E·XFL

Atmel - AT80C51RA2-RLTUM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at80c51ra2-rltum

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Bit addressable	Non Bit address	Non Bit addressable							
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F		
F8h		CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAPL2H XXXX XXXX	CCAPL3H XXXX XXXX	CCAPL4H XXXX XXXX		FFh	
F0h	B 0000 0000								F7h	
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAPL2L XXXX XXXX	CCAPL3L XXXX XXXX	CCAPL4L XXXX XXXX		EFh	
E0h	ACC 0000 0000								E7h	
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh	
D0h	PSW 0000 0000								D7h	
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh	
C0h	P4 bit addressable 1111 1111							P5 byte addressable 1111 1111	C7h	
B8h	IP X000 000	SADEN 0000 0000							BFh	
B0h	P3 1111 1111							IPH X000 0000	B7h	
A8h	IE 0000 0000	SADDR 0000 0000							AFh	
A0h	P2 1111 1111		AUXR1 XXXX0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h	
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh	
90h	P1 1111 1111								97h	
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXX00	CKCON XXXX XXX0	8Fh	
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h	
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F		

 Table 4-1.
 All SFRs with their address and their reset value

reserved

5.2 TS80C51Rx2 Enhanced Features

In comparison to the original 80C52, the TS8xC51Rx2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The extended RAM.
- The Programmable Counter Array (PCA).
- The Watchdog.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- The ALE disabling.
- Some enhanced features are also located in the UART and the timer 2.

5.3 X2 Feature

The TS80C51Rx2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divides frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Saves power consumption while keeping same CPU power (oscillator power saving).
- Saves power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increases CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

5.3.1 Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 5-1 shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 5-2 shows the mode switching waveforms.

AT/TS8xC51Rx2

The X2 bit in the CKCON register (Table 5-2) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

Note: In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers, PCA...) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	X2		
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value re	ad from this bit	is indeterminat	e. Do not set th	nis bit.			

6. Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added 00A2 AUXR1 EQU 0A2H ; 0000 909000MOV DPTR, #SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR, #DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A EO MOVX A, @DPTR ; get a byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E FO MOVX @DPTR, A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

6.1 Expanded RAM (XRAM)

The TS80C51Rx2 provide additional Bytes of ramdom access memory (RAM) space for increased data parameter handling and high level language usage.

RA2, RB2 and RC2 devices have 256 bytes of expanded RAM, from 00H to FFH in external data space; RD2 devices have 768 bytes of expanded RAM, from 00H to 2FFH in external data space.

The TS80C51Rx2 has internal data memory that is mapped into four separate segments.

The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
- 2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.
- 4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared in the AUXR register. (See Table 6-1.)

The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction.

- Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data, accesses the SFR at location 0A0H (which is P2).
- Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For example: MOV @R0, # data where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).
- The 256 or 768 XRAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory which is physically located on-chip, logically occupies the first 256 or 768 bytes of external data memory.
- With <u>EXTRAM = 0</u>, the XRAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, <u>R1</u> of the selected bank or DPTR. An access to XRAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM = 0, MOVX @R0, # data where R0 contains 0A0H, accesses the XRAM at address 0A0H rather than external memory. An access to external data memory locations higher than FFH (i.e. 0100H to FFFFH) (higher than 2FFH (i.e. 0300H to FFFFH for RD devices) will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address busses, and P3.6 and P3.7 as write and read timing signals. Refer to Figure 6-1. For RD devices, accesses to expanded RAM from 100H to 2FFH can only be done thanks to the use of DPTR.
- With <u>EXTRAM = 1</u>, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an eight-bit address multiplexed with data on Port0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the highorder eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	T2OE	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.
0	DCEN	Down Counter Enable bit Clear to disable timer 2 as up/down counter. Set to enable timer 2 as up/down counter.

Reset Value = XXXX XX00b

Not bit addressable

6.3 Programmable Counter Array PCA

The PCA provides more timing capabilities with less CPU intervention than the standard timer/counters. Its advantages include reduced software overhead and improved accuracy. The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Its clock input can be programmed to count any one of the following signals:

- Oscillator frequency \div 12 (\div 6 in X2 mode)
- Oscillator frequency \div 4 (\div 2 in X2 mode)
- Timer 0 overflow
- External input on ECI (P1.2)

Each compare/capture modules can be programmed in any one of the following modes:

- rising and/or falling edge capture,
- · software timer,
- · high-speed output, or
- pulse width modulator.

Module 4 can also be programmed as a watchdog timer (See Section "PCA Watchdog Timer", page 33).

When the compare/capture modules are programmed in the capture mode, software timer, or high speed output mode, an interrupt can be generated when the module executes its function. All five modules plus the PCA timer overflow share one interrupt vector.

The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins are listed below. If the port is not used for the PCA, it can still be used for standard I/O.

PCA component	External I/O Pin
16-bit Counter	P1.2 / ECI
16-bit Module 0	P1.3 / CEX0
16-bit Module 1	P1.4 / CEX1
16-bit Module 2	P1.5 / CEX2
16-bit Module 3	P1.6 / CEX3
16-bit Module 4	P1.7 / CEX4

The PCA timer is a common time base for all five modules (See Figure 6-4). The timer count source is determined from the CPS1 and CPS0 bits in the **CMOD SFR** (See Table 6-4) and can be programmed to run at:

- 1/12 the oscillator frequency. (Or 1/6 in X2 Mode)
- 1/4 the oscillator frequency. (Or 1/2 in X2 Mode)
- The Timer 0 overflow
- The input on the ECI pin (P1.2)

Figure 6-5. PCA Interrupt System

PCA Modules: each one of the five compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered,
- 16-bit Capture, negative-edge triggered,
- 16-bit Capture, both positive and negative-edge triggered,
- 16-bit Software Timer,
- 16-bit High Speed Output,
- 8-bit Pulse Width Modulator.

In addition, module 4 can be used as a Watchdog Timer.

Each module in the PCA has a special function register associated with it. These registers are: CCAPM0 for module 0, CCAPM1 for module 1, etc. (See Table 6-6). The registers contain the bits that control the mode that each module will operate in.

- The ECCF bit (CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module) enables the CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the associated module.
- PWM (CCAPMn.1) enables the pulse width modulation mode.
- The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register.
- The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register.
- The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled and a capture will occur for either transition.

Bit Number	Bit Mnemonic	Description
7	FE	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit
	SM0	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit
6	SM1	Serial port Mode bit 1 SM0 SM1ModeDescriptionBaud Rate 0 0 0Shift RegisterF _{XTAL} /12 (/6 in X2 mode) 0 1 18-bit UARTVariable 1 0 29-bit UARTF _{XTAL} /64 or F _{XTAL} /32 (/32, /16 in X2 mode) 1 1 39-bit UARTVariable
5	SM2	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.
4	REN	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.
3	TB8	Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3 Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.
2	RB8	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.
1	TI	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.
0	RI	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 6-11. and Figure 6- 12. in the other modes.

Reset Value = 0000 0000b Bit addressable

Table 6-15.PCON RegisterPCON - Power Control Register (87h)

7	6	5	4	3	2	1	0
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL

6.5 Interrupt System

The TS80C51Rx2 has a total of 7 interrupt vectors: two external interrupts ($\overline{INT0}$ and $\overline{INT1}$), three timer interrupts (timers 0, 1 and 2), the serial port interrupt and the PCA global interrupt. These interrupts are shown in Figure 6-13.

WARNING: Note that in the first version of RC devices, the PCA interrupt is in the lowest priority. Thus the order in INTO, TF0, INT1, TF1, RI or TI, TF2 or EXF2, PCA.

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 6-17.Table 6-18.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 6-18.) and in the Interrupt Priority High register (See Table 6-19.). shows the bit values and priority levels associated with each combination.

The PCA interrupt vector is located at address 0033H. All other vector addresses are the same as standard C52 devices.

Table 6-16.	Priority Level Bit Values
-------------	---------------------------

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 6-17. IE Register

IE - Interrupt Enable Register (A8h)

7	6		5	4	3	2	1	0	
EA	EC	I	ET2	ES	ET1	EX1	ET0	EX0	
Bit Number	Bit Mnem	nonic	Descrip	otion					
7	EA		Enable A Clear to Set to e If EA=1, clearing	All interrupt bit disable all inte nable all interru each interrupt its own interru	errupts. upts. source is indivi pt enable bit.	dually enabled	or disabled by s	setting or	
6	EC		PCA int Clear to	errupt enable disable . Set to	bit o enable.				
5	ET2		Timer 2 Clear to Set to e	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.					
4	ES		Serial po Clear to Set to e	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.					
3	ET1		Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.						
2	EX1		External Clear to Set to e	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.					
1	ET0		Timer 0 Clear to Set to e	overflow intern disable timer (nable timer 0 o	upt Enable bit) overflow interr verflow interrup	rupt. ot.			
0	EX0		External Clear to Set to e	l interrupt 0 En disable extern nable external	able bit al interrupt 0. interrupt 0.				

Reset Value = 0000 0000b

Bit addressable

AT/TS8xC51Rx2

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	РРСН	PT2H	PSH	PT1H	PX1H	РТОН	PX0H
Bit Number	Bit Mnemonic	Descrip	otion				
7	-	Reserv The value	ed ue read from th	is bit is indeterr	ninate. Do not	set this bit.	
6	РРСН	PCA int <u>PPCHP</u> 0 1 1	errupt priority b <u>PC Priorit</u> 0 Lowest 1 0 1 Highest	it high. <u>y Level</u>			
5	PT2H	Timer 2 <u>PT2H P</u> 0 0 1 1	overflow intern T <u>2</u> <u>Priority</u> 0 Lowest 1 0 1 Highest	upt Priority High <u>Level</u>	n bit		
4	PSH	Serial p <u>PSH</u> 0 0 1 1	ort Priority High <u>PS Priority</u> 0Lowest 1 0 1Highest	n bit <u>Level</u>			
3	PT1H	Timer 1 <u>PT1HP</u> 0 0 1 1	overflow intern <u>T1Priority Leve</u> 0Lowest 1 0 1Highest	upt Priority Higł <u>I</u>	n bit		
2	PX1H	Externa <u>PX1HP</u> 0 0 1 1	l interrupt 1 Prio X <u>1Priority Leve</u> 0Lowest 1 0 1Highest	ority High bit <u>I</u>			
1	РТОН	Timer 0 <u>PT0HP</u> 0 0 1 1	overflow intern T <u>0</u> <u>Priority</u> 0 Lowest 1 0 1 Highest	upt Priority High <u>Level</u>	n bit		
0	РХОН	Externa <u>PX0HP</u> 2 0 0 1 1	l interrupt 0 Priority <u>X0 Priority</u> 0 Lowest 1 0 1 Highest	ority High bit <u>Level</u>			

Reset Value = X000 0000b

Not bit addressable

7. Power-Off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 7-1). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

7	6	5	4	3	2	1	0
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
Bit Number	Bit Mnemonic	Descriptio	n				
7	SMOD1	Serial port	Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.				
6	SMOD0	Serial port Clear to se Set to to se	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.				
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.				
4	POF	Power-Off Clear to red Set by hard software.	Power-Off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.				
3	GF1	General pu Cleared by Set by use	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.				
2	GF0	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
1	PD	Power-Do Cleared by Set to ente	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.				
0	IDL	Idle mode Clear by ha Set to ente	bit ardware when r idle mode.	interrupt or rese	et occurs.		

Table 7-1.PCON RegisterPCON - Power Control Register (87h)

Reset Value = 00X1 0000b

Not bit addressable

8. TS83C51RB2/RC2/RD2 ROM

8.1 ROM Structure

The TS83C51RB2/RC2/RD2 ROM memory is divided in three different arrays:

- the code array:16/32/64 Kbytes.
- the encryption array:64 bytes.
- the signature array:4 bytes.

8.2 ROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

8.2.1 8.2.1 Encryption Array

Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

8.2.2 Program Lock Bits

The lock bits when programmed according to Table 8-1. will provide different level of protection for the on-chip code and data.

Program Lock Bits				
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset.
3	U	Ρ	U	Same as level 1+ Verify disable. This security level is only available for 51RDX2 devices.

Table 8-1.	Program Lock bits

U: unprogrammed P: programmed

8.2.3 Signature bytes

The TS83C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 8.3.

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 9-2. Programming and Verification Signal's Waveform

9.4 EPROM Erasure (Windowed Packages Only)

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

9.4.1 Erasure Characteristics

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

10. Signature Bytes

The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 10-1. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.

Location Contents		Comment
30h	58h	Manufacturer Code: Atmel
31h	57h	Family Code: C51 X2
60h	7Ch	Product name: TS83C51RD2

 Table 10-1.
 Signature Bytes Content

11.5.9 EPROM Programming and Verification Characteristics

TA = 21°C to 27°C; V_{SS} = 0V; V_{CC} = 5V \pm 10% while programming. V_{CC} = operating range while

Symbol	Parameter	Min	Мах	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

verifying

11.5.10 EPROM Programming and Verification Waveforms

Figure 11-10. EPROM Programming and Verification Waveforms

* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5

AT/TS8xC51Rx2

11.5.11 External Clock Drive Characteristics (XTAL1)

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

11.5.12 External Clock Drive Waveforms

Figure 11-11. External Clock Drive Waveforms

11.5.13 AC Testing Input/Output Waveforms

Figure 11-12. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

11.5.14 Float Waveforms

Figure 11-13. Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

AT/TS8xC51Rx2

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
TS87C51RD2-MCA			•			
TS87C51RD2-MCB	-					
TS87C51RD2-MCE	-					
TS87C51RD2-MIA						
TS87C51RD2-MIB						
TS87C51RD2-MIE						
TS87C51RD2-LCA						
TS87C51RD2-LCB						
TS87C51RD2-LCE						
TS87C51RD2-LIA			OBSOLE	TE		
TS87C51RD2-LIB						
TS87C51RD2-LIE						
TS87C51RD2-VCA						
TS87C51RD2-VCB						
TS87C51RD2-VCE						
TS87C51RD2-VCL						
TS87C51RD2-VIA						
TS87C51RD2-VIB						
TS87C51RD2-VIE						
AT87C51RD2-3CSUM	OTP 64k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick
AT87C51RD2-SLSUM	OTP 64k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick
AT87C51RD2-RLTUM	OTP 64k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray
AT87C51RD2-3CSUL	OTP 64k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick
AT87C51RD2-SLSUL	OTP 64k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick
AT87C51RD2-RLTUL	OTP 64k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
TS83C51RB2-MCA			•	•		
TS83C51RB2-MCB						
TS83C51RB2-MCE						
TS83C51RB2-MIA						
TS83C51RB2-MIB						
TS83C51RB2-MIE						
TS83C51RB2-LCA						
TS83C51RB2-LCB						
TS83C51RB2-LCE				TE		
TS83C51RB2-LIA			OBSOLL			
TS83C51RB2-LIB						
TS83C51RB2-LIE						
TS83C51RB2-VCA						
TS83C51RB2-VCB						
TS83C51RB2-VCE						
TS83C51RB2-VIA						
TS83C51RB2-VIB						
TS83C51RB2-VIE						
AT83C51RB2-3CSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick
AT83C51RB2-SLSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick
AT83C51RB2-RLTUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray
AT83C51RB2-3CSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick
AT83C51RB2-SLSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick
AT83C51RB2-RLTUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray

13.4 VQFP64

SQUARE GULL WING (1.4 mm)

