

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/30MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c51ra2-vce

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Nur	nber		
Mnemonic	DIL	LCC	VQFP 1.4	Туре	Name And Function
V _{SS}	20	22	16	I	Ground: 0V reference
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.
V _{cc}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation
P0.0-P0.7	39-32	43-36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1 : Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification. Alternate functions for Port 1 include:
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control
	3	4	42	I	ECI (P1.2): External Clock for the PCA
	4	5	43	I/O	CEX0 (P1.3): Capture/Compare External I/O for PCA module 0
	5	6	44	I/O	CEX1 (P1.4): Capture/Compare External I/O for PCA module 1
	6	7	45	I/O	CEX0 (P1.5): Capture/Compare External I/O for PCA module 2
	7	8	46	I/O	CEX0 (P1.6): Capture/Compare External I/O for PCA module 3
	8	9	47	I/O	CEX0 (P1.7): Capture/Compare External I/O for PCA module 4
P2.0-P2.7	21-28	24-31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR).In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 SFR. Some Port 2 pins (P2.0 to P2.5) receive the high order address bits during EPROM programming and verification:
P3.0-P3.7	10-17	11, 13-19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Some Port 3 pins (P3.4 to P3.5) receive the high order address bits during EPROM programming and verification. Port 3 also serves the special features of the 80C51 family, as listed below.
	10	11	5	1	RXD (P3.0): Serial input port
	10		5		

5.2 TS80C51Rx2 Enhanced Features

In comparison to the original 80C52, the TS8xC51Rx2 implements some new features, which are:

- The X2 option.
- The Dual Data Pointer.
- The extended RAM.
- The Programmable Counter Array (PCA).
- The Watchdog.
- The 4 level interrupt priority system.
- The power-off flag.
- The ONCE mode.
- The ALE disabling.
- Some enhanced features are also located in the UART and the timer 2.

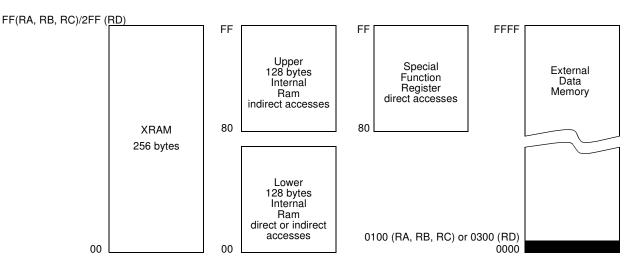
5.3 X2 Feature

The TS80C51Rx2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divides frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Saves power consumption while keeping same CPU power (oscillator power saving).
- Saves power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
- Increases CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

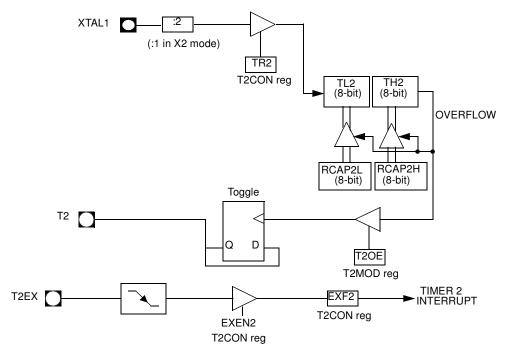
5.3.1 Description


The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 5-1 shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 5-2 shows the mode switching waveforms.

address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read or write signals on P3.6 (WR) and P3.7 (RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the XRAM.

Figure 6-1. Internal and External Data Memory Address


Table 6-1. Auxiliary Register AUXR

AUXR Address 08EH			-	-	-	-	-	-	EXTRAM	AO		
	Reset value	e	Х	Х	Х	х	Х	х	0	0		
Symbol	Function											
-	Not implemente	d, reser	ved fo	r future u	se. ⁽¹⁾							
AO	Disable/Enable	Disable/Enable ALE										
	AO	AO Operating Mode 0 ALE is emitted at a constant rate of 1/6 the oscillator frequency (or is used)										
	0								ency (or 1/3 if X	r 1/3 if X2 mode		
	1	ALE is active only during a MOVX or MOVC instruction										
EXTRAM	Internal/Externa	I RAM (00H-FFH) access using MOVX @ Ri/ @ DPTR										
	EXTRAM Operating Mode											
0 Internal XRAM access using MOVX @ Ri/ @ DPTR												
1 External data memory access												

1. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Figure 6-3. Clock-Out Mode $C/\overline{T2} = 0$

Table 6-2.	T2CON F T2CON -	0	ontrol Regist				
7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	T2OE	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.
0	DCEN	Down Counter Enable bit Clear to disable timer 2 as up/down counter. Set to enable timer 2 as up/down counter.

Reset Value = XXXX XX00b

Not bit addressable

• The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function. Table 6-7 shows the CCAPMn settings for the various PCA functions.

Table 6-6. CCAPMn: PCA Modules Compare/Capture Control Registers

CCAPMn Address n = 0 - 4 CCAPM0=0DAH CCAPM1=0DBH CCAPM2=0DCH CCAPM3=0DDH CCAPM4=0DEH

Reset value X 0 <th< th=""><th></th><th>-</th><th>ECOMn</th><th>CAPPn</th><th>CAPNn</th><th>MATn</th><th>TOGn</th><th>PWMm</th><th>ECCFn</th></th<>		-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn
	Reset value	Х	0	0	0	0	0	0	0

Symbol	Function
-	Not implemented, reserved for future use. (1)
ECOMn	Enable Comparator. ECOMn = 1 enables the comparator function.
CAPPn	Capture Positive, CAPPn = 1 enables positive edge capture.
CAPNn	Capture Negative, CAPNn = 1 enables negative edge capture.
MATn	Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt.
TOGn	Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.
PWMn	Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.
ECCFn	Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.

1. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Table 6-7.	PCA Module Modes	(CCAPMn Registers)
------------	------------------	--------------------

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function	
0	0	0	0	0	0	0	No Operation	
х	1	0	0	0	0	х	16-bit capture by a positive-edge trigge on CEXn	
х	0	1	0	0	0	х	16-bit capture by a negative trigger on CEXn	
Х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn	
1	0	0	1	0	0	Х	16-bit Software Timer / Compare mode	
1	0	0	1	1	0	Х	16-bit High Speed Output	
1	0	0	0	0	1	0	8-bit PWM	
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)	

Table 6-16.	Priority Level Bit Values
-------------	---------------------------

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 6-17. IE Register

IE - Interrupt Enable Register (A8h)

7	6		5	5 4 3 2 1 0								
EA	EC	EC ET2 ES ET1 EX1 ET0 EX0										
Bit Number	Bit Mnem	onic	Descrip	otion								
7	EA		Clear to Set to e If EA=1,	All interrupt bit disable all intern nable all intern each interrupt its own interru	or disabled by s	setting or						
6	EC			errupt enable disable . Set to								
5	ET2 Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.											
4	ES	ES Serial port Enable bit ES Clear to disable serial port interrupt. Set to enable serial port interrupt.										
3	ET1 Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.											
2	EX1		External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.									
1	ET0	Timer 0 overflow interrupt Enable bitET0Clear to disable timer 0 overflow interrupt.Set to enable timer 0 overflow interrupt.										
0	EX0		Clear to	l interrupt 0 En disable extern nable external	al interrupt 0.	errupt 0.						

Reset Value = 0000 0000b

Bit addressable

Table 6-19.	IPH Register
-------------	--------------

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	РРСН	PT2H	PSH	PT1H	PX1H	РТОН	РХОН
Bit Number	Bit Mnemonic	Descri	otion				
7	-	Reserv The val		nis bit is indeter	minate. Do not	set this bit.	
6	РРСН	PCA int <u>PPCHF</u> 0 1 1	terrupt priority b <u>PC Priorit</u> 0 Lowest 1 0 1 Highest	t <u>y Level</u>			
5	PT2H	Timer 2 <u>PT2H P</u> 0 0 1 1		:	h bit		
4	PSH	Serial p <u>PSH</u> 0 0 1 1	ort Priority Hig <u>PS Priority</u> 0Lowest 1 0 1Highest				
3	PT1H		overflow interr <u>T1Priority Leve</u> 0Lowest 1 0 1Highest	rupt Priority Hig <u>위</u>	h bit		
2	PX1H		ll interrupt 1 Pri X1Priority Leve 0Lowest 1 0 1Highest				
1	РТОН	Timer 0 <u>PT0H P</u> 0 0 1 1		1	h bit		
0	PX0H	Externa <u>PX0HP</u> 0 0 1 1	I interrupt 0 Pri <u>X0 Priority</u> 0 Lowest 1 0 1 Highes	Level			

Reset Value = X000 0000b

Not bit addressable

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

9.2.3 Signature bytes

The TS87C51RB2/RC2/RD2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in Section "Signature bytes".

9.3 EPROM Programming

9.3.1 Set-up Modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C51RB2/RC2/RD2 is placed in specific set-up modes (See Figure 9-1.).

Control and program signals must be held at the levels indicated in Table 9-2.

9.3.2 Definition of Terms

Address Lines: P1.0-P1.7, P2.0-P2.5, P3.4, P3.5 respectively for A0-A15 (P2.5 (A13) for RB, P3.4 (A14) for RC, P3.5 (A15) for RD)

Data Lines: P0.0-P0.7 for D0-D7

Control Signals:RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Mode	RST	PSEN	ALE/P ROG	EA/VP P	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	1.	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	Ŀ	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	1.1	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	Ŀ	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	IJ	12.75V	1	0	1	1	0

Table 9-2.EPROM Set-Up Modes

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

	*NOTICE:	Stresses at or above those listed under " Abso-
		lute Maximum Ratings" may cause permanent
Ambiant Temperature Under Bias:		damage to the device. This is a stress rating only
C = commercial0°C to 70°C		and functional operation of the device at these or
I = industrial40°C to 85°C		any other conditions above those indicated in the
Storage Temperature		operational sections of this specification is not
Voltage on V _{CC} to V _{SS} 0.5 V to + 7 V		implied. Exposure to absolute maximum rating
Voltage on Any Pin to V _{SS} 0.5 V to V _{CC} + 0.5 V		conditions may affect device reliability.
Power Dissipation 1 W		Power dissipation is based on the maximum
		allowable die temperature and the thermal resis-
		tance of the package.

11.2 Power Consumption Measurement

Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label:

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

SJMP Label (80 FE)

This is much more representative of the real operating lcc.

11.3 DC Parameters for Standard Voltage

TA = 0°C to +70°C; $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; F = 0 to 40 MHz. TA = -40°C to +85°C; $V_{SS} = 0$ V; $V_{CC} = 5$ V ± 10%; F = 0 to 40 MHz.

Table 11-1. DC Parameters in Standard Voltage

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4, 5 ⁽⁶⁾			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$

11.4 DC Parameters for Low Voltage

TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz. TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 2.7 V to 5.5 V \pm 10%; F = 0 to 30 MHz.

 Table 11-2.
 DC Parameters for Low Voltage

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4, 5 ⁽⁶⁾			0.45	V	I _{OL} = 0.8 mA ⁽⁴⁾
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	V	I _{OL} = 1.6 mA ⁽⁴⁾
V _{OH}	Output High Voltage, ports 1, 2, 3, 4, 5	0.9 V _{CC}			V	I _{OH} = -10 μA
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	I _{OH} = -40 μA
IIL	Logical 0 Input Current ports 1, 2, 3, 4, 5			-50	μA	Vin = 0.45 V
ILI	Input Leakage Current			±10	μA	0.45 V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3, 4, 5			-650	μA	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power-down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μΑ	$V_{CC} = 2.0 \text{ V to } 5.5 \text{ V}^{(3)}$ $V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{PD}	Power-down Current (Only for TS87C51RD2 S287-xxx Very Low power)		2 ⁽⁵⁾	15	μΑ	$2.0 \text{ V} < \text{V}_{\text{CC}} < 3.6 \text{ V}^{(3)}$
I _{cc} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.2 Freq (MHz) @12MHz 3.4 @16MHz 4.2	mA	$V_{CC} = 3.3 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.3 Freq (MHz) @12MHz 4.6 @16MHz 5.8	mA	$V_{CC} = 3.3 V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: (7)			0.15 Freq (MHz) + 0.2 @12MHz 2 @16MHz 2.6	mA	$V_{CC} = 3.3 V^{(2)}$

Notes: 1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns (see Figure 11-5.), $V_{IL} = V_{SS} + 0.5$ V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used...

2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5 V, V_{IH} = V_{CC} - 0.5 V; XTAL2 N.C; Port 0 = V_{CC}; \overline{EA} = RST = V_{SS} (see Figure 11-3.).

Power-down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 11-4.).

Figure 11-3. I_{CC} Test Condition, Idle Mode

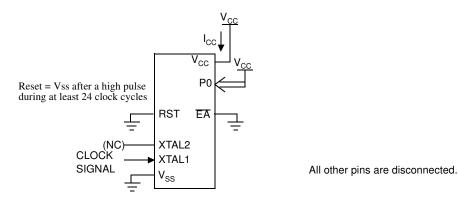
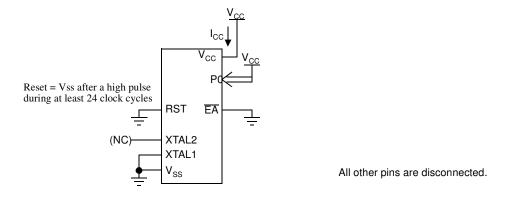
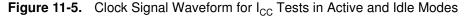
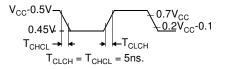





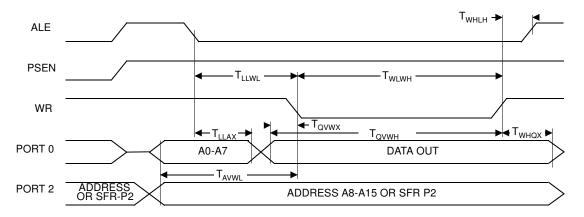
Figure 11-4. I_{CC} Test Condition, Power-Down Mode

11.5 AC Parameters

11.5.1 Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

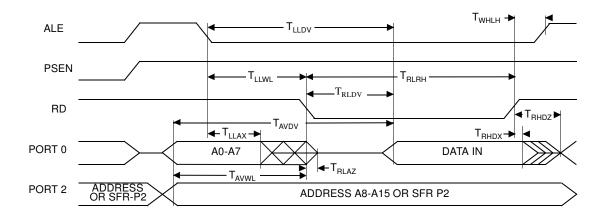
 $\begin{array}{l} \mbox{Example:} T_{AVLL} = \mbox{Time for Address Valid to ALE Low.} \\ T_{LLPL} = \mbox{Time for ALE Low to PSEN Low.} \end{array}$


TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0 V$; $V_{CC} = 5 V \pm 10\%$; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0 V$; $V_{CC} = 5 V \pm 10\%$; -M and -V ranges.

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	х	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	x	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 11-9. AC Parameters for a Variable Clock: derating formula

11.5.5 External Data Memory Write Cycle

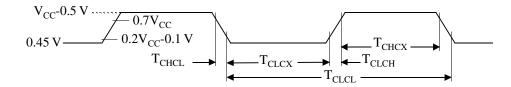


11.5.6 External Data Memory Read Cycle

11.5.7 Serial Port Timing - Shift Register Mode

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

 Table 11-10.
 AC Parameters for a Fix Clock


Speed		M MHz	X2 n	MHz	'۔ standard M		- X2 n 20 I 40 MHz	node MHz	- standar 30 M	d mode	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

11.5.11 External Clock Drive Characteristics (XTAL1)

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

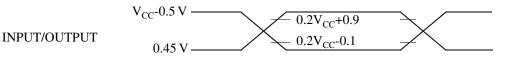
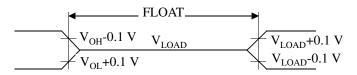

11.5.12 External Clock Drive Waveforms

Figure 11-11. External Clock Drive Waveforms

11.5.13 AC Testing Input/Output Waveforms


Figure 11-12. AC Testing Input/Output Waveforms

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

11.5.14 Float Waveforms

Figure 11-13. Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

12. Ordering Information

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing				
TS80C51RA2-MCA						1				
TS80C51RA2-MCB										
TS80C51RA2-MCE	-									
TS80C51RA2-MIA	-									
TS80C51RA2-MIB	_									
TS80C51RA2-MIE	_									
TS80C51RA2-LCA										
TS80C51RA2-LCB	_									
TS80C51RA2-LCE	_			тг						
TS80C51RA2-LIA			OBSOLE							
TS80C51RA2-LIB										
TS80C51RA2-LIE										
TS80C51RA2-VCA	1									
TS80C51RA2-VCB	_									
TS80C51RA2-VCE										
TS80C51RA2-VIA										
TS80C51RA2-VIB										
TS80C51RA2-VIE										
AT80C51RA2-3CSUM	Romless	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick				
AT80C51RA2-SLSUM	Romless	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick				
AT80C51RA2-RLTUM	Romless	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray				
AT80C51RA2-3CSIM										
AT80C51RA2-SLSIM										
AT80C51RA2-RLTIM			OBSOLE	TE						
AT80C51RA2-3CSCL			OBSOLE							
AT80C51RA2-SLSCL										
AT80C51RA2-RLTCL										
AT80C51RA2-3CSUL	Romless	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick				
AT80C51RA2-SLSUL	Romless	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick				
AT80C51RA2-RLTUL	Romless	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray				

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT80C51RA2-3CSCV			•		1	
AT80C51RA2-SLSCV	1					
AT80C51RA2-RLTCV						
AT80C51RA2-3CSIV			OBSOLE	:1E		
AT80C51RA2-SLSIV						
AT80C51RA2-RLSIV						
TS80C51RD2-MCA	Not recommended	use AT87C51RD2				
TS80C51RD2-MCB	Not recommended	use AT87C51RD2				
TS80C51RD2-MCE	Not recommended	use AT87C51RD2				
TS80C51RD2-MIA	Not recommended	use AT87C51RD2				
TS80C51RD2-MIB	Not recommended	use AT87C51RD2				
TS80C51RD2-MIE	Not recommended	use AT87C51RD2				
TS80C51RD2-LCA	Not recommended	use AT87C51RD2				
TS80C51RD2-LCB	Not recommended	use AT87C51RD2				
TS80C51RD2-LCE	Not recommended	use AT87C51RD2				
TS80C51RD2-LIA	Not recommended	use AT87C51RD2				
TS80C51RD2-LIB	Not recommended	use AT87C51RD2				
TS80C51RD2-LIE	Not recommended	use AT87C51RD2				
TS80C51RD2-VCA	Not recommended	use AT87C51RD2				
TS80C51RD2-VCB	Not recommended	use AT87C51RD2				
TS80C51RD2-VCE	Not recommended	use AT87C51RD2				
TS80C51RD2-VIA	Not recommended	use AT87C51RD2				
TS80C51RD2-VIB	Not recommended	use AT87C51RD2				
TS80C51RD2-VIE	Not recommended	use AT87C51RD2				
	•					
AT80C51RD2-3CSUM	Not recommended	use AT87C51RD2				
AT80C51RD2-SLSUM	Not recommended	use AT87C51RD2				
AT80C51RD2-RLTUM	Not recommended	use AT87C51RD2				
AT80C51RD2-3CSUL	Not recommended	use AT87C51RD2				
AT80C51RD2-SLSUL	Not recommended	use AT87C51RD2				
AT80C51RD2-RLTUL	Not recommended	use AT87C51RD2				

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing					
TS87C51RB2-MCA				1	1	1					
TS87C51RB2-MCB		1									
TS87C51RB2-MCE											
TS87C51RB2-MIA											
TS87C51RB2-MIB											
TS87C51RB2-MIE											
TS87C51RB2-LCA											
TS87C51RB2-LCB											
TS87C51RB2-LCE		OBSOLETE									
TS87C51RB2-LIA											
TS87C51RB2-LIB											
TS87C51RB2-LIE											
TS87C51RB2-VCA											
TS87C51RB2-VCB											
TS87C51RB2-VCE											
TS87C51RB2-VIA											
TS87C51RB2-VIB											
TS87C51RB2-VIE											
AT87C51RB2-3CSUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick					
AT87C51RB2-SLSUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick					
AT87C51RB2-RLTUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray					
AT87C51RB2-3CSUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick					
AT87C51RB2-SLSUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick					
AT87C51RB2-RLTUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray					

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing					
TS83C51RB2-MCA				•							
TS83C51RB2-MCB											
TS83C51RB2-MCE											
TS83C51RB2-MIA											
TS83C51RB2-MIB											
TS83C51RB2-MIE											
TS83C51RB2-LCA											
TS83C51RB2-LCB		OBSOLETE									
TS83C51RB2-LCE											
TS83C51RB2-LIA											
TS83C51RB2-LIB											
TS83C51RB2-LIE											
TS83C51RB2-VCA											
TS83C51RB2-VCB											
TS83C51RB2-VCE											
TS83C51RB2-VIA											
TS83C51RB2-VIB											
TS83C51RB2-VIE											
AT83C51RB2-3CSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick					
AT83C51RB2-SLSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick					
AT83C51RB2-RLTUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray					
AT83C51RB2-3CSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick					
AT83C51RB2-SLSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick					
AT83C51RB2-RLTUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray					