

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c51ra2-mce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Block Diagram

(1): Alternate function of Port 1

(2): Only available on high pin count packages

(3): Alternate function of Port 3

4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3, P4, P5
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

	Bit addressable	Non Bit address	sable						
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAPL2H XXXX XXXX	CCAPL3H XXXX XXXX	CCAPL4H XXXX XXXX		FFh
F0h	B 0000 0000								F7h
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAPL2L XXXX XXXX	CCAPL3L XXXX XXXX	CCAPL4L XXXX XXXX		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh
D0h	PSW 0000 0000								D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0h	P4 bit addressable 1111 1111							P5 byte addressable 1111 1111	C7h
B8h	IP X000 000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH X000 0000	B7h
A8h	IE 0000 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX0XX0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXX00	CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

 Table 4-1.
 All SFRs with their address and their reset value

reserved

P0.0	15	6
P0.1	14	5
P0.2	12	3
P0.3	11	2
P0.4	9	64
P0.5	6	61
P0.6	5	60
P0.7	3	59
P1.0	19	10
P1.1	21	12
P1.2	22	13
P1.3	23	14
P1.4	25	16
P1.5	27	18
P1.6	28	19
P1.7	29	20
P2.0	54	43
P2.1	55	44
P2.2	56	45
P2.3	58	47
P2.4	59	48
P2.5	61	50
P2.6	64	53
P2.7	65	54
P3.0	34	25
P3.1	39	28

AIMEL

Pin	PLCC68	SQUARE VQFP64 1.4
P3.2	40	29
P3.3	41	30
P3.4	42	31
P3.5	43	32
P3.6	45	34
P3.7	47	36
RESET	30	21
ALE/PROG	68	56

10 AT/TS8xC51Rx2

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Figure 6-3. Clock-Out Mode $C/\overline{T2} = 0$

Table 6-2.	T2CON F T2CON -	T2CON Register T2CON - Timer 2 Control Register (C8h)								
7	6	5	4	3	2	1	0			
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#			

Figure 6-4. PCA Timer/Counter

Table 6-4. CMOD: PCA Counter Mode Register

C Addr	CMOD ess 0D9H	1	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF
	Re	eset value	0	0	х	х	х	0	0	0
Symbol	Symbol Function									
CIDL	Counter Idle control: $CIDL = 0$ programs the PCA Counter to continue functioning during idle Mode. CIDL = 1 programs it to be gated off during idle.									
WDTE	Watchdog Timer Enable: WDTE = 0 disables Watchdog Timer function on PCA Module 4. WDTE = 1 enables it.									
-	Not implemented, reserved for future use. (1)									
CPS1	PCA Count Pulse Select bit 1.									
CPS0	PCA Co	unt Pulse	Select bit 0.							
	CPS1	CPS0	Selected PC	A input. ⁽²⁾						
	0	0	Internal clock	k f _{osc} /12(0	Or f _{osc} /6 in	X2 Mode).			
	0	1	Internal clock	k f _{osc} /4(O	r f _{osc} /2 in X	X2 Mode).				
	1	0	Timer 0 Ove	rflow						
	0 1 Internal clock f _{osc} /4 (Or f _{osc} /2 in X2 Mode). 1 0 Timer 0 Overflow 1 1 External clock at ECI/P1.2 pin (max rate = f _{osc} / 8)									
ECF	PCA En ECF = 0	able Cour disables	nter Overflow that function	interrupt: I of CF.	ECF = 1 e	nables CF	⁻ bit in CC	ON to ger	nerate an i	nterrupt.

1. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

2. $f_{osc} = oscillator frequency$

The CMOD SFR includes three additional bits associated with the PCA (See Figure 6-4 and Table 6-4).

Figure 6-5. PCA Interrupt System

PCA Modules: each one of the five compare/capture modules has six possible functions. It can perform:

- 16-bit Capture, positive-edge triggered,
- 16-bit Capture, negative-edge triggered,
- 16-bit Capture, both positive and negative-edge triggered,
- 16-bit Software Timer,
- 16-bit High Speed Output,
- 8-bit Pulse Width Modulator.

In addition, module 4 can be used as a Watchdog Timer.

Each module in the PCA has a special function register associated with it. These registers are: CCAPM0 for module 0, CCAPM1 for module 1, etc. (See Table 6-6). The registers contain the bits that control the mode that each module will operate in.

- The ECCF bit (CCAPMn.0 where n=0, 1, 2, 3, or 4 depending on the module) enables the CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the associated module.
- PWM (CCAPMn.1) enables the pulse width modulation mode.
- The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to toggle when there is a match between the PCA counter and the module's capture/compare register.
- The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be set when there is a match between the PCA counter and the module's capture/compare register.
- The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit enables the positive edge. If both bits are set both edges will be enabled and a capture will occur for either transition.

* Only for Module 4

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.3.3 High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 6-8).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

Figure 6-8. PCA High Speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.3.4 Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 6-9 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Figure 6-12. UART Timings in Modes 2 and 3

6.4.2 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

Note: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

6.4.3 Given Address

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b.

For example:

```
SADDR0101 0110b
SADEN1111 1100b
Given0101 01XXb
```

The following is an example of how to use given addresses to address different slaves:

```
Slave A:SADDR1111 0001b

<u>SADEN1111 1010b</u>

Given1111 0X0Xb

Slave B:SADDR1111 0011b

<u>SADEN1111 1001b</u>

Given1111 0XX1b
```


Table 6-18.IP RegisterIP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0		
-	PPC	PT2	PS	PT1	PX1	PT0	PX0		
Bit Number	Bit Mnemo	nic Descr	ption						
7	7 -		Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	PPC	PCA in Refer t	CA interrupt priority bit Refer to PPCH for priority level.						
5	PT2	Timer Refer t	Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.						
4	PS	Serial Refer t	Serial port Priority bit Refer to PSH for priority level.						
3	PT1	Timer Refer t	Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level.						
2	PX1	Extern Refer t	External interrupt 1 Priority bit Refer to PX1H for priority level.						
1	PT0	Timer Refer t	Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.						
0	PX0	Extern Refer t	External interrupt 0 Priority bit Refer to PX0H for priority level.						

Reset Value = X000 0000b

Bit addressable

8.2.4 Verify Algorithm

Refer to Section "Verify algorithm".

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 9-2. Programming and Verification Signal's Waveform

9.4 EPROM Erasure (Windowed Packages Only)

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

9.4.1 Erasure Characteristics

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of 12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

10. Signature Bytes

The TS83/87C51RB2/RC2/RD2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 10-1. shows the content of the signature byte for the TS87C51RB2/RC2/RD2.

Location	Contents	Comment		
30h	58h	Manufacturer Code: Atmel		
31h	57h	Family Code: C51 X2		
60h	7Ch	Product name: TS83C51RD2		

 Table 10-1.
 Signature Bytes Content

Table 11-1.	DC Parameters in Standard Voltage
-------------	-----------------------------------

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OH}	Output High Voltage, ports 1, 2, 3, 4, 5	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	I _{OH} = -10 μA I _{OH} = -30 μA I _{OH} = -60 μA V _{CC} = 5 V ± 10%
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
V _{OH2}	Output High Voltage,ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			> > >	$I_{OH} = -100 \ \mu A$ $I_{OH} = -1.6 \ m A$ $I_{OH} = -3.5 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90 (5)	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2, 3, 4, 5			-50	μA	Vin = 0.45 V
ILI	Input Leakage Current			±10	μA	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4, 5			-650	μΑ	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power-down Current		20 ⁽⁵⁾	50	μA	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	V _{CC} = 5.5 V ⁽¹⁾
I _{cc} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	V _{CC} = 5.5 V ⁽⁸⁾
l _{cc} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3 Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	V _{CC} = 5.5 V ⁽²⁾

TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0 V$; 2.7 V < V_{CC} < 5.5 V; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0 V$; 2.7 V < V_{CC} < 5.5 V; -L range.

Table 11-3. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and PSEN signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

	-М	-V	-L
Port 0	100	50	100
Port 1, 2, 3	80	50	80
ALE / PSEN	100	30	100

Table 11-3. Load Capacitance versus speed range, in pF

Table 11-5., Table 39. and Table 42. give the description of each AC symbols.

Table 11-6., Table 11-8. and Table 11-10. give for each range the AC parameter.

Table 11-7., Table 11-9. and Table 11-11. give the frequency derating formula of the AC parameter. To calculate each AC symbols, take the x value corresponding to the speed grade you need (-M, -V or -L) and replace this value in the formula. Values of the frequency must be limited to the corresponding speed grade:

Table 11-4. Max frequency for derating formula regarding the speed grade

	-M X1 mode	-M X2 mode	-V X1 mode	-V X2 mode	-L X1 mode	-L X2 mode
Freq (MHz)	40	20	40	30	30	20
T (ns)	25	50	25	33.3	33.3	50

Example:

 T_{LLIV} in X2 mode for a -V part at 20 MHz (T = 1/20^{E6} = 50 ns):

```
x= 22 (Table 11-7.)
T= 50ns
T<sub>111V</sub>= 2T - x = 2 x 50 - 22 = 78ns
```


12. Ordering Information

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing			
TS80C51RA2-MCA									
TS80C51RA2-MCB	-								
TS80C51RA2-MCE									
TS80C51RA2-MIA									
TS80C51RA2-MIB	-								
TS80C51RA2-MIE	-								
TS80C51RA2-LCA	-								
TS80C51RA2-LCB	-								
TS80C51RA2-LCE				TE					
TS80C51RA2-LIA			OBSOLL	.1					
TS80C51RA2-LIB									
TS80C51RA2-LIE									
TS80C51RA2-VCA									
TS80C51RA2-VCB									
TS80C51RA2-VCE									
TS80C51RA2-VIA									
TS80C51RA2-VIB									
TS80C51RA2-VIE									
AT80C51RA2-3CSUM	Romless	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick			
AT80C51RA2-SLSUM	Romless	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick			
AT80C51RA2-RLTUM	Romless	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray			
AT80C51RA2-3CSIM									
AT80C51RA2-SLSIM									
AT80C51RA2-RLTIM				TE					
AT80C51RA2-3CSCL			OBSOLL						
AT80C51RA2-SLSCL									
AT80C51RA2-RLTCL									
AT80C51RA2-3CSUL	Romless	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick			
AT80C51RA2-SLSUL	Romless	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick			
AT80C51RA2-RLTUL	Romless	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray			

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing			
TS87C51RB2-MCA				•					
TS87C51RB2-MCB									
TS87C51RB2-MCE									
TS87C51RB2-MIA									
TS87C51RB2-MIB									
TS87C51RB2-MIE									
TS87C51RB2-LCA									
TS87C51RB2-LCB									
TS87C51RB2-LCE				TE					
TS87C51RB2-LIA			OBSOLL						
TS87C51RB2-LIB									
TS87C51RB2-LIE									
TS87C51RB2-VCA									
TS87C51RB2-VCB									
TS87C51RB2-VCE									
TS87C51RB2-VIA									
TS87C51RB2-VIB									
TS87C51RB2-VIE									
AT87C51RB2-3CSUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick			
AT87C51RB2-SLSUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick			
AT87C51RB2-RLTUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray			
AT87C51RB2-3CSUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick			
AT87C51RB2-SLSUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick			
AT87C51RB2-RLTUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray			

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing			
TS87C51RC2-MCA									
TS87C51RC2-MCB									
TS87C51RC2-MCE									
TS87C51RC2-MIA									
TS87C51RC2-MIB									
TS87C51RC2-MIE									
TS87C51RC2-LCA									
TS87C51RC2-LCB									
TS87C51RC2-LCE									
TS87C51RC2-LIA			OBSOLL						
TS87C51RC2-LIB									
TS87C51RC2-LIE									
TS87C51RC2-VCA									
TS87C51RC2-VCB									
TS87C51RC2-VCE									
TS87C51RC2-VIA									
TS87C51RC2-VIB									
TS87C51RC2-VIE									
AT87C51RC2-3CSUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick			
AT87C51RC2-SLSUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick			
AT87C51RC2-RLTUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray			
AT87C51RC2-3CSUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick			
AT87C51RC2-SLSUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick			
AT87C51RC2-RLTUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray			

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing			
TS83C51RB2-MCA			•	•					
TS83C51RB2-MCB									
TS83C51RB2-MCE									
TS83C51RB2-MIA									
TS83C51RB2-MIB									
TS83C51RB2-MIE									
TS83C51RB2-LCA									
TS83C51RB2-LCB									
TS83C51RB2-LCE		OBSOLETE							
TS83C51RB2-LIA									
TS83C51RB2-LIB									
TS83C51RB2-LIE									
TS83C51RB2-VCA									
TS83C51RB2-VCB									
TS83C51RB2-VCE									
TS83C51RB2-VIA									
TS83C51RB2-VIB									
TS83C51RB2-VIE									
AT83C51RB2-3CSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick			
AT83C51RB2-SLSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick			
AT83C51RB2-RLTUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray			
AT83C51RB2-3CSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick			
AT83C51RB2-SLSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick			
AT83C51RB2-RLTUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray			

13.2 PDIL40

	ММ		INCH			
A	-	5.08	-	. 200		
A1	0.38	-	. 015	-		
A2	3.18	4. 95	. 125	. 195		
В	0.36	0.56	. 014	. 022		
B1	0.76	1. 78	. 030	. 070		
С	0.20	0.38	. 008	. 015		
D	50.29	53. 21	1.980	2.095		
E	15.24	15.87	. 600	. 625		
E1	12.32	14.73	. 485	. 580		
e	2. 54	B. S. C	. 100	B. S. C		
еА	15.24	B. S. C	. 600	B. S. C		
еB	-	17.78	_	. 700		
L	2. 93	3. 81	. 115	. 150		
D1	0.13	-	. 005	-		
PKG STD		02				