

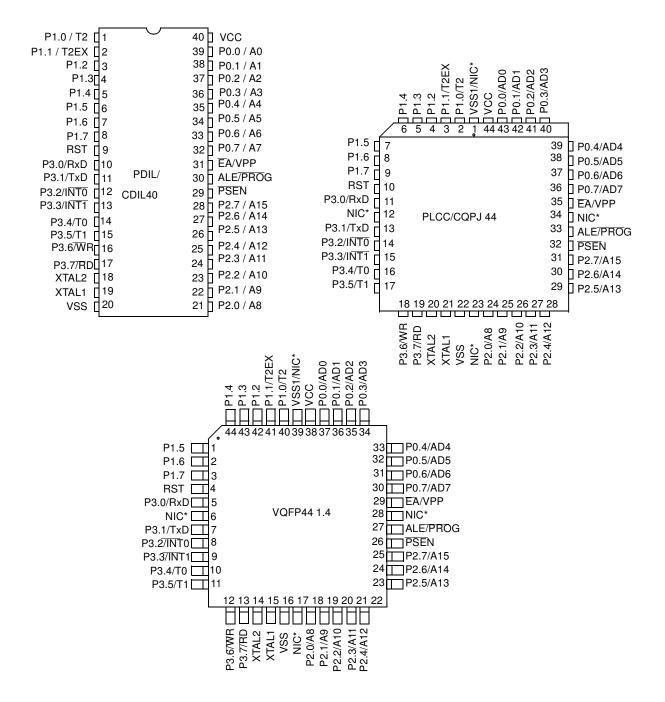
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c51ra2-mib

Email: info@E-XFL.COM

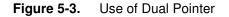

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Pin Configuration

*NIC: No Internal Connection

P0.0	15	6
P0.1	14	5
P0.2	12	3
P0.3	11	2
P0.4	9	64
P0.5	6	61
P0.6	5	60
P0.7	3	59
P1.0	19	10
P1.1	21	12
P1.2	22	13
P1.3	23	14
P1.4	25	16
P1.5	27	18
P1.6	28	19
P1.7	29	20
P2.0	54	43
P2.1	55	44
P2.2	56	45
P2.3	58	47
P2.4	59	48
P2.5	61	50
P2.6	64	53
P2.7	65	54
P3.0	34	25
P3.1	39	28

AIMEL


Pin	PLCC68	SQUARE VQFP64 1.4
P3.2	40	29
P3.3	41	30
P3.4	42	31
P3.5	43	32
P3.6	45	34
P3.7	47	36
RESET	30	21
ALE/PROG	68	56

10 AT/TS8xC51Rx2

5.4 Dual Data Pointer Register

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 (Table 5-3) that allows the program code to switch between them (Refer to Figure 5-3).

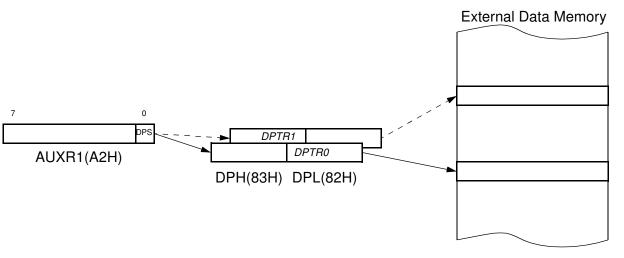


 Table 5-3.
 AUXR1: Auxiliary Register 1

AUXR1 Address 0A2H			-	-	-	-	GF3	-	-	DPS	
	Reset va	alue	Х	Х	Х	Х	0	Х	х	0	
Symbol	Function	Function									
-	Not implemented, reserved for future use ⁽¹⁾										
DPS	Data Pointer S	Data Pointer Selection.									
	DPS	Operating Mode									
	0	DPTI	DPTR0 Selected								
	1 DPTR1 Selected										
GF3	This bit is a general purpose user flag ⁽²⁾ .										

 User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new feature. In that case, the reset value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

GF3 will not be available on first version of the RC devices.

6. Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added 00A2 AUXR1 EQU 0A2H ; 0000 909000MOV DPTR, #SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR, #DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A EO MOVX A, @DPTR ; get a byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E FO MOVX @DPTR, A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

6.1 Expanded RAM (XRAM)

The TS80C51Rx2 provide additional Bytes of ramdom access memory (RAM) space for increased data parameter handling and high level language usage.

RA2, RB2 and RC2 devices have 256 bytes of expanded RAM, from 00H to FFH in external data space; RD2 devices have 768 bytes of expanded RAM, from 00H to 2FFH in external data space.

The TS80C51Rx2 has internal data memory that is mapped into four separate segments.

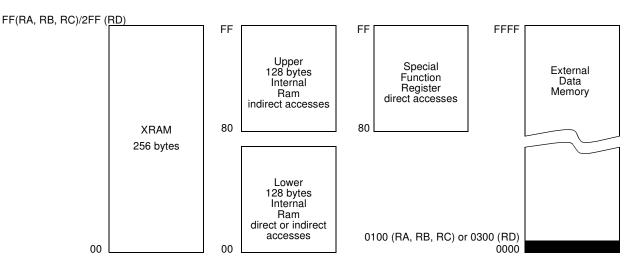
The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
- 2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
- 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.
- 4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared in the AUXR register. (See Table 6-1.)

The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction.

- Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data, accesses the SFR at location 0A0H (which is P2).
- Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For example: MOV @R0, # data where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).
- The 256 or 768 XRAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory which is physically located on-chip, logically occupies the first 256 or 768 bytes of external data memory.
- With <u>EXTRAM = 0</u>, the XRAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, <u>R1</u> of the selected bank or DPTR. An access to XRAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM = 0, MOVX @R0, # data where R0 contains 0A0H, accesses the XRAM at address 0A0H rather than external memory. An access to external data memory locations higher than FFH (i.e. 0100H to FFFFH) (higher than 2FFH (i.e. 0300H to FFFFH for RD devices) will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address busses, and P3.6 and P3.7 as write and read timing signals. Refer to Figure 6-1. For RD devices, accesses to expanded RAM from 100H to 2FFH can only be done thanks to the use of DPTR.
- With <u>EXTRAM = 1</u>, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an eight-bit address multiplexed with data on Port0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the highorder eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight



address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the XRAM.

Figure 6-1. Internal and External Data Memory Address

Table 6-1. Auxiliary Register AUXR

AUXR Address 08EH			-	-	-	-	-	-	EXTRAM	AO	
	Reset value	e	Х	Х	Х	х	Х	х	0	0	
Symbol	Function	Function									
-	Not implemente	Not implemented, reserved for future use. (1)									
AO	Disable/Enable	Disable/Enable ALE									
	AO	ALLE is emitted at a constant rate of $1/6$ the oscillator frequency (or $1/3$ if X2 n									
	0									2 mode	
	1	ALE is	active	only duri	ng a MO'	VX or MO	VC instru	ction			
EXTRAM	Internal/Externa	I RAM (00H-F	FH) acce	ss using	MOVX @	Ri/ @ DF	PTR			
	EXTRAM	Operat	ting Mo	ode							
	0	Interna	al XRA	M access	using M	OVX @ R	i/ @ DPT	R			
	1	Extern	al data	i memory	access						

1. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	T2OE	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.
0	DCEN	Down Counter Enable bit Clear to disable timer 2 as up/down counter. Set to enable timer 2 as up/down counter.

Reset Value = XXXX XX00b

Not bit addressable

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 6-8 & Table 6-9)

 Table 6-8.
 CCAPnH: PCA Modules Capture/Compare Registers High

CCAP0H=0FAH CCAP1H=0FBH CCAP2H=0FCH CCAP3H=0FDH CCAP4H=0FEH

	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0

 Table 6-9.
 CCAPnL: PCA Modules Capture/Compare Registers Low

CCAPnL Address n = 0 - 4
11 = 0 - 4

CCAP2L=0ECH
CCAP3L=0EDH
CCAP4L=0EEH

CCAP0L=0EAH

	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0

Table 6-10.CH: PCA Counter High

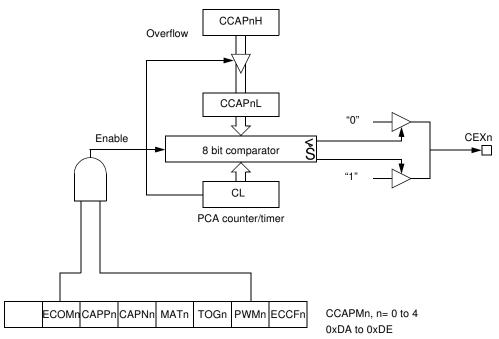
CH Address 0F9H

Н									
		7	6	5	4	3	2	1	0
	Reset value	0	0	0	0	0	0	0	0

Table 6-11. CL: PCA Counter Low

CL

Address 0E9H


	7	6	5	4	3	2	1	0
Reset value	0	0	0	0	0	0	0	0

6.3.1 PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 6-6).

Figure 6-9. PCA PWM Mode

6.3.5 PCA Watchdog Timer

An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 6-7 shows a diagram of how the watchdog works. The user preloads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

- 1. Periodically change the compare value so it will never match the PCA timer,
- 2. periodically change the PCA timer value so it will never match the compare values, or
- 3. Disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

The first two options are more reliable because the watchdog timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most applications the first solution is the best option.

This watchdog timer won't generate a reset out on the reset pin.

6.9 ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS8xC51Rx2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C51Rx2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C51Rx2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Active

 Table 6-23.
 External Pin Status during ONCE Mode

8.2.4 Verify Algorithm

Refer to Section "Verify algorithm".

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

	*NOTICE:	Stresses at or above those listed under " Abso-
		lute Maximum Ratings" may cause permanent
Ambiant Temperature Under Bias:		damage to the device. This is a stress rating only
C = commercial0°C to 70°C		and functional operation of the device at these or
I = industrial40°C to 85°C		any other conditions above those indicated in the
Storage Temperature		operational sections of this specification is not
Voltage on V _{CC} to V _{SS} 0.5 V to + 7 V		implied. Exposure to absolute maximum rating
Voltage on Any Pin to V _{SS} 0.5 V to V _{CC} + 0.5 V		conditions may affect device reliability.
Power Dissipation 1 W		Power dissipation is based on the maximum
		allowable die temperature and the thermal resis-
		tance of the package.

11.2 Power Consumption Measurement

Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label:

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

SJMP Label (80 FE)

This is much more representative of the real operating lcc.

11.3 DC Parameters for Standard Voltage

TA = 0°C to +70°C; $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; F = 0 to 40 MHz. TA = -40°C to +85°C; $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; F = 0 to 40 MHz.

Table 11-1. DC Parameters in Standard Voltage

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4, 5 ⁽⁶⁾			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$

Table 11-1.	DC Parameters in Standard Voltage
	20 · alamotoro in otanda a rollago

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OH}	Output High Voltage, ports 1, 2, 3, 4, 5	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	I _{OH} = -10 μA I _{OH} = -30 μA I _{OH} = -60 μA V _{CC} = 5 V ± 10%
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$\begin{split} I_{OH} &= -200 \; \mu A \\ I_{OH} &= -3.2 \; m A \\ I_{OH} &= -7.0 \; m A \\ V_{CC} &= 5 \; V \pm 10\% \end{split}$
V _{OH2}	Output High Voltage,ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -100 \ \mu A$ $I_{OH} = -1.6 \ m A$ $I_{OH} = -3.5 \ m A$ $V_{CC} = 5 \ V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90 (5)	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2, 3, 4, 5			-50	μA	Vin = 0.45 V
I _{LI}	Input Leakage Current			±10	μA	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4, 5			-650	μA	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz Ta = 25°C
I _{PD}	Power-down Current		20 ⁽⁵⁾	50	μA	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.4 Freq (MHz) @12MHz 5.8 @16MHz 7.4	mA	V _{CC} = 5.5 V ⁽¹⁾
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			3 + 0.6 Freq (MHz) @12MHz 10.2 @16MHz 12.6	mA	V _{CC} = 5.5 V ⁽⁸⁾
I _{CC} idle	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			0.25+0.3 Freq (MHz) @12MHz 3.9 @16MHz 5.1	mA	V _{CC} = 5.5 V ⁽²⁾

External Program Memory Characteristics Table 11-5. Symbol Description 11.5.2

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

 Table 11-6.
 AC Parameters for Fix Clock

Speed		M MHz	X2 n 30 l	V node MHz z equiv.	stan mo	V dard ode MHz	X2 n 20 l	L node MHz z equiv.	stan mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45		78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25		50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12		20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

11.5.9 EPROM Programming and Verification Characteristics

TA = 21°C to 27°C; V_{SS} = 0V; V_{CC} = 5V \pm 10% while programming. V_{CC} = operating range while

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

verifying

11.5.10 EPROM Programming and Verification Waveforms

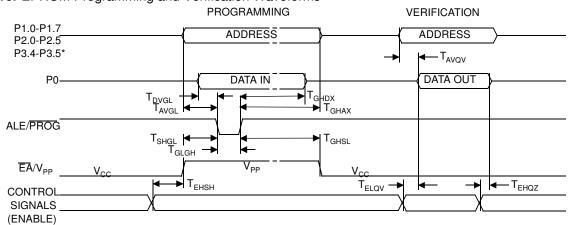
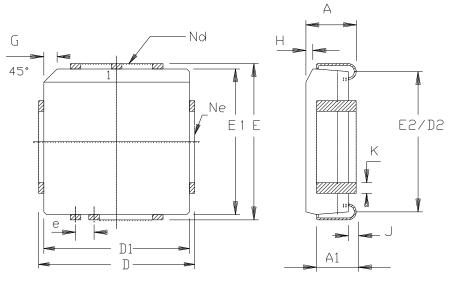


Figure 11-10. EPROM Programming and Verification Waveforms

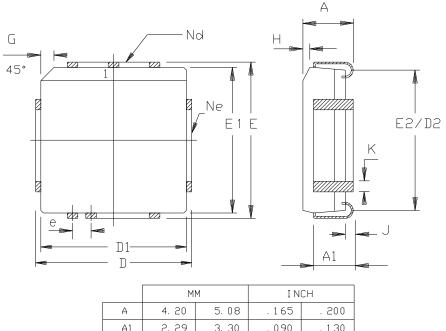
* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5


Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing				
TS87C51RC2-MCA										
TS87C51RC2-MCB	_									
TS87C51RC2-MCE										
TS87C51RC2-MIA	_									
TS87C51RC2-MIB	_									
TS87C51RC2-MIE										
TS87C51RC2-LCA										
TS87C51RC2-LCB										
TS87C51RC2-LCE				T E						
TS87C51RC2-LIA			OBSOLE	IE						
TS87C51RC2-LIB										
TS87C51RC2-LIE										
TS87C51RC2-VCA										
TS87C51RC2-VCB										
TS87C51RC2-VCE										
TS87C51RC2-VIA										
TS87C51RC2-VIB										
TS87C51RC2-VIE										
AT87C51RC2-3CSUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick				
AT87C51RC2-SLSUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick				
AT87C51RC2-RLTUM	OTP 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray				
AT87C51RC2-3CSUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick				
AT87C51RC2-SLSUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick				
AT87C51RC2-RLTUL	OTP 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray				

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
TS87C51RD2-MCA			1		•	
TS87C51RD2-MCB						
TS87C51RD2-MCE						
TS87C51RD2-MIA						
TS87C51RD2-MIB						
TS87C51RD2-MIE						
TS87C51RD2-LCA						
TS87C51RD2-LCB						
TS87C51RD2-LCE						
TS87C51RD2-LIA			OBSOLE	TE		
TS87C51RD2-LIB						
TS87C51RD2-LIE						
TS87C51RD2-VCA						
TS87C51RD2-VCB						
TS87C51RD2-VCE						
TS87C51RD2-VCL						
TS87C51RD2-VIA						
TS87C51RD2-VIB						
TS87C51RD2-VIE						
AT87C51RD2-3CSUM	OTP 64k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick
AT87C51RD2-SLSUM	OTP 64k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick
AT87C51RD2-RLTUM	OTP 64k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray
AT87C51RD2-3CSUL	OTP 64k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick
AT87C51RD2-SLSUL	OTP 64k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick
AT87C51RD2-RLTUL	OTP 64k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray

13. Package Drawings

13.1 PLCC44



	Ν	1M ·	ΙN	СН
A	4.20	4. 57	. 165	. 180
A1	2, 29	3.04	. 090	. 120
D	17.40	17.65	. 685	. 695
D1	16.44	16.66	. 647	. 656
D5	14.99	16.00	. 590	. 630
E	17.40	17.65	. 685	. 695
E1	16.44	16.66	. 647	. 656
E5	14.99	16.00	. 590	. 630
e	1.27	BSC	. 050	BSC
G	1.07	1.22	. 042	. 048
н	1.07	1.42	. 042	.056
J	0.51	-	. 020	-
К	0.33	0.53	. 013	. 021
Nd	1	1	1	1
Ne	1	1	1	1
P	KG STD	00		

13.5 PLCC68

68 PINS PLCC

	IMIM		INCH	
A	4.20	5.08	. 165	. 200
A1	2, 29	3.30	. 090	. 1 30
D	25.02	25. 27	. 985	. 995
D1	24.13	24.33	. 950	. 958
D2	22. 61	23. 62	. 890	. 930
E	25.02	25. 27	. 985	. 995
E1	24.13	24.33	. 950	. 958
E5	22. 61	23. 62	. 890	. 930
e	1.27	BSC	. 050	BSC
G	1.07	1.22	. 042	. 048
н	1.07	1.42	. 042	.056
J	0.51	-	. 020	-
К	0.33	0.53	. 013	. 021
Nd	17		17	
Ne	17		17	
P	KG STD			

14. Datasheet Revision History

14.1 Changes from 4188E to 4188F

- 1. Removed TS80C51RD2 and AT80C51RD2 from "Ordering Information" on page 73.
- 2. Removed non-green part numbers from ordering information.

