

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at80c51ra2-3csum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Block Diagram

(1): Alternate function of Port 1

(2): Only available on high pin count packages

(3): Alternate function of Port 3

P0.0	15	6
P0.1	14	5
P0.2	12	3
P0.3	11	2
P0.4	9	64
P0.5	6	61
P0.6	5	60
P0.7	3	59
P1.0	19	10
P1.1	21	12
P1.2	22	13
P1.3	23	14
P1.4	25	16
P1.5	27	18
P1.6	28	19
P1.7	29	20
P2.0	54	43
P2.1	55	44
P2.2	56	45
P2.3	58	47
P2.4	59	48
P2.5	61	50
P2.6	64	53
P2.7	65	54
P3.0	34	25
P3.1	39	28

AIMEL

Pin	PLCC68	SQUARE VQFP64 1.4
P3.2	40	29
P3.3	41	30
P3.4	42	31
P3.5	43	32
P3.6	45	34
P3.7	47	36
RESET	30	21
ALE/PROG	68	56

10 AT/TS8xC51Rx2

AT/TS8xC51Rx2

The X2 bit in the CKCON register (Table 5-2) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

Note: In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers, PCA...) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

7	6	5	4	3	2	1	0			
-	-	-	-	-	-	-	X2			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							

Bit Number	Bit Mnemonic	Description
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	X2	CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, $F_{OSC}=F_{XTAL}/2$). Set to select 6 clock periods per machine cycle (X2 mode, $F_{OSC}=F_{XTAL}$).

Reset Value = XXXX XXX0b

Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)

6. Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added 00A2 AUXR1 EQU 0A2H ; 0000 909000MOV DPTR, #SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR, #DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A EO MOVX A, @DPTR ; get a byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E FO MOVX @DPTR, A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the XRAM.

Figure 6-1. Internal and External Data Memory Address

 Table 6-1.
 Auxiliary Register AUXR

م Addr	AUXR Address 08EH		-	-	-	-	-	EXTRAM	AO
	Reset value	Х	х	х	х	Х	х	0	0
Symbol	Function								
-	Not implemented,	reserved fo	r future u	se. ⁽¹⁾					
AO	Disable/Enable A	E							
	AO Operating Mode								
	0	ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2 mode is used)							
	1 /	ALE is active only during a MOVX or MOVC instruction							
EXTRAM	Internal/External I	Internal/External RAM (00H-FFH) access using MOVX @ Ri/ @ DPTR							
	EXTRAM	Operating Mode							
	0 1	Internal XRAM access using MOVX @ Ri/ @ DPTR							
	1 E	External data	memory	access					

1. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Figure 6-2. Auto-reload Mode Up/Down Counter (DCEN = 1)

6.2.2 Programmable Clock-Output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 6-3) . The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz $(F_{OSC}/2^{16})$ to 4 MHz $(F_{OSC}/4)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

AT/TS8xC51Rx2

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Figure 6-3. Clock-Out Mode $C/\overline{T2} = 0$

Table 6-2.	T2CON F T2CON -	Register Timer 2 Co	ontrol Regist	er (C8h)			
7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#

• The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function. Table 6-7 shows the CCAPMn settings for the various PCA functions.

Table 6-6. CCAPMn: PCA Modules Compare/Capture Control Registers

CCAPMn Address n = 0 - 4 CCAPM0=0DAH CCAPM1=0DBH CCAPM2=0DCH CCAPM3=0DDH CCAPM4=0DEH

Reset value X 0 <th< th=""><th></th><th>-</th><th>ECOMn</th><th>CAPPn</th><th>CAPNn</th><th>MATn</th><th>TOGn</th><th>PWMm</th><th>ECCFn</th></th<>		-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn
	Reset value	Х	0	0	0	0	0	0	0

Symbol	Function
-	Not implemented, reserved for future use. (1)
ECOMn	Enable Comparator. ECOMn = 1 enables the comparator function.
CAPPn	Capture Positive, CAPPn = 1 enables positive edge capture.
CAPNn	Capture Negative, CAPNn = 1 enables negative edge capture.
MATn	Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt.
TOGn	Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.
PWMn	Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.
ECCFn	Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.

1. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Table 6-7.	PCA Module Modes	(CCAPMn Registers)
		(= = = = = = = = = = = = = = = = = = =

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
х	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	х	16-bit capture by a negative trigger on CEXn
Х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	Х	16-bit Software Timer / Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)

Figure 6-9. PCA PWM Mode

6.3.5 PCA Watchdog Timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 6-7 shows a diagram of how the watchdog works. The user preloads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

- 1. Periodically change the compare value so it will never match the PCA timer,
- 2. periodically change the PCA timer value so it will never match the compare values, or
- 3. Disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

This watchdog timer won't generate a reset out on the reset pin.

AT/TS8xC51Rx2

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0				
-	РРСН	PT2H	PSH	PT1H	PX1H	РТОН	РХОН				
Bit Number	Bit Mnemonic	Descrip	Description								
7	-	Reserv The value	leserved The value read from this bit is indeterminate. Do not set this bit.								
6	PPCH	PCA int <u>PPCHP</u> 0 0 1 1	CA interrupt priority bit high. <u>PCHPPC</u> <u>Priority Level</u> 0 0 Lowest 0 1 1 0 1 1 Highest								
5	PT2H	Timer 2 <u>PT2H P</u> 0 0 1 1	imer 2 overflow interrupt Priority High bit <u>T2H PT2</u> <u>Priority Level</u> 0 0 Lowest 0 1 1 0 1 Highest								
4	PSH	Serial p <u>PSH</u> 0 0 1 1	Serial port Priority High bit <u>PSH</u> <u>PS</u> <u>Priority Level</u> 0 0Lowest 0 1 1 0 1 1Highest								
3	PT1H	Timer 1 <u>PT1H P</u> 0 0 1 1	Timer 1 overflow interrupt Priority High bit <u>PT1H PT1Priority Level</u> 0 0Lowest 0 1 1 0 1 1Highest								
2	PX1H	Externa <u>PX1HP</u> 0 0 1 1	l interrupt 1 Pri X1Priority Leve 0Lowest 1 0 1Highest	ority High bit <u>I</u>							
1	PT0H	Timer 0 <u>PT0H P</u> 0 0 1 1	overflow intern <u>T0 Priority</u> 0 Lowest 1 0 1 Highest	upt Priority High <u>Level</u>	n bit						
0	РХОН	Externa <u>PX0HP</u> 0 0 1 1	l interrupt 0 Pri- X <u>0 Priority</u> 0 Lowest 1 0 1 Highest	ority High bit <u>Level</u>							

Reset Value = X000 0000b

Not bit addressable

6.8 Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

6.8.1 Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x $T_{\rm OSC}$, where $T_{\rm OSC}$ = $1/F_{\rm OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16ms to 2s @ F_{OSC} = 12MHz. To manage this feature, refer to WDTPRG register description, Table 6-22 (SFR0A7h).

Table 6-21.WDTRST RegisterWDTRST Address (0A6h)

	7	6	5	4	3	2	1
Reset value	Х	Х	Х	Х	Х	Х	Х

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

Table 6-22. WDTPRG Register WDTPRG Address (0A7h) 7 6 5 4 3 2 1 Τ4 тз T2 **T1** T0 S2 S1

0

S0

6.9 ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS8xC51Rx2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C51Rx2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C51Rx2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

ALE	PSEN Port 0		Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

 Table 6-23.
 External Pin Status during ONCE Mode

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 9-2. Programming and Verification Signal's Waveform

9.4 EPROM Erasure (Windowed Packages Only)

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

9.4.1 Erasure Characteristics

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

10. Signature Bytes

The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 10-1. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel
31h	57h	Family Code: C51 X2
60h	7Ch	Product name: TS83C51RD2

 Table 10-1.
 Signature Bytes Content

AT/TS8xC51Rx2

60h	FCh	Product name: TS87C51RD2
60h	37h	Product name: TS83C51RC2
60h	B7h	Product name: TS87C51RC2
60h	3Bh	Product name: TS83C51RB2
60h	BBh	Product name: TS87C51RB2
61h	FFh	Product revision number

11.4 DC Parameters for Low Voltage

TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz.

 Table 11-2.
 DC Parameters for Low Voltage

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4, 5 ⁽⁶⁾			0.45	V	I _{OL} = 0.8 mA ⁽⁴⁾
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	V	I _{OL} = 1.6 mA ⁽⁴⁾
V _{OH}	Output High Voltage, ports 1, 2, 3, 4, 5	0.9 V _{CC}			V	I _{OH} = -10 μA
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	I _{OH} = -40 μA
I _{IL}	Logical 0 Input Current ports 1, 2, 3, 4, 5			-50	μA	Vin = 0.45 V
ILI	Input Leakage Current			±10	μA	0.45 V < Vin < V _{CC}
ITL	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4, 5			-650	μA	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 (5)	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power-down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μΑ	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$ $V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{PD}	Power-down Current (Only for TS87C51RD2 S287-xxx Very Low power)		2 ⁽⁵⁾	15	μA	$2.0 \text{ V} < \text{V}_{\text{CC}} < 3.6 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.2 Freq (MHz) @12MHz 3.4 @16MHz 4.2	mA	$V_{CC} = 3.3 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.3 Freq (MHz) @12MHz 4.6 @16MHz 5.8	mA	V _{CC} = 3.3 V ⁽⁸⁾
l _{CC} idle	Power Supply Current Maximum values, X1 mode: (7)			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	V _{CC} = 3.3 V ⁽²⁾

Notes: 1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 11-5.), $V_{IL} = V_{SS} + 0.5$ V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used...

2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5 V, V_{IH} = V_{CC} - 0.5 V; XTAL2 N.C; Port 0 = V_{CC}; \overline{EA} = RST = V_{SS} (see Figure 11-3.).

Power-down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 11-4.).

External Program Memory Characteristics Table 11-5. Symbol Description 11.5.2

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

 Table 11-6.
 AC Parameters for Fix Clock

Speed	-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45		78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25		50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12		20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	х	х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

Table 11-11. AC Parameters for a Variable Clock: derating formula

11.5.8 Shift Register Timing Waveforms

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing						
TS87C51RC2-MCA												
TS87C51RC2-MCB												
TS87C51RC2-MCE												
TS87C51RC2-MIA												
TS87C51RC2-MIB												
TS87C51RC2-MIE												
TS87C51RC2-LCA												
TS87C51RC2-LCB												
TS87C51RC2-LCE				TE								
TS87C51RC2-LIA			OBSOLL									
TS87C51RC2-LIB												
TS87C51RC2-LIE												
TS87C51RC2-VCA												
TS87C51RC2-VCB												
TS87C51RC2-VCE												
TS87C51RC2-VIA												
TS87C51RC2-VIB												
TS87C51RC2-VIE												
AT87C51RC2-3CSUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick						
AT87C51RC2-SLSUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick						
AT87C51RC2-RLTUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray						
AT87C51RC2-3CSUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick						
AT87C51RC2-SLSUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick						
AT87C51RC2-RLTUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray						

13.4 VQFP64

SQUARE GULL WING (1.4 mm)

