

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

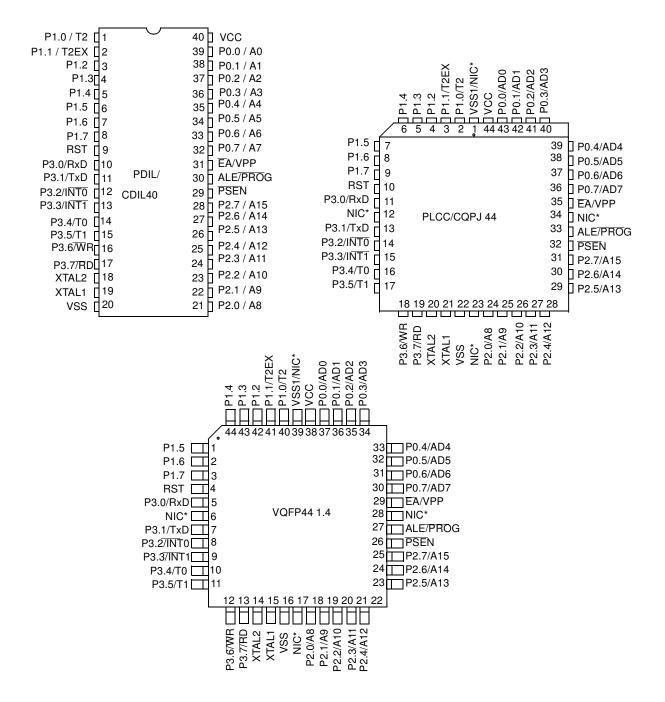
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/30MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c51ra2-vie

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


4. SFR Mapping

The Special Function Registers (SFRs) of the TS80C51Rx2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3, P4, P5
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- HDW Watchdog Timer Reset: WDTRST, WDTPRG
- PCA registers: CL, CH, CCAPiL, CCAPiH, CCON, CMOD, CCAPMi
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON



5. Pin Configuration

*NIC: No Internal Connection

AT/TS8xC51Rx2

Bit Number	Bit Mnemonic	Description
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	X2	CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, $F_{OSC}=F_{XTAL}/2$). Set to select 6 clock periods per machine cycle (X2 mode, $F_{OSC}=F_{XTAL}$).

Reset Value = XXXX XXX0b

Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)

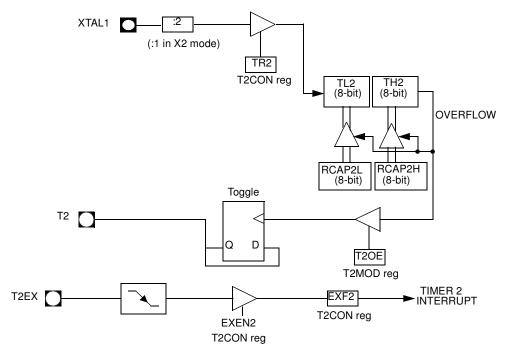
Figure 6-2. Auto-reload Mode Up/Down Counter (DCEN = 1)

6.2.2 Programmable Clock-Output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 6-3) . The input clock increments TL2 at frequency $F_{OSC}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz $(F_{OSC}/2^{16})$ to 4 MHz $(F_{OSC}/4)$. The generated clock signal is brought out to T2 pin (P1.0).


Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

AT/TS8xC51Rx2

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Figure 6-3. Clock-Out Mode $C/\overline{T2} = 0$

Table 6-2.	T2CON F T2CON -	0	ontrol Regist	er (C8h)			
7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#

Bit Number	Bit Mnemonic	Description			
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.			
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.			
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.			
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.			
3	-	Reserved The value read from this bit is indeterminate. Do not set this bit.			
2 -		Reserved The value read from this bit is indeterminate. Do not set this bit.			
1	T2OE	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.			
0	DCEN	Down Counter Enable bit Clear to disable timer 2 as up/down counter. Set to enable timer 2 as up/down counter.			

Reset Value = XXXX XX00b

Not bit addressable

• The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function. Table 6-7 shows the CCAPMn settings for the various PCA functions.

Table 6-6. CCAPMn: PCA Modules Compare/Capture Control Registers

CCAPMn Address n = 0 - 4 CCAPM0=0DAH CCAPM1=0DBH CCAPM2=0DCH CCAPM3=0DDH CCAPM4=0DEH

Reset value X 0 <th< th=""><th></th><th>-</th><th>ECOMn</th><th>CAPPn</th><th>CAPNn</th><th>MATn</th><th>TOGn</th><th>PWMm</th><th>ECCFn</th></th<>		-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn
	Reset value	Х	0	0	0	0	0	0	0

Symbol	Function
-	Not implemented, reserved for future use. (1)
ECOMn	Enable Comparator. ECOMn = 1 enables the comparator function.
CAPPn	Capture Positive, CAPPn = 1 enables positive edge capture.
CAPNn	Capture Negative, CAPNn = 1 enables negative edge capture.
MATn	Match. When MATn = 1, a match of the PCA counter with this module's compare/capture register causes the CCFn bit in CCON to be set, flagging an interrupt.
TOGn	Toggle. When TOGn = 1, a match of the PCA counter with this module's compare/capture register causes the CEXn pin to toggle.
PWMn	Pulse Width Modulation Mode. PWMn = 1 enables the CEXn pin to be used as a pulse width modulated output.
ECCFn	Enable CCF interrupt. Enables compare/capture flag CCFn in the CCON register to generate an interrupt.

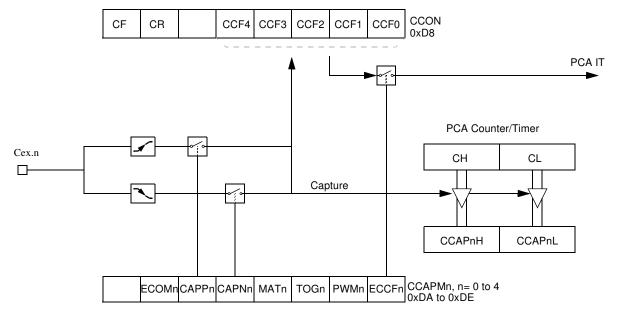
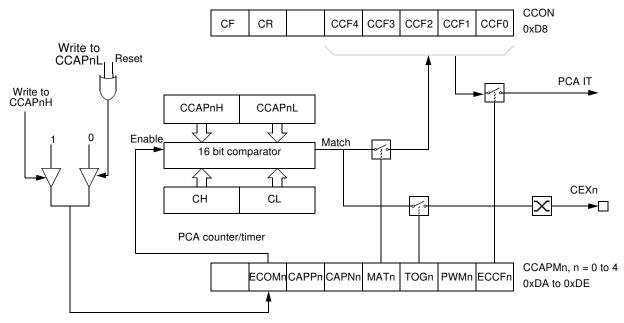

1. User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is indeterminate.

Table 6-7.	PCA Module Modes	(CCAPMn Registers)
------------	------------------	--------------------

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function	
0	0	0	0	0	0	0	No Operation	
х	1	0	0	0	0	х	16-bit capture by a positive-edge trigge on CEXn	
х	0	1	0	0	0	х	16-bit capture by a negative trigger on CEXn	
Х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn	
1	0	0	1	0	0	Х	16-bit Software Timer / Compare mode	
1	0	0	1	1	0	Х	16-bit High Speed Output	
1	0	0	0	0	1	0	8-bit PWM	
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)	

Figure 6-6. PCA Capture Mode



6.3.2 16-bit Software Timer/ Compare Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (See Figure 6-7).

Figure 6-8. PCA High Speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

6.3.4 Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 6-9 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Bit Number	Bit Mnemonic	Description					
7	FE	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit					
	SM0	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit					
6	SM1	Serial port Mode bit 1 SM0 SM1ModeDescriptionBaud Rate 0 0 0Shift RegisterF _{XTAL} /12 (/6 in X2 mode) 0 1 18-bit UARTVariable 1 0 29-bit UARTF _{XTAL} /64 or F _{XTAL} /32 (/32, /16 in X2 mode) 1 1 39-bit UARTVariable					
5	SM2	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.					
4	REN	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.					
3	TB8	Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3 Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.					
2	RB8	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.					
1	TI	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.					
0	RI e = 0000 000	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 6-11. and Figure 6- 12. in the other modes.					

Reset Value = 0000 0000b Bit addressable

Table 6-15.PCON RegisterPCON - Power Control Register (87h)

7	6	5	4	3	2	1	0
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL

Table 6-16.	Priority Level Bit Values
-------------	---------------------------

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 6-17. IE Register

IE - Interrupt Enable Register (A8h)

7	6		5	4	3	2	1	0			
EA	EC	E	ET2	T2 ES ET1 EX1 ET0							
Bit Number	Bit Mnem	onic	Descrip	otion							
7	EA		Clear to Set to e If EA=1,	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. f EA=1, each interrupt source is individually enabled or disabled by set clearing its own interrupt enable bit.							
6	EC			errupt enable disable . Set to							
5	ET2		Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.								
4	ES		Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.								
3	ET1		Clear to		upt Enable bit overflow interr verflow interrup						
2	EX1		External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.								
1	ET0		Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.								
0	EX0		Clear to	l interrupt 0 En disable extern nable external	al interrupt 0.						

Reset Value = 0000 0000b

Bit addressable

Table 6-18.IP RegisterIP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0		
-	PPC	PT2	PS	PT1	PX1	PT0	PX0		
Bit Number	Bit Mnemo	nic Descri	otion						
7	-	Reserv The val		nis bit is indetern	minate. Do not	set this bit.			
6	PPC		CA interrupt priority bit efer to PPCH for priority level.						
5	PT2		Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.						
4	PS		o ort Priority bi PSH for priori						
3	PT1		Deverflow internation of the prior of the pr	rrupt Priority b rity level.	bit				
2	PX1		External interrupt 1 Priority bit Refer to PX1H for priority level.						
1	PT0		Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.						
0	PX0		al interrupt 0 F o PX0H for prio	•					

Reset Value = X000 0000b

Bit addressable

AT/TS8xC51Rx2

Table 6-19.	IPH Register
-------------	--------------

IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	РРСН	PT2H	PSH	PT1H	PX1H	РТОН	PX0H
Bit Number	Bit Mnemonic	Descrip	otion				
7	-	Reserv The val		nis bit is indeter	ninate. Do not s	set this bit.	
6	PPCH	PCA int <u>PPCHP</u> 0 1 1	errupt priority t <u>PC Priori</u> 0 Lowest 1 0 1 Highest	ty Level			
5	PT2H	Timer 2 <u>PT2H P</u> 0 0 1 1		:	n bit		
4	PSH	Serial p <u>PSH</u> 0 0 1 1	ort Priority Hig P <u>S Priority</u> 0Lowest 1 0 1Highest				
3	PT1H		overflow interr <u>T1Priority Leve</u> 0Lowest 1 0 1Highest	upt Priority Higl <u>위</u>	n bit		
2	PX1H		l interrupt 1 Pri <u>X1Priority Leve</u> 0Lowest 1 0 1Highest				
1	РТОН	Timer 0 <u>PT0H P</u> 0 0 1 1	overflow interr <u>T0 Priority</u> 0 Lowest 1 0 1 Highes	1	n bit		
0	PX0H	Externa <u>PX0HP</u> 0 0 1 1	l interrupt 0 Pri <u>X0 Priority</u> 0 Lowest 1 0 1 Highes	Level			

Reset Value = X000 0000b

Not bit addressable

7.1 Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	EXTRAM	AO		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value read	d from this bit	is indeterminate	e. Do not set thi	is bit.			
6	-	Reserved The value read	d from this bit i	is indeterminate	e. Do not set thi	is bit.			
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value read	d from this bit i	is indeterminate	e. Do not set thi	is bit.			
3	-	Reserved The value read	d from this bit	is indeterminate	e. Do not set thi	is bit.			
2	-	Reserved The value read	d from this bit	is indeterminate	e. Do not set thi	is bit.			
1	EXTRAM	EXTRAM bit See Table 6-1.							
0	AO		e ALE operati	on during interr during interna					

Table 7-2.AUXR RegisterAUXR - Auxiliary Register (8Eh)

Reset Value = XXXX XX00b Not bit addressable

9. TS87C51RB2/RC2/RD2 EPROM

9.1 EPROM Structure

The TS87C51RB2/RC2/RD2 EPROM is divided in two different arrays:

- the code array:16/32/64 Kbytes.
- the encryption array:64 bytes.

In addition a third non programmable array is implemented:

• the signature array: 4 bytes.

9.2 EPROM Lock System

The program Lock system, when programmed, protects the on-chip program against software piracy.

9.2.1 Encryption Array

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

9.2.2 Program Lock Bits

The three lock bits, when programmed according to Table 9-1.9.2.3, will provide different level of protection for the on-chip code and data.

Program Lock Bits				
Security level LB1 LB2 LB3		LB3	Protection Description	
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Р	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

 Table 9-1.
 Program Lock bits

U: unprogrammed,

P: programmed

External Program Memory Characteristics Table 11-5. Symbol Description 11.5.2

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction FloatAfter PSEN
T _{PXAV}	PSEN to Address Valid
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float

 Table 11-6.
 AC Parameters for Fix Clock

Speed		M MHz	X2 n 30 l	V node MHz z equiv.	stan mo	V dard ode MHz	20 1	L node MHz z equiv.	stan mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45		78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25		50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12		20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

11.5.9 EPROM Programming and Verification Characteristics

TA = 21°C to 27°C; V_{SS} = 0V; V_{CC} = 5V \pm 10% while programming. V_{CC} = operating range while

Symbol	Parameter	Min	Мах	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

verifying

11.5.10 EPROM Programming and Verification Waveforms

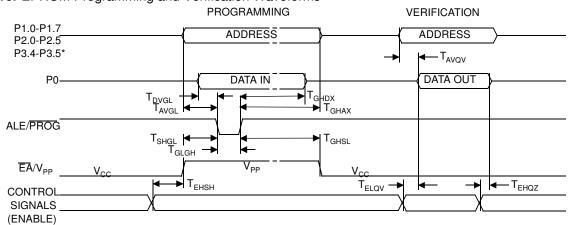


Figure 11-10. EPROM Programming and Verification Waveforms

* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5

AT/TS8xC51Rx2

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
TS87C51RB2-MCA				•	1	I
TS87C51RB2-MCB						
TS87C51RB2-MCE						
TS87C51RB2-MIA						
TS87C51RB2-MIB						
TS87C51RB2-MIE						
TS87C51RB2-LCA						
TS87C51RB2-LCB						
TS87C51RB2-LCE				·TF		
TS87C51RB2-LIA			OBSOLE			
TS87C51RB2-LIB						
TS87C51RB2-LIE						
TS87C51RB2-VCA						
TS87C51RB2-VCB						
TS87C51RB2-VCE						
TS87C51RB2-VIA						
TS87C51RB2-VIB						
TS87C51RB2-VIE						
AT87C51RB2-3CSUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick
AT87C51RB2-SLSUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick
AT87C51RB2-RLTUM	OTP 16k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray
AT87C51RB2-3CSUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick
AT87C51RB2-SLSUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick
AT87C51RB2-RLTUL	OTP 16k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray

Part Number	Memory size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
TS83C51RB2-MCA				•		
TS83C51RB2-MCB						
TS83C51RB2-MCE						
TS83C51RB2-MIA						
TS83C51RB2-MIB						
TS83C51RB2-MIE						
TS83C51RB2-LCA						
TS83C51RB2-LCB						
TS83C51RB2-LCE				TE		
TS83C51RB2-LIA			OBSOLE			
TS83C51RB2-LIB						
TS83C51RB2-LIE						
TS83C51RB2-VCA						
TS83C51RB2-VCB						
TS83C51RB2-VCE						
TS83C51RB2-VIA						
TS83C51RB2-VIB						
TS83C51RB2-VIE						
AT83C51RB2-3CSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PDIL40	Stick
AT83C51RB2-SLSUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	PLCC44	Stick
AT83C51RB2-RLTUM	ROM 32k Bytes	5V	Industrial & Green	40 MHz (20 MHz X2)	VQFP44	Tray
AT83C51RB2-3CSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PDIL40	Stick
AT83C51RB2-SLSUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	PLCC44	Stick
AT83C51RB2-RLTUL	ROM 32k Bytes	3-5V	Industrial & Green	30 MHz (20 MHz X2)	VQFP44	Tray