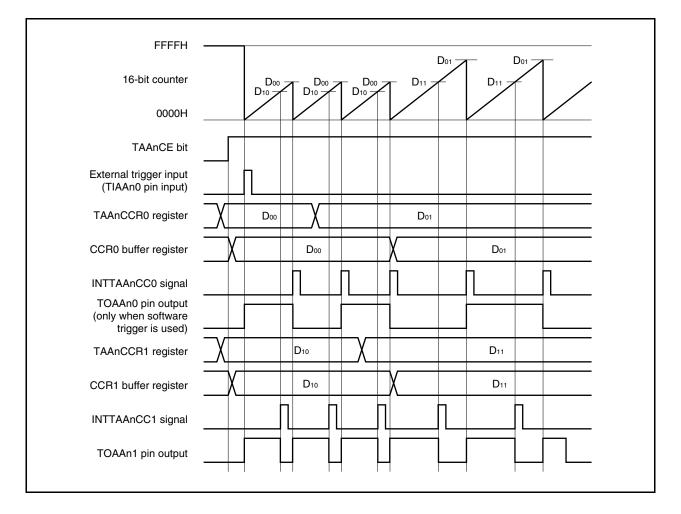
(1) TAAn control register 0 (TAAnCTL0)

The TAAnCTL0 register is an 8-bit register that controls the operation of TAAn.

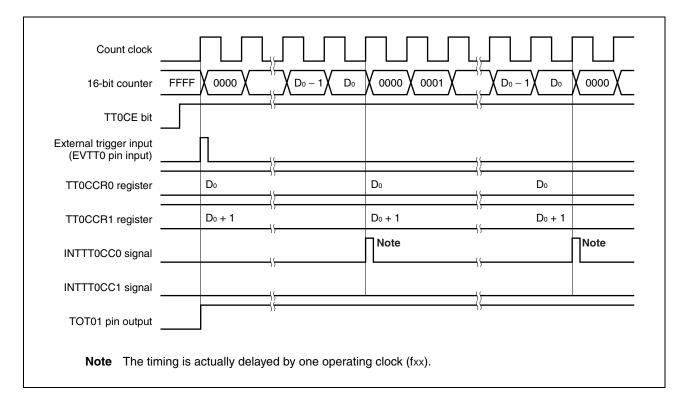
This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

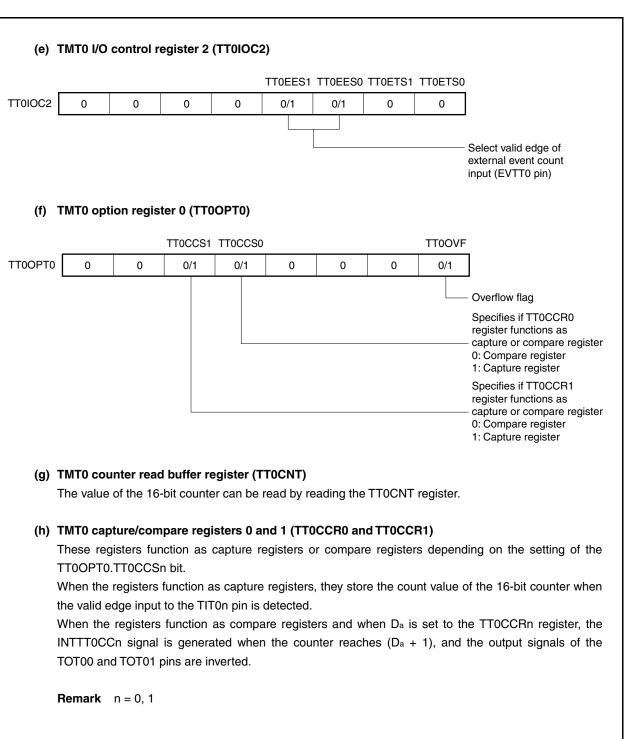
The same value can always be written to the TAAnCTL0 register by software.


TAAnCTL0 TAAnCE 0 0 0 TAAnCKS2 TAAnCKS1 TAAnCKS1 (n = 0 to 2, 4) TAAnCE TAAnCE TAAn operation control Image: Control operation control control operation control operation control control operation control control operation control control operation control c
TAAnCE TAAn operation control 0 TAAn operation disabled (TAAn reset asynchronously ^{Note}).
0 TAAn operation disabled (TAAn reset asynchronously ^{Note}).
1 TAAn operation enabled. TAAn operation started.
TAAnCKS2 TAAnCKS1 TAAnCKS0 Internal count clock selection
n = 0, 1, 4 n = 2
0 0 0 fxx (20.8 ns) fxx/2 (41.7 ns)
0 0 1 fxx/2 (41.7 ns) fxx/4 (83.3 ns)
0 1 0 fxx/4 (83.3 ns) fxx/8 (166.7 ns
0 1 1 fxx/8 (166.7 ns) fxx/16 (333.3 ns
1 0 0 fxx/16 (333.3 ns) fxx/64 (1.3333 µ
1 0 1 fxx/32 (666.7 ns) fxx/256 (5.3333 µ
1 1 0 fxx/64 (1.3333 µs) fxx/512 (10.6667
1 1 1 fxx/128 (2.6667 µs) fxx/1024 (21.3333

(2) External trigger pulse output mode operation timing


(a) Note on changing pulse width during operation

To change the PWM waveform while the counter is operating, write the TAAnCCR1 register last. Rewrite the TAAnCCRm register after writing the TAAnCCR1 register after the INTTAAnCC0 signal is detected.



To output a 100% waveform, set a value of (set value of TT0CCR0 register + 1) to the TT0CCR1 register. If the set value of the TT0CCR0 register is FFFFH, 100% output cannot be produced.

Figure 8-36. Register Setting in Free-Running Timer Mode (2/2)

(2) Operation timing in pulse width measurement mode

(a) Clearing overflow flag

The overflow flag can be cleared to 0 by clearing the TT0OVF bit to 0 with the CLR instruction after reading the TT0OVF bit when it is 1 and by writing 8-bit data (bit 0 is 0) to the TT0OPT0 register after reading the TT0OVF bit when it is 1.

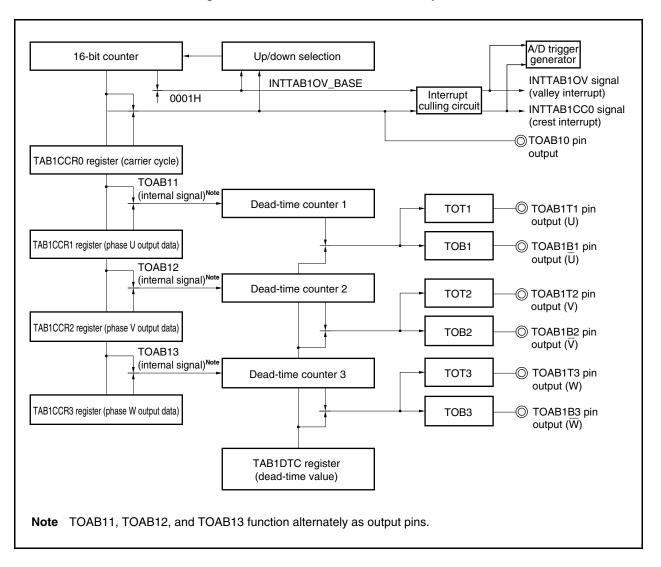


Figure 10-5. Outline of 6-Phase PWM Output Mode

- Cautions 1. The A/D conversion start trigger signal output that is set by the TAB1AT2 and TAB1AT3 bits can be used only when TAA4 is performing a tuning operation as the slave timer of TAB1. If TAB1 and TAA4 are not performing a tuning operation, or if a mode other than the 6-phase PWM output mode is used, the output cannot be guaranteed.
 - 2. The TAB1 signal output is internally used to identify whether the 16-bit counter is counting up or down. Therefore, enable TOAB10 pin output by clearing the TAB1IOC0.TAB1OL0 bit to 0 and setting the TAB1IOC0.TAB1OE0 bit to 1.

14.5 Operation

14.5.1 Basic operation

- <1> Set the operation mode, trigger mode, and conversion time for executing A/D conversion by using the ADA0M0, ADA0M1, ADA0M2, and ADA0S registers. When the ADA0CE bit of the ADA0M0 register is set, conversion is started in the software trigger mode and the A/D converter waits for a trigger in the external or timer trigger mode.
- <2> When A/D conversion is started, the voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <3> When the sample & hold circuit samples the input channel for a specific time, it enters the hold status, and holds the input analog voltage until A/D conversion is complete.
- <4> Set bit 9 of the successive approximation register (SAR), and set the compare voltage generation DAC to (1/2) AV_{REF0}.
- <5> The voltage difference between the voltage of the compare voltage generation DAC and the analog input voltage is compared by the voltage comparator. If the analog input voltage is higher than (1/2) AVREF0, the MSB of the SAR remains set. If it is lower than (1/2) AVREF0, the MSB is reset.
- <6> Next, bit 8 of the SAR is automatically set and the next comparison is started. Depending on the value of bit 9, to which a result has been already set, the compare voltage generation DAC is selected as follows.

• Bit 9 = 1: (3/4) AVREFO

• Bit 9 = 0: (1/4) AVREF0

This compare voltage and the analog input voltage are compared and, depending on the result, bit 8 is manipulated as follows.

Analog input voltage \geq Compare voltage: Bit 8 = 1 Analog input voltage \leq Compare voltage: Bit 8 = 0

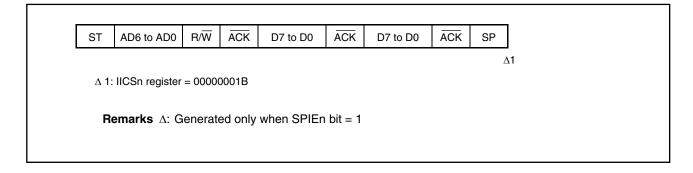
- <7> This comparison is continued to bit 0 of the SAR.
- <8> When comparison of the 10 bits is complete, the valid digital result remains in the SAR, and is then transferred to and stored in the ADA0CRn register. After that, an A/D conversion end interrupt request signal (INTAD) is generated.
- <9> In one-shot select mode, conversion is stopped^{Note}. In one-shot scan mode, conversion is stopped after scanning once^{Note}. In continuous select mode, repeat steps <2> to <8> until the ADA0M0.ADA0CE bit is cleared to 0. In continuous scan mode, repeat steps <2> to <8> for each channel.
 - **Note** In the external trigger mode, timer trigger mode 0, or timer trigger mode 1, the trigger standby status is entered.
 - **Remark** The trigger standby status means the status after the stabilization time has elapsed.

(4/4)

	Stop con	dition trigger
0	Stop condition is not generated.	
1	-	the SCL0n line to high level or wait until the SCL0n unt of time has elapsed, the SDA0n line is changed
For master For master • Cannot t • The SPT • When th eight clo The WTI SPTn bit	after the slave has been notified of	ted normally during the ACK reception period. Set ws output of the ninth clock. t to 1 during the wait period that follows output of ring the high-level period of the ninth clock. ait period following output of eight clocks, and the vs output of the ninth clock.
Condition	for clearing (SPTn bit = 0) Co	ndition for setting (SPTn bit = 1)
 Automat Cleared save) 	 by loss in arbitration ically cleared after stop condition is detected when the LRELn bit = 1 (communication e IICEn bit = 0 (operation stop) et 	Set by instruction

Caution If the WRELn bit is set to 1 during the ninth clock and the wait state is canceled when the TRCn bit is 1, the TRCn bit is cleared to 0 and the SDA0n line is set to high impedance.

Remark The SPTn bit is 0 if it is read immediately after data setting.


(2) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop (restart)

	<1> When W		01t = 0										
					STTn	bit = 1 ↓					SPT	n bit = 1 ↓	
ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	SP	
				1	▲ 2	▲3			4	▲4	▲5	▲6	Δ7
	▲1: IICS	n registe	er = 100	0X110B									
▲2: IICSn register = 1000X000B (WTIMn bit = 1)													
▲3: IICSn register = 1000XX00B (WTIMn bit = 0)													
		-		0X110B (WTI									
				0X000B (WTI	Mn bit =	1)							
	▲6: IICS												
	Δ 7: IICS	n registe	er = 000	00001B									
	<2> When W	X: /TIMn k		t care	STTn	bit = 1					SPT	n bit = 1	
ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	↓ ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	↓ SP	
31	ADO IO ADO			1	1	▲2	ADO IO ADO			▲3	ACK	 ▲4	
	▲1: IICS	n reaiste			-	_ _			-			-	40
	▲2: IICS												
	▲3: IICS												
	▲4: IICS	n registe	er = 100	0XX00B									
	Δ 5: IICS	n registe	er = 000	00001B									
 ∆ 5: IICSn register = 0000001B Remark ▲: Always generated ∆: Generated only when SPIEn bit = 1 X: don't care 													

18.7.4 Operation without communication

(1) Start ~ Code ~ Data ~ Data ~ Stop

18.7.5 Arbitration loss operation (operation as slave after arbitration loss)

(1) When arbitration loss occurs during transmission of slave address data

ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	D7 to D0	ACK	SP	
			4	▲1	▲2		▲3	Z	\4
▲1:	IICSn registe	= 01012	X110B (Example: Whe	en IICSn.	ALDn bit is re	ad during	g interru	pt servicing
▲2:	IICSn registe	r = 00012	X000B						
▲3:	IICSn registe	r = 00012	X000B						
Δ4:	IICSn register	= 00000	0001B						
	Δ:	Gener		nly when SP	IEn bit =	: 1			
Whe	X: en WTIMn bi	don't d t = 1	care						
Whe ST			are ACK	D7 to D0	ĀCK	D7 to D0	ĀCK	SP	
	en WTIMn bi	t = 1	ĀCK	D7 to D0 ▲1	-	D7 to D0		_] \\4
ST	AD6 to AD0	t = 1 R/W	ĀĊĸ	▲1			<u>ا</u>	3 2	
ST ▲1:	AD6 to AD0	t = 1 R/W	<u>АСК</u> Х110В (▲1		2	<u>ا</u>	3 2	
ST ▲1: ▲2:	AD6 to AD0	t = 1 R/\overline{W} r = 01012 r = 00012	ACK X110B (X100B	▲1		2	<u>ا</u>	3 2	
ST ▲1: ▲2: ▲3:	AD6 to AD0	t = 1 R/\overline{W} r = 01012 r = 00012 r = 00012	ACK X110B (I X100B XX00B	▲1		2	<u>ا</u>	3 2	

(2) When arbitration loss occurs during transmission of extension code

ST	AD6 to A	AD0	R/W	ĀCK	D7 to D0	ĀCK	D7 to D0	ĀCK	SP		
				1		▲2		▲3		<u>4</u>	
▲ 1:	: IICSn reg	gister	= 0110	K010B (I	Example: Whe	en ALDn	bit is read du	ring interi	upt ser	vicing)	
▲2:	: IICSn reg	gister	= 00102	K000B							
▲3:	▲3: IICSn register = 0010X000B										
Δ4:	: IICSn reg	gister	= 00000	001B							
R	emark	▲:	Alway	s gener	ated						
		Δ :	Gener	ated or	ly when SP	IEn bit =	: 1				
		X:	don't c	are							
Wh	en WTIM	In bit	t = 1								
Whe	en WTIM	In bit	t = 1								
Who ST	en WTIM		t = 1 R/W	ACK	D7 to D0	ĀCK	D7 to D0	ĀCK	SP]	
	1		R/W		D7 to D0		D7 to D0] 45	
ST	AD6 to A	AD0	R/W	1			3		4		
ST	AD6 to A	AD0 gister	R/W = 01102	1 K010B (I	2		3		4		
ST ▲1: ▲2:	AD6 to A	AD0 gister gister	R/W = 01102 = 00102	1 K010B (I K110B	2		3		4		
ST ▲1: ▲2: ▲3:	AD6 to A	AD0 gister gister gister	R/W = 01102 = 00102 = 00102	1 (I K010B (I K110B K100B	2		3		4		
ST ▲1: ▲2: ▲3: ▲4:	AD6 to A : IICSn reg : IICSn reg : IICSn reg : IICSn reg	AD0 gister gister gister gister	R/W = 01102 = 00102 = 00102 = 00102	1 (1000) (100) (1000) (2		3		4		
ST ▲1: ▲2: ▲3: ▲4:	AD6 to A : IICSn reg : IICSn reg : IICSn reg	AD0 gister gister gister gister	R/W = 01102 = 00102 = 00102 = 00102	1 (1000) (100) (1000) (2		3		4		
ST ▲1: ▲2: ▲3: ▲4: △ 5:	AD6 to / : IICSn reg : IICSn reg : IICSn reg : IICSn reg	AD0 gister gister gister gister	R/W = 01102 = 00102 = 00102 = 00102 = 00000	1 K010B (I K110B K100B KX00B 0001B	2 Example: Whe		3		4		
ST ▲1: ▲2: ▲3: ▲4: △ 5:	AD6 to / : IICSn reg : IICSn reg : IICSn reg : IICSn reg	AD0 gister gister gister gister	R/W = 01102 = 00102 = 00102 = 00102 = 00000 Always	1 (K010B (K K110B K100B KX00B 0001B S gener	2 Example: Whe	en ALDn	⊾3 bit is read du		4		
ST ▲1: ▲2: ▲3: ▲4: △ 5:	AD6 to / : IICSn reg : IICSn reg : IICSn reg : IICSn reg	AD0 gister gister gister gister gister	R/W = 01102 = 00102 = 00102 = 00102 = 00000 Always	1 K010B (I K100B KX00B 0001B s gener ated or	2 Example: Whe	en ALDn	⊾3 bit is read du		4		

20.2 Configuration

20.2.1 Block diagram

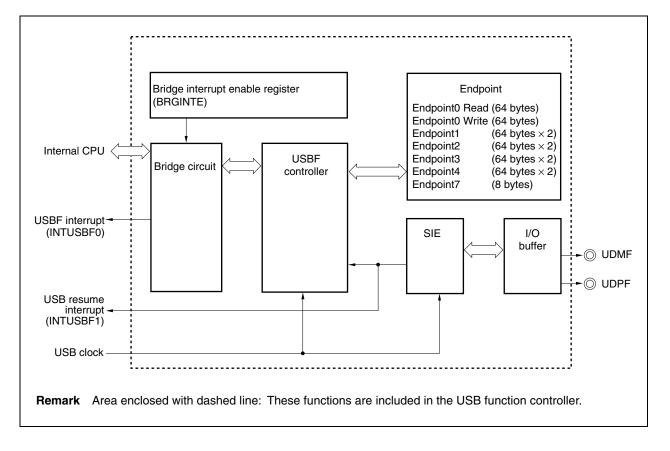


Figure 20-1. Block Diagram of USB Function Controller

(38) UF0 endpoint 1 interface mapping register (UF0E1IM)

This register specifies for which Interface and Alternative Setting Endpoint1 is valid.

This register can be read or written in 8-bit units.

The setting of this register and the Alternative Setting selected by the SET_INTERFACE request indicate whether Endpoint1 is currently valid, and the hardware determines how the GET_STATUS/CLEAR_FEATURE/SET_FEATURE Endpoint1 request and the IN transaction to Endpoint1 are responded to, and whether the related bits are valid or invalid.

	7	6	5	4	3	2	1	0	Address	After rese			
UF0E1IM E1	EN2 E	E1EN1	E1EN0	E12AL1	E15AL4	1 E15AL	.3 E15AL2	E15AL1	00200086H	00H			
Bit position	Bit	name		Function									
7 to 5	E1EN2 E1EN0		Alternat	hese bits set a link between the Interface of Endpoint1 and the two-/five-series Iternative Setting. The endpoint is linked with Alternative Setting 0. The endpoint vith Alternative Setting 0 cannot be excluded from Alternative Setting 1 to 4.									
			E1E	N2 E1	EN1	E1EN0		Link	status				
			1		1	1	Not linked wi	th Interface					
			1		1	0							
			1		0	1	Linked with I	nterface 4 a	Ind Alternative	Setting 0			
			1		0	0	Linked with I	nterface 3 a	nd Alternative	Setting 0			
			0		1	1	Linked with I	nterface 2 a	nd Alternative	Setting 0			
			0		1	0	Linked with Interface 1 and Alternative Setting 0						
			0		0	1	Linked with I	nterface 0 a	nd Alternative	Setting 0			
	0 0 0 Not linked with Inte					th Interface	terface (default value)						
			When th 0.	nese bits a	re set to	110 or 11 ⁻	I, they are inva	alid even if t	the E12AL1 bit	is cleared to			
				If the endpoint is linked, setting of the CONF bit of the UF0MODS register to 1 indicates that Endpoint1 is valid.									
4	E12AL	.1	Setting 1: Va 0: Do 1	 This bit validates Endpoint1 when the two-series Alternative Setting and the Alternative Setting of the linked Interface are set to 1. 1: Validate the endpoint when Alternative Setting 1 is set with CONF bit = 1. 0: Do not validate the endpoint even when Alternative Setting 1 is set with CONF bit = 1 (default value). This bit is valid when the E15AL4 to E15AL1 bits are 0000. 									
3 to 0	E15AL	.n	 These bits validate Endpoint1 when the five-series Alternative Setting and the Alternative Setting of the linked Interface are set to n. 1: Validate the endpoint when Alternative Setting n is set with CONF bit = 1. 0: Do not validate the endpoint even when Alternative Setting n is set with CONF bit = 1 (default value). 										

Remark n = 1 to 4

(6) UF0 EP4 status register L (UF0E4SL)

This register stores the value that is to be returned in response to the GET_STATUS Endpoint4 request.

This register can be read or written in 8-bit units. Note, however, that data can be written to this register only when the EP0NKA bit is set to 1.

If an error occurs in Endpoint4, the E4HALT bit is set to 1. A write access to this register is ignored while a USBside access to Endpoint4 is being received.

The hardware automatically transmits the contents of this register to the host when it has received the GET_STATUS Endpoint4 request. If Endpoint4 has stalled, the UF0BO2 register is cleared and the BKO2NK bit is cleared to 0.

Because writing this register is always masked when transfer to Endpoint4, rather than control transfer, is executed, be sure to check this register to see if data has been correctly written to it.

Caution To rewrite this register, set the EP0NKA bit to 1 before reading the register contents, and rewrite the register contents after confirming that the bit has been set, in order to prevent conflict between a read access and a write access.

	7	6	5	4	3	2	1	0	Address	After reset
UF0E4SL	0	0	0	0	0	0	0	E4HALT	0020015CH	00H
	1									
Bit position	В	lit name					Function			
0	E4H.	ALT	1: Si 0: No This bit received SET_CO	alled ot stalled is set to 1 d. It is clea DNFIGUR/	by hardwar red to 0 by ATION requ	hardware v lest, or the	SET_FE	CLEAR_FEA	point4 request h ATURE Endpoin uest for the Inte PID is initialized	t4 request, rface to

21.6 Transfer Types

As a transfer type, the 2-cycle transfer is supported.

In two-cycle transfer, data transfer is performed in two cycles, a read cycle and a write cycle.

In the read cycle, the transfer source address is output and reading is performed from the source to the DMAC. In the write cycle, the transfer destination address is output and writing is performed from the DMAC to the destination.

An idle cycle of one clock is always inserted between a read cycle and a write cycle. If the data bus width differs between the transfer source and destination for DMA transfer of two cycles, the operation is performed as follows.

<16-bit data transfer>

<1> Transfer from 32-bit bus \rightarrow 16-bit bus

A read cycle (the higher 16 bits are in a high-impedance state) is generated, followed by generation of a write cycle (16 bits).

- <2> Transfer from 16-/32-bit bus to 8-bit bus A 16-bit read cycle is generated once, and then an 8-bit write cycle is generated twice.
- <3> Transfer from 8-bit bus to 16-/32-bit bus An 8-bit read cycle is generated twice, and then a 16-bit write cycle is generated once.
- <4> Transfer between 16-bit bus and 32-bit bus A 16-bit read cycle is generated once, and then a 16-bit write cycle is generated once.

For DMA transfer executed to an on-chip peripheral I/O register (transfer source/destination), be sure to specify the same transfer size as the register size. For example, for DMA transfer to an 8-bit register, be sure to specify byte (8-bit) transfer.

Remark The bus width of each transfer target (transfer source/destination) is as follows.

- On-chip peripheral I/O: 16-bit bus width
- Internal RAM: 32-bit bus width

27.3 Registers

The low-voltage detector is controlled by the following registers.

- Low-voltage detection register (LVIM)
- Internal RAM data status register (RAMS)

(1) Low-voltage detection register (LVIM)

The LVIM register is a special register. This can be written only in the special combination of the sequences (see **3.4.8 Special registers**).

The LVIM register is used to enable or disable low-voltage detection, and to set the operation mode of the low-voltage detector.

This register can be read or written in 8-bit or 1-bit units. However, the LVIF bit is read-only.

	<7>	6	5	4	3	2	<1>	<0>			
LVIM	LVION	0	0	0	0	0	LVIMD	LVIF			
		1		11							
	LVION		Low-vo	oltage detecti	on operatio	n enable or	disable				
	0	Disable operation.									
	1	Enable op	eration.								
	LVIMD		Selectio	n of operatio	n mode of le	ow-voltage	detection				
	0		s interrupt sig ion voltage v		hen the su	oply voltage	e drops or ris	es across			
	1		Generates internal reset signal LVIRES when the supply voltage drops across the detected voltage value.								
		1									
	LVIF ^{Note 2}			Low-vol	tage detect	ion flag					
	0	When sup	ply voltage >	detected vol	tage, or wh	en operatio	n is disabled				
	1	Supply vo	Itage of conn	ected power	supply < de	etected volta	age				
	Reset 2. After t the su ons 1. Wh un	due to oth he LVI ope pply voltag nen the LV til the rese	e state usir (ION and L) et request (00H started (LV ng the LVIF VIMD bits t due to othe	bit. o 1, the lo er than the	w-voltage low-volt	n INTLVI ha e detector age detect ne LVI circu	cannot k ion is ge			
	Wa		or longer b		-		ne voltage				

			(32/34
Symbol	Name	Unit	Page
UF0CIE253	UF0 configuration/interface/endpoint descriptor register 253	USBF	1118
UF0CIE254	UF0 configuration/interface/endpoint descriptor register 254	USBF	1118
UF0CIE255	UF0 configuration/interface/endpoint descriptor register 255	USBF	1118
UF0CLR	UF0 CLR request register	USBF	1039
UF0CNF	UF0 configuration register	USBF	1113
UF0DD0	UF0 device descriptor register 0	USBF	1117
UF0DD1	UF0 device descriptor register 1	USBF	1117
UF0DD2	UF0 device descriptor register 2	USBF	1117
UF0DD3	UF0 device descriptor register 3	USBF	1117
UF0DD4	UF0 device descriptor register 4	USBF	1117
UF0DD5	UF0 device descriptor register 5	USBF	1117
UF0DD6	UF0 device descriptor register 6	USBF	1117
UF0DD7	UF0 device descriptor register 7	USBF	1117
UF0DD8	UF0 device descriptor register 8	USBF	1117
UF0DD9	UF0 device descriptor register 9	USBF	1117
UF0DD10	UF0 device descriptor register 10	USBF	1117
UF0DD11	UF0 device descriptor register 11	USBF	1117
UF0DD12	UF0 device descriptor register 12	USBF	1117
UF0DD13	UF0 device descriptor register 13	USBF	1117
UF0DD14	UF0 device descriptor register 14	USBF	1117
UF0DD15	UF0 device descriptor register 15	USBF	1117
UF0DD16	UF0 device descriptor register 16	USBF	1117
UF0DD17	UF0 device descriptor register 17	USBF	1117
UF0DEND	UF0 data end register	USBF	1069
UF0DMS0	UF0 DMA status 0 register	USBF	1065
UF0DMS1	UF0 DMA status 1 register	USBF	1066
UF0DSCL	UF0 descriptor length register	USBF	1116
UF0DSTL	UF0 device status register L	USBF	1105
UF0E0L	UF0 EP0 length register	USBF	1083
UF0E0N	UF0 EP0NAK register	USBF	1030
UF0E0NA	UF0 EP0NAKALL register	USBF	1032
UF0E0R	UF0 EP0 read register	USBF	1082
UF0E0SL	UF0 EP0 status register L	USBF	1106
UF0E0ST	UF0 EP0 setup register	USBF	1084
UF0E0W	UF0 EP0 write register	USBF	1096
UF0E1DC1	EP1 DMA control register 1	USBF	1124
UF0E1DC2	EP1 DMA control register 2	USBF	1126
UF0E1IM	UF0 endpoint 1 interface mapping register	USBF	1078
UF0E1SL	UF0 EP1 status register L	USBF	1108
UF0E2DC1	EP2 DMA control register 1	USBF	1124
UF0E2DC2	EP2 DMA control register 2	USBF	1126

			(34/34)
Symbol	Name	Unit	Page
UF0INT1	UF0 interrupt 1 register	USBF	1103
UF0IS0	UF0 INT status 0 register	USBF	1045
UF0IS1	UF0 INT status 1 register	USBF	1047
UF0IS2	UF0 INT status 2 register	USBF	1049
UF0IS3	UF0 INT status 3 register	USBF	1050
UF0IS4	UF0 INT status 4 register	USBF	1052
UF0MODC	UF0 mode control register	USBF	1072
UF0MODS	UF0 mode status register	USBF	1073
UF0SDS	UF0 SNDSIE register	USBF	1038
UF0SET	UF0 SET request register	USBF	1040
UFCKMSK	USB function control register	USBF	1009
UFDRQEN	USBF DMA request enable register	USBF	1131
UFIC0	Interrupt control register	INTC	1222
UFIC1	Interrupt control register	INTC	1222
VSWC	System wait control register	CPU	95
WDTE	Watchdog timer enable register	WDT	623
WDTM2	Watchdog timer mode register 2	WDT	1233
WUPIC0	Interrupt control register	INTC	1222

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renessas.com/" for the latest and detailed information.
Renessas Electronics America Inc.
2801 Scott Boulevard Samta Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renessas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renessas Electronics Carope Limited
Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1828-585-100, Fax: +44-1628-585-000
Renessas Electronics Curope Limited
Tot: +44-1768-588-100, Fax: +44-1628-585-000
Renessas Electronics (China) Co., Ltd.
Room 1709, Vouantum Plaza, No.27 ZhicChunLu Haidian District, Beijing 100191, P.R.China
Tel: +49-211-5603-1, Fax: +49-211-6503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-16503-1, Fax: +49-21-1650-1, Fax: +49-21-1650-1, Fax: +49-21-1650-1, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-24, Fax: +49-21-450-2450-24, Fax: +49-21-450-2450-24, Fax: +49-21-450-2450-24, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-4, Fax: +49-21-450-2450-24, Fax: +49-21-450-24, Fax: +49-22-450-4, Fax: +40-22-550-4, Fax: +40-22-550-4, Fax: +40-22-550-4, Fax: +40-

© 2014 Renesas Electronics Corporation. All rights reserved. Colophon 3.0