

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at80c51ra2-sIrul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

facilitates multiprocessor communication (EUART) and an X2 speed improvement mechanism.

The fully static design of the TS80C51Rx2 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data.

The TS80C51Rx2 has 2 software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial port and the interrupt system are still operating. In the power-down mode the RAM is saved and all other functions are inoperative.

PDIL40 PLCC44 VQFP44 1.4	ROM (bytes)	EPROM (bytes)	XRAM (bytes)	TOTAL RAM (bytes)	I/O
TS80C51RA2	0	0	256	512	32
TS83C51RB2	16k	0	256	512	32
TS83C51RC2	32k	0	256	512	32
TS83C51RD2	64K	16k	/68	512	32
TS87C51RC2	0	32k	256	512	32
TS87C51RD2	0	64k	768	1024	32

PLCC68 VQFP64 1.4	ROM (bytes)	EPROM (bytes)	XRAM (bytes)	TOTAL RAM (bytes)	I/O
TS80C51RD2	0	0	768	1024	48
TS83C51RD2	64k	0	768	1024	48
TS87C51RD2	0	64k	768	1024	48

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3, P4, P5
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

P0.0	15	6
P0.1	14	5
P0.2	12	3
P0.3	11	2
P0.4	9	64
P0.5	6	61
P0.6	5	60
P0.7	3	59
P1.0	19	10
P1.1	21	12
P1.2	22	13
P1.3	23	14
P1.4	25	16
P1.5	27	18
P1.6	28	19
P1.7	29	20
P2.0	54	43
P2.1	55	44
P2.2	56	45
P2.3	58	47
P2.4	59	48
P2.5	61	50
P2.6	64	53
P2.7	65	54
P3.0	34	25
P3.1	39	28

AIMEL

Pin	PLCC68	SQUARE VQFP64 1.4
P3.2	40	29
P3.3	41	30
P3.4	42	31
P3.5	43	32
P3.6	45	34
P3.7	47	36
RESET	30	21
ALE/PROG	68	56

10 AT/TS8xC51Rx2

5.4 Dual Data Pointer Register

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (Table 5-3) that allows the program code to switch between them (Refer to Figure 5-3).

 Table 5-3.
 AUXR1: Auxiliary Register 1

AUXR1 Address 0A2H			-	-	-	-	GF3	-	-	DPS
	Reset valu	ie	Х	Х	Х	Х	0	Х	Х	0
Symbol	Function	unction								
-	Not implemente	Not implemented, reserved for future use ⁽¹⁾								
DPS	Data Pointer Se	Data Pointer Selection.								
	DPS	Oper	Operating Mode							
	0	DPTI	DPTR0 Selected							
	1	DPTI	R1 Select	ed						
GF3	This bit is a gen	This bit is a general purpose user flag ⁽²⁾ .								

 User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

GF3 will not be available on first version of the RC devices.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Figure 6-3. Clock-Out Mode $C/\overline{T2} = 0$

Table 6-2.	T2CON F T2CON -	Register Timer 2 Co	ontrol Regist	er (C8h)			
7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 6-8 & Table 6-9)

 Table 6-8.
 CCAPnH: PCA Modules Capture/Compare Registers High

	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0

 Table 6-9.
 CCAPnL: PCA Modules Capture/Compare Registers Low

CCAPnL Address n = 0 - 4	
11 = 0 +	

CCAP0L=0EAH	
CCAP1L=0EBH	
CCAP2L=0ECH	
CCAP3L=0EDH	
CCAP4L=0EEH	

	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0

Table 6-10.CH: PCA Counter High

CH Address 0F9H

Н									
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 6-11. CL: PCA Counter Low

CL

Address 0E9H

	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0

6.3.1 PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 6-6).

* Only for Module 4

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.3.3 High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 6-8).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

6.4 TS80C51Rx2 Serial I/O Port

The serial I/O port in the TS80C51Rx2 is compatible with the serial I/O port in the 80C52.

It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- · Automatic address recognition

6.4.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 6-10).

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 6-14.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 6-11 and Figure 6-12).

Figure 6-12. UART Timings in Modes 2 and 3

6.4.2 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

Note: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

6.4.3 Given Address

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b.

For example:

```
SADDR0101 0110b
SADEN1111 1100b
Given0101 01XXb
```

The following is an example of how to use given addresses to address different slaves:

```
Slave A:SADDR1111 0001b

<u>SADEN1111 1010b</u>

Given1111 0X0Xb

Slave B:SADDR1111 0011b

<u>SADEN1111 1001b</u>

Given1111 0XX1b
```


Table 6-12. SADEN - Slave Address Mask Register (B9h)

7	6	5	4	3	2	1	0	
Reset Value Not bit addre	e = 0000 000 essable	00b						

Table 6-13. SADDR - Slave Address Register (A9h)

	7	6	5	4	3	2	1	0
-								

Reset Value = 0000 0000b

Not bit addressable

Table 6-14. SCON Register

SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0
FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI

Bit Number	Bit Mnemonic	Description
7	SMOD1	Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.
6	SMOD0	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	POF	Power-Off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.
3	GF1	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.
2	GF0	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.
1	PD	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.
0	IDL	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.

Reset Value = 00X1 0000b

Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

7.1 Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	EXTRAM	AO		
Bit Number	Bit Mnemonic	Description	Description						
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	-	Reserved The value rea	d from this bit i	s indeterminate	e. Do not set thi	is bit.			
2	-	Reserved The value rea	d from this bit i	s indeterminate	e. Do not set thi	is bit.			
1	EXTRAM	EXTRAM bit See Table 6-1	EXTRAM bit See Table 6-1.						
0	AO	ALE Output I Clear to restor Set to disable	ALE Output bit Clear to restore ALE operation during internal fetches. Set to disable ALE operation during internal fetches.						

Table 7-2.AUXR RegisterAUXR - Auxiliary Register (8Eh)

Reset Value = XXXX XX00b Not bit addressable

60h	FCh	Product name: TS87C51RD2
60h	37h	Product name: TS83C51RC2
60h	B7h	Product name: TS87C51RC2
60h	3Bh	Product name: TS83C51RB2
60h	BBh	Product name: TS87C51RB2
61h	FFh	Product revision number

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing		
AT80C51RA2-3CSCV				I				
AT80C51RA2-SLSCV								
AT80C51RA2-RLTCV				T E				
AT80C51RA2-3CSIV		OBSOLETE						
AT80C51RA2-SLSIV								
AT80C51RA2-RLSIV								
TS80C51RD2-MCA	Not recommended	use AT87C51RD2						
TS80C51RD2-MCB	Not recommended	use AT87C51RD2						
TS80C51RD2-MCE	Not recommended	use AT87C51RD2						
TS80C51RD2-MIA	Not recommended	use AT87C51RD2						
TS80C51RD2-MIB	Not recommended	use AT87C51RD2						
TS80C51RD2-MIE	Not recommended	use AT87C51RD2						
TS80C51RD2-LCA	Not recommended	use AT87C51RD2						
TS80C51RD2-LCB	Not recommended	use AT87C51RD2						
TS80C51RD2-LCE	Not recommended	use AT87C51RD2						
TS80C51RD2-LIA	Not recommended	use AT87C51RD2						
TS80C51RD2-LIB	Not recommended	use AT87C51RD2						
TS80C51RD2-LIE	Not recommended	use AT87C51RD2						
TS80C51RD2-VCA	Not recommended	use AT87C51RD2						
TS80C51RD2-VCB	Not recommended	use AT87C51RD2						
TS80C51RD2-VCE	Not recommended	use AT87C51RD2						
TS80C51RD2-VIA	Not recommended	use AT87C51RD2						
TS80C51RD2-VIB	Not recommended	use AT87C51RD2						
TS80C51RD2-VIE	Not recommended	use AT87C51RD2						
AT80C51RD2-3CSUM	Not recommended	use AT87C51RD2						
AT80C51RD2-SLSUM	Not recommended	use AT87C51RD2						
AT80C51RD2-RLTUM	Not recommended	use AT87C51RD2						
AT80C51RD2-3CSUL	Not recommended	use AT87C51RD2						
AT80C51RD2-SLSUL	Not recommended	use AT87C51RD2						
AT80C51RD2-RLTUL	Not recommended	use AT87C51RD2						

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
TS83C51RB2-MCA						
TS83C51RB2-MCB						
TS83C51RB2-MCE						
TS83C51RB2-MIA						
TS83C51RB2-MIB						
TS83C51RB2-MIE						
TS83C51RB2-LCA						
TS83C51RB2-LCB						
TS83C51RB2-LCE				TE		
TS83C51RB2-LIA			OBSOLL	.16		
TS83C51RB2-LIB						
TS83C51RB2-LIE						
TS83C51RB2-VCA						
TS83C51RB2-VCB						
TS83C51RB2-VCE						
TS83C51RB2-VIA						
TS83C51RB2-VIB						
TS83C51RB2-VIE						
AT83C51RB2-3CSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick
AT83C51RB2-SLSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick
AT83C51RB2-RLTUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray
AT83C51RB2-3CSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick
AT83C51RB2-SLSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick
AT83C51RB2-RLTUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray

13. Package Drawings

13.1 PLCC44

	1	MM ·	ΙN	СН		
A	4.20	4.57	. 165	. 180		
A1	2, 29	3.04	. 090	. 120		
D	17.40	17.65	. 685	. 695		
D1	16.44	16.66	. 647	. 656		
D5	14.99	16.00	. 590	. 630		
E	17.40	17.65	. 685	. 695		
E1	16.44	16.66	. 647	. 656		
E5	14.99	16.00	. 590	. 630		
e	1.27	BSC	. 050	BSC		
G	1.07	1.22	. 042	. 048		
н	1.07	1.42	. 042	. 056		
J	0.51	-	. 020	-		
К	0.33	0.53	. 013	. 021		
Nd	1	l 1	1	1		
Ne	1	11	1	11		
P	PKG STD					

13.2 PDIL40

		MM	ΙN	СН
A	-	5.08	-	. 200
A1	0.38	-	. 015	-
A2	3.18	4. 95	. 125	. 195
В	0.36	0.56	. 014	. 022
B1	0.76	1. 78	. 030	. 070
С	0.20	0.38	. 008	. 015
D	50.29	53. 21	1.980	2.095
E	15.24	15.87	. 600	. 625
E1	12.32	14.73	. 485	. 580
e	2. 54	B. S. C	. 100	B. S. C
еА	15.24	B. S. C	. 600	B. S. C
еB	-	1 7. 78	_	. 700
L	2. 93	3. 81	. 115	. 150
D1	0.13	-	. 005	-
P	KG STD	02		

13.4 VQFP64

SQUARE GULL WING (1.4 mm)

13.5 PLCC68

68 PINS PLCC

	1.0.1		TNCH	
A	4.20	5.08	. 165	. 200
A1	2, 29	3.30	. 090	. 130
D	25.02	25. 27	. 985	. 995
D1	24.13	24.33	. 950	. 958
D2	22. 61	23. 62	. 890	. 930
E	25.02	25. 27	. 985	. 995
E1	24.13	24. 33	. 950	. 958
E2	22.61	23. 62	. 890	. 930
e	1.27	BSC	. 050	BSC
G	1.07	1.22	. 042	. 048
н	1.07	1.42	. 042	.056
J	0.51	-	. 020	-
К	0.33	0.53	. 013	. 021
Nd	1 7		17	
Ne	17		17	
PKG STD 00				

14. Datasheet Revision History

14.1 Changes from 4188E to 4188F

- 1. Removed TS80C51RD2 and AT80C51RD2 from "Ordering Information" on page 73.
- 2. Removed non-green part numbers from ordering information.

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com *Technical Support* Enter Product Line E-mail Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.