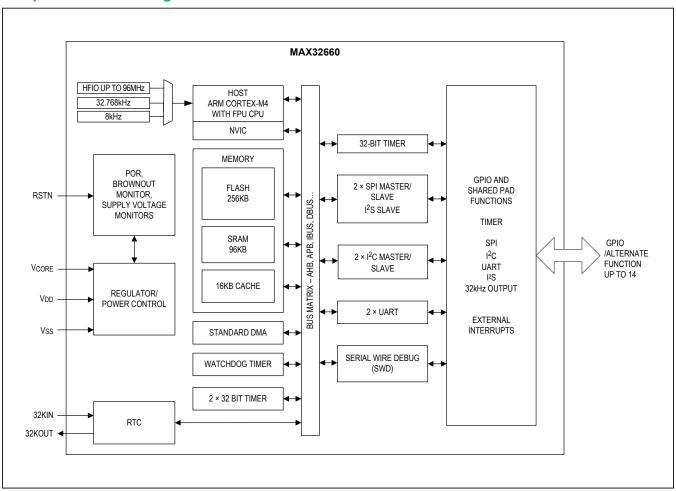


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	96MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	14
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.63V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-WFBGA, WLBGA
Supplier Device Package	16-WLP (1.55x1.57)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/max32660gwe-t

Simplified Block Diagram

Absolute Maximum Ratings

(All voltages with respect to V _{SS} , unless otherwise noted.)	Continuous Package Power Dissipation
V _{CORE} 0.3V to +1.21V	20 TQFN-EP (multilayer board) TA = +70°C
V _{DD} 0.3V to +3.63V	(derate 30.3mW/°C above +70°C)2424.2mW
32KIN, 32KOUT0.3V to V _{DD} + 0.3V	Continuous Package Power Dissipation
RSTN, GPIO0.3V to V _{DD} + 0.3V	24 TQFN-EP (multilayer board) T _A = +70°C
Total Current into All GPIO Combined (sink)100mA	(derate 16.3mW/°C above +70°C)1305mW
V _{SS} 100mA	Operating Temperature Range40°C to +105°C
Output Current (sink) by Any GPIO Pin25mA	Storage Temperature Range65°C to +150°C
Output Current (source) by Any GPIO Pin25mA	Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

16 WLP

Package Code	W161K1+1
Outline Number	21-100241
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	66.34 °C/W
Junction to Case (θ _{JC})	N/A

20 TQFN-EP

Package Code	T2044+5C
Outline Number	21-0139
Land Pattern Number	90-0429
Thermal Resistance, Single-Layer Board:	
Junction to Ambient (θ _{JA})	48°C/W
Junction to Case (θ _{JC})	2°C/W
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	33°C/W
Junction to Case (θ _{JC})	2°C/W

24 TQFN-EP

-	
Package Code	T2433+2C
Outline Number	21-100264
Land Pattern Number	90-100089
Thermal Resistance, Four-Layer Board:	
Junction to Ambient (θ _{JA})	61.3°C/W
Junction to Case (θ _{JC})	2.2°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	C	ONDITIONS	MIN	TYP	MAX	UNITS		
		HFIO enabled, total current	OVR = [10], Internal regulator set to 1.1V, fSYS_CLK(MAX) = 96MHz		30.3				
V _{DD} Dynamic Current, Sleep Mode	I _{DD_DSLP}	into V _{DD} pin, CPU in Sleep mode, standard	OVR = [01], Internal regulator set to 1.0V, fSYS_CLK(MAX) = 48MHz		27		µA/MHz		
		DMA with two channels active	OVR = [00], Internal regulator set to 0.9V, fsys_CLK(MAX) = 24MHz		24				
		HFIO enabled, total current into	OVR = [10], Internal regulator set to 1.1V, fsys_CLK(MAX) = 96MHz		485				
V _{DD} Fixed Current, Sleep Mode	I _{DD_FSLP}	V _{DD} pin, CPU in Sleep mode, inputs tied to V _{SS} or V _{DD} ,	OVR = [01], Internal regulator set to 1.0V, fsys_CLK(MAX) = 48MHz		391		μА		
				outputs source/ sink 0mA	OVR = [00], Internal regulator set to 0.9V, fsys_CLK(MAX) = 24MHz		321		
V _{DD} Fixed Current, Deep Sleep Mode	I _{DD_FDSL}	Standby state wit 96kB SRAM retai	h full data retention and ned		4.2		μA		
		0KB SRAM retair V _{DD} =1.8V	ned with RTC enabled;		0.63				
	I _{DD_FBKU}	16KB SRAM reta V _{DD} =1.8V	ined with RTC enabled;		1.09				
V _{DD} Fixed Current, Backup Mode		32KB SRAM reta V _{DD} =1.8V	ined with RTC enabled;		1.30		μΑ		
		64KB SRAM reta V _{DD} =1.8V	ined with RTC enabled;		1.74				
		96KB SRAM reta V _{DD} =1.8V	ined with RTC enabled;		2.04				
POWER SUPPLIES / DUAL	SUPPLY OPE	RATION (V _{DD} AN	D V _{CORE})						
V _{CORE} Dynamic Current, Active Mode	ICORE_DACT	enabled, f _{SYS_CL} [10], executing co	Total current into V _{CORE} pin, HFIO enabled, f _{SYS_CLK(MAX)} = 96MHz, OVR = [10], executing code from cache memory, CPU in Active mode, inputs tied to V _{SS} or V _{DD} ,outputs source/sink 0mA				μΑ/MHz		
V _{CORE} Fixed Current, Active Mode	I _{CORE_FACT}	into V _{CORE} pin, 0	VR = [10], total current CPU in Active mode 0MHz tied to V _{SS} or V _{DD} , outputs		403		μА		

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V _{DD} Dynamic Current, Active Mode	I _{DD_DACT}	HFIO enabled, OVR = [10], $f_{SYS_CLK(MAX)}$ = 96MHz, total current into V_{DD} pin, executing code from cache memory, CPU in Active mode, inputs tied to V_{SS} or V_{DD} , outputs source/sink 0mA		0.40		μΑ/MHz
V _{DD} Fixed Current, Active Mode	I _{DD_FACT}	HFIO enabled, OVR = [10], total current into V_{DD} pin, CPU in Active mode 0MHz execution, inputs tied to V_{SS} or V_{DD} , outputs source/sink 0mA		84.8		μА
V _{CORE} Dynamic Current, Sleep Mode	ICORE_DSLP	HFIO enabled, OVR = [10], total current into V _{CORE} pin, CPU in Sleep mode, standard DMA with two channels active		27.7		μΑ/MHz
V _{CORE} Fixed Current, Sleep Mode	I _{CORE_FSLP}	HFIO enabled, OVR [10], total current into V _{CORE} pin, CPU in Sleep mode, standard DMA with two channels active		270.3		μA
V _{DD} Dynamic Current, Sleep Mode	I _{DD_DSLP}	HFIO enabled, OVR = [10], total current into V_{DD} pin, CPU in Sleep mode, standard DMA with two channels active		0.20		µA/MHz
V _{DD} Fixed Current, Sleep Mode	I _{DD_FSLP}	HFIO enabled, OVR = [10], total current into V_{DD} pin, CPU in Sleep mode, standard DMA with two channels active		65		μА
V _{CORE} Fixed Current, Deep-Sleep Mode	ICORE_FDSL	V _{DD} = 1.8V; V _{CORE} =1.1V		5.7		μA
V _{DD} Fixed Current, Deep Sleep Mode	I _{DD_FDSL}	V _{DD} = 1.8V, V _{CORE} =1.1V		4.2		μA
V _{CORE} Fixed Current, Backup Mode	I _{CORE_FBKU}	V _{DD} = 1.8V; V _{CORE} = 1.1V, 96KB SRAM retained		5		μA
		V _{DD} = 1.8V; V _{CORE} = 1.1V, 96KB SRAM retained		800		nA
		0KB SRAM retained with RTC enabled; V _{DD} = 1.8V; V _{CORE} = 0V or unbiased		0.63		
V _{DD} Fixed Current, Backup		16KB SRAM retained with RTC enabled; V _{DD} = 1.8V; V _{CORE} = 0V or unbiased		1.09		
Mode	I _{DD_FBKU}	32KB SRAM retained with RTC enabled; V _{DD} = 1.8V; V _{CORE} = 0V or unbiased		1.30		μΑ
		64KB SRAM retained with RTC enabled; V _{DD} = 1.8V; V _{CORE} = 0V or unbiased		1.74		
		96KB SRAM retained with RTC enabled; V _{DD} = 1.8V; V _{CORE} = 0V or unbiased		2.04		

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Pullup Resistor for	D	Pin configured as GPIO, pullup to V _{DD} = 1.62V		22		- kΩ
All GPIO	R _{PU}	Pin configured as GPIO, pullup to V_{DD} = 3.63V		10.5		- KΩ
Input Pulldown Resistor for	В	Pin configured as GPIO, pulldown to V_{SS} , $V_{DD} = 1.62V$		20		- kΩ
All GPIO	R _{PD}	Pin configured as GPIO, pulldown to V_{SS} , $V_{DD} = 3.63V$		8.8		K22
CLOCKS						
System Clock Frequency	fsys_clk		24		96	MHz
System Clock Period	tsys_clk			1/fSYS_ CLK		μs
High-Frequency Internal Oscillator (HFIO)	f _{HFIO}	Default OVR = [10]	93.5	96	98.5	MHz
Nanoring Oscillator Frequency	f _{NANO}			8		kHz
RTC Input Frequency	f _{32KIN}	32.768kHz watch crystal, C _L = 6pF, ESR < 90 kΩ, C ₀ < 2pF		32.768		kHz
RTC Operating Current	I _{RTC}	All power modes, RTC enabled		0.57		μΑ
RTC Power-Up Time	t _{RTC_ON}			250		ms
FLASH MEMORY						
Flash Erase Time	t _{M_ERASE}	Mass erase		30		me
Flasii Elase IIIIle	t _{P_ERASE}	Page erase	30			ms
Flash Programming Time Per Word	t _{PROG}			60		μs
Flash Endurance			10			kcycles
Data Retention	t _{RET}	T _A = +85°C	10			years

Note 1: When using a GPIO bias voltage of 2.97V, the drive current capability of the GPIO is 2x that of its drive strength when using a GPIO bias voltage of 1.62V.

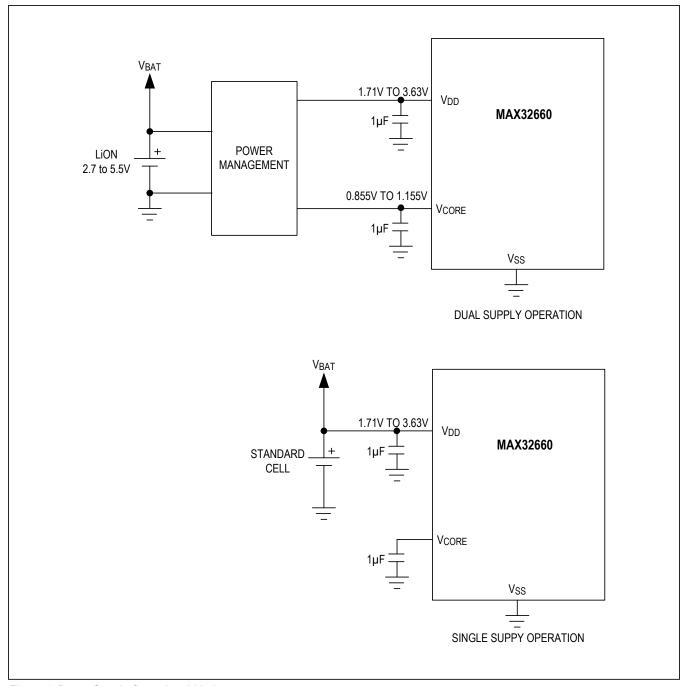


Figure 1. Power Supply Operational Modes

Electrical Characteristics—SPI

(Tlming specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MASTER MODE						•
SPI Master Operating Frequency	f _{MCK}	f _{SYS_CLK} = 96MHz, f _{MCK(MAX)} = f _{SYS_CLK} /2			48	MHz
SPI Master SCK Period	tMCK			1/f _{MCK}		ns
SCK Output Pulse-Width High/Low	t _{MCH} , t _{MCL}		t _{MCK} /2			ns
MOSI Output Hold Time After SCK Sample Edge	^t MOH		t _{MCK} /2			ns
MOSI Output Valid to Sample Edge	t _{MOV}		t _{MCK} /2			ns
MISO Input Valid to SCK Sample Edge Setup	t _{MIS}			5		ns
MISO Input to SCK Sample Edge Hold	t _{MIH}			t _{MCK} /2		ns
SLAVE MODE						•
SPI Slave Operating Frequency	f _{SCK}				48	MHz
SPI Slave SCK Period	tsck			1/f _{SCK}		ns
SCK Input Pulse-Width High/Low	t _{SCH} , t _{SCL}			t _{SCK} /2		
SSx Active to First Shift Edge	t _{SSE}			10		ns
MOSI Input to SCK Sample Edge Rise/Fall Setup	tsis			5		ns
MOSI Input from SCK Sample Edge Transition Hold	^t SIH			1		ns
MISO Output Valid After SCLK Shift Edge Transition	tsov			5		ns
SCK Inactive to SSx Inactive	t _{SSD}			10		ns
SSx Inactive Time	t _{SSH}			1/f _{SCK}		μs
MISO Hold Time After SSx Deassertion	t _{SLH}			10		ns

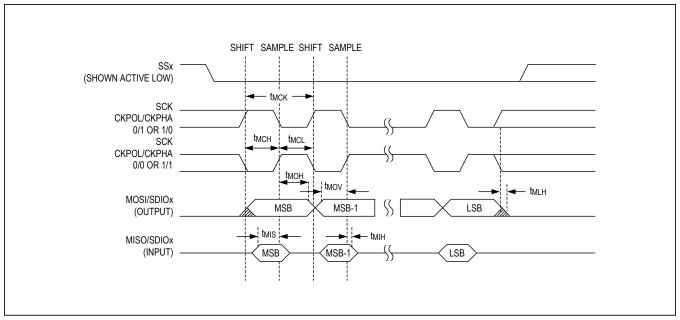


Figure 2. SPI Master Mode Timing Diagram

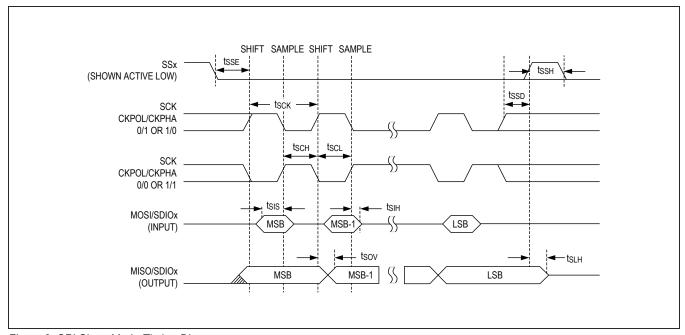


Figure 3. SPI Slave Mode Timing Diagram

Electrical Characteristics—I²C

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STANDARD MODE		-	'			
Output Fall Time	t _{OF}	Standard mode, from V _{OL_I2C(MIN)} to V _{OL_I2C(MAX)}		150		ns
SCL Clock Frequency	f _{SCL}		0		100	kHz
Low Period SCL Clock	t_{LOW}		4.7			μs
High Time SCL Clock	^t HIGH		4.0			μs
Setup Time for Repeated Start Condition	tsu;sta		4.7			μs
Hold Time for Repeated Start Condition	^t HD;STA		4.0			μs
Data Setup Time	t _{SU;DAT}			300		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			800		ns
Fall Time for SDA and SCL	t _F			200		ns
Setup Time for a Stop Condition	t _{SU;STO}		4.0			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		4.7			μs
Data Valid Time	t _{VD;DAT}		3.45			μs
Data Valid Acknowledge Time	^t VD;ACK		3.45			μs
FAST MODE						•
Output Fall Time	t _{OF}	From V _{OL_I2C(MIN)} to V _{OL_I2C(MAX)}		150		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		400	kHz
Low Period SCL Clock	t _{LOW}		1.3	-		μs
High Time SCL Clock	t _{HIGH}		0.6			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		0.6			μs
Hold Time for Repeated Start Condition	^t HD;STA		0.6			μs
Data Setup Time	t _{SU;DAT}			125		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			30		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	tsu;sto		0.6			μs

Electrical Characteristics—I²C (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bus Free Time Between a Stop and Start Condition	t _{BUS}		1.3			μs
Data Valid Time	t _{VD;DAT}		0.9			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.9			μs
FAST MODE PLUS						
Output Fall Time	t _{OF}	From V _{OL_I2C(MIN)} to V _{OL_I2C(MAX)}		80		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		1000	kHz
Low Period SCL Clock	t _{LOW}		0.5			μs
High Time SCL Clock	t _{HIGH}		0.26			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		0.26			μs
Hold Time for Repeated Start Condition	^t HD;STA		0.26			μs
Data Setup Time	t _{SU;DAT}			50		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			50		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	tsu;sto		0.26			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		0.5			μs
Data Valid Time	t _{VD;DAT}		0.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.45			μs

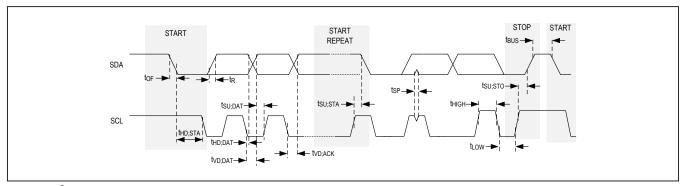


Figure 4. I²C Timing Diagram

Electrical Characteristics—I2S Slave

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bit Clock Frequency	f _{BCLK}	96kHz LRCLK frequency			3.072	MHz
BCLK High Time	twBCLKH			0.5		1/f _{BCLK}
BCLK Low Time				0.5		1/f _{BCLK}
LRCLK Setup Time	tLRCLK_BLCK			25		ns
Delay Time, BCLK to SD (Output) Valid	tBCLK_SDO			12		ns
Setup Time for SD (Input)	tsu_sdi			6		ns
Hold Time SD (Input)	t _{HD} SDI			3		ns

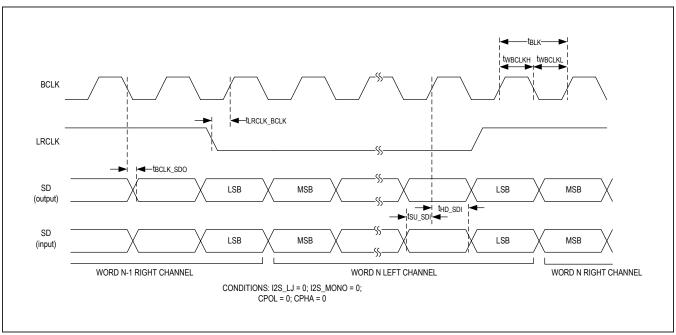
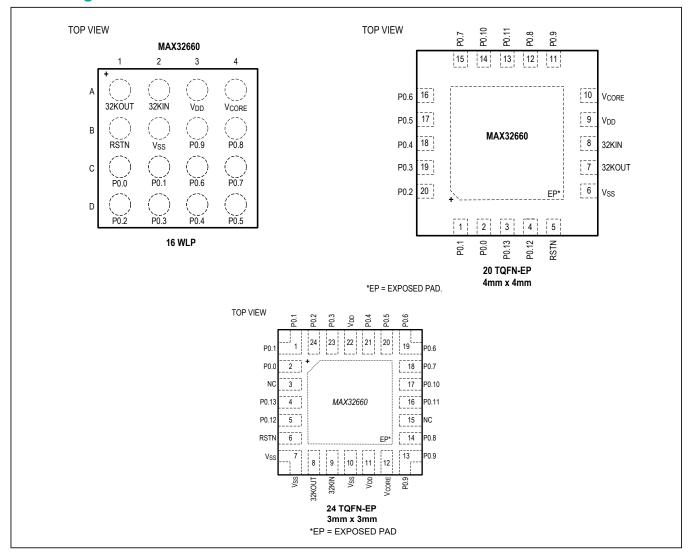



Figure 5. I²S Timing Diagram

Pin Configurations

Pin Description

PIN					
16 WLP			NAME	FUNCTION	
POWER					
A3	9	11, 22	V _{DD}	Digital Supply Voltage. This pin must be bypassed to V_{SS} with a 1.0 μ F capacitor as close as possible to the package. The device can operate soley from this one power supply pin without the need to connect V_{CORE} by utilizing the internal V_{CORE} regulator. The internal V_{CORE} regulator automatically operates if the presence of a voltage on the V_{CORE} pin is not detected. This provides single supply battery operation capability.	

Detailed Description

The MAX32660 is an ultra-low power, cost-effective, highly-integrated microcontroller designed for battery-powered devices and wireless sensors. It combines a flexible and versatile power management unit with the powerful Arm Cortex-M4 processor with FPU. The device enables designs with complex sensor processing without compromising battery life. It also offers legacy designs an easy and cost optimal upgrade path from 8- or 16-bit microcontrollers. The device integrates up to 256KB of flash memory and 96KB of RAM to accommodate application and sensor code.

The device features four powerful and flexible power modes. It can operate from a single- or dual-supply battery voltage, typically provided by a PMIC. The I²C port supports standard, fast, fast-plus, and high-speed modes, operating up to 3400kbps. The SPI ports can run up to 48MHz in both master and slave mode, and the UARTs can run up to 4000kbaud. Three general-purpose 32-bit timers, a watch-dog timer, and a real-time clock are also provided. An I²S interface provides audio streaming to a codec.

Memory

Internal Flash Memory

256KB of internal flash memory provides nonvolatile storage of program and data memory.

Internal SRAM

The internal 96KB SRAM provides low-power retention of application information in all power modes except shutdown. The SRAM can be divided into granular banks that create a flexible SRAM retention architecture. This data retention feature is optional, and is configurable. This granularity allows the application to minimize its power consumption by only retaining the most essential data.

Clocking Scheme

The high-frequency internal oscillator (HFIO) operates at a nominal frequency of 96MHz.

Optionally, two other oscillators can be selected depending upon power needs:

- 8kHz nano-ring oscillator
- 32.768kHz oscillator (external crystal required)

This clock is the primary clock source for the digital logic and peripherals.

An external 32.768kHz timebase is required when using the RTC.

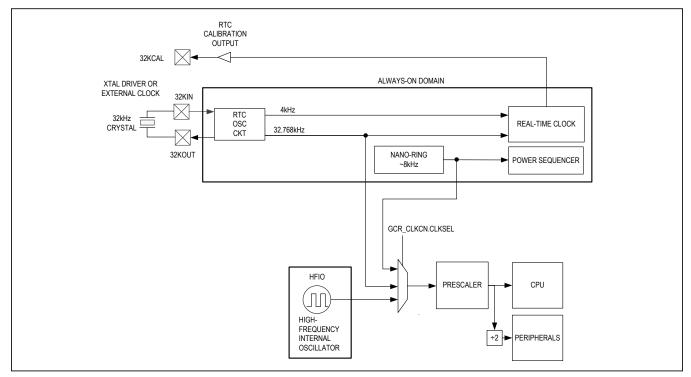


Figure 6. System Clocking Diagram

Ultra-Low Power Arm Cortex-M4 with FPU-Based Microcontroller for Wearable and IoT Sensors

General-Purpose I/O and Special Function Pins

Most general-purpose I/O (GPIO) pins share both a firmware-controlled I/O function and one or more special function signals associated with peripheral modules. Pins can be individually enabled for GPIO or peripheral special function use. Configuring a pin as a special function usually supersedes its use as a firmware-controlled I/O. Though this multiplexing between peripheral and GPIO functions is usually static, it can also be done dynamically. The electrical characteristics of a GPIO pin are identical whether the pin is configured as an I/O or special function, except where explicitly noted in the *Electrical Characteristics* tables.

In GPIO mode, each pin of a port has an interrupt function that can be independently enabled, and configured as a level- or edge-sensitive interrupt. All GPIOs share the same interrupt vector. Some packages do not have all of the GPIOs available.

When configured as GPIOs, the following features are provided. These features can be independently enabled or disabled on a per-pin basis.

- Configurable as input, output, bidirectional, or highimpedance
- Optional internal pullup resistor or internal pulldown resistor when configured as input
- Exit from low-power modes on rising or falling edge
- Selectable standard- or high-drive modes

The MAX32660 provides up to 14 GPIOs for the 20-pin TQFN and up to 10 GPIOs for the 16-bump WLP.

Standard DMA Controller

The standard DMA (direct memory access) controller provides a means to off-load the CPU for memory/peripheral data transfer leading to a more power-efficient system. It allows automatic one-way data transfer between two entities. These entities can be either memories or peripherals. The transfers are done without using CPU resources. The following transfer modes are supported:

- 4 channel
- Peripheral to data memory
- Data memory to peripheral
- Data memory to data memory
- Event support

All DMA transactions consist of an AHB burst read into the DMA FIFO followed immediately by an AHB burst write from the FIFO.

Power Management

Power Management Unit

The power management unit (PMU) provides high-performance operation while minimizing power consumption. It exercises intelligent, precise control of power distribution to the CPU and peripheral circuitry.

The PMU provides the following features:

- User-configurable system clock
- Automatic enabling and disabling of crystal oscillators based on power mode
- Multiple clock domains
- Fast wake-up of powered-down peripherals when activity detected

Active Mode

In this mode, the CPU is executing application code and all digital and analog peripherals are available on demand. Dynamic clocking disables peripherals not in use, providing the optimal mix of high-performance and low-power consumption.

Sleep Mode

This mode allows for low-power consumption operation. The CPU is asleep, peripherals are on and the standard DMA block is available. The GPIO or any active peripheral can be configured to interrupt and cause transition to the Active mode.

Deep-Sleep Mode

This mode corresponds to the Arm Cortex-M4 with FPU Deep-sleep mode. In this mode, the register settings and all volatile memory is preserved. The GPIO pins retain their state in this mode. The high-speed oscillator that generates the 96MHz system clock can be shut down to provide additional power savings over Sleep mode.

Multiple system events can cause the device to wake from Deep-sleep mode and return to the Active mode, including:

- RTC alarm
- Enabled GPIO interrupt

Backup Mode

This mode places the CPU in a static, low-power state. In Backup mode, all of the SRAM can be retained. Data retention in this mode is maintained by the V_{DD} supply only. SRAM retention can be 0KB, 16KB, 32KB, 64KB, or full 96KB. Backup mode supports the same wake-up sources as Deep-sleep mode.

Ultra-Low Power Arm Cortex-M4 with FPU-Based Microcontroller for Wearable and IoT Sensors

Real-Time Clock

A real-time clock (RTC) keeps the time of day in absolute seconds. The 32-bit seconds register can count up to approximately 136 years and be translated to calendar format by application software.

The RTC provides a time-of-day alarm that can be programmed to any future value between 1 second and 12 days. When configured for long intervals, the time-of-day alarm can be used as a power-saving timer, allowing the device to remain in an extremely low-power mode, but still awaken periodically to perform assigned tasks. A second independent 32-bit 1/256 subsecond alarm can be programmed between 244µs and 256 seconds. Both can be configured as recurring alarms. When enabled, either alarm can cause an interrupt or wake the device from most low power modes.

The time base is generated by a 32.768kHz crystal or an external clock source that must meet the electrical/timing requirements in the *Electrical Characteristics* table.

An RTC calibration feature provides the ability for user-software to compensate for minor variations in the RTC oscillator, crystal, temperature, and board layout. Enabling the 32KCAL alternate function outputs a timing signal derived from the RTC. External hardware can measure the frequency and adjust the RTC frequency in increments of ±127ppm with 1ppm resolution. Under most circumstances, the oscillator does not require any calibration.

Watchdog Timer

Microcontrollers are often used in harsh environments where electrical noise and electromagnetic interference (EMI) are abundant. Without proper safeguards, these hazards can disturb device operation and corrupt program execution. One of the most effective countermeasures is the watchdog timer (WDT), which detects runaway code or system unresponsiveness.

The WDT is a 32-bit, free-running counter with a configurable prescaler. When enabled, the WDT must be periodically reset by the application software. Failure to reset the WDT within the user-configurable timeout period indicates that the application software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger an interrupt, system reset, or both. Either response forces the instruction pointer to a known good location before resuming instruction execution.

The MAX32660 provides one instance of the watchdog timer (WDT0).

Programmable Timers

General-purpose, 32-bit timers provide timing, capture/ compare, or generation of pulse-width modulated (PWM) signals with minimal software interaction. Each of the 32-bit timers can also be split into two 16-bit timers.

The timer provides the following features:

- 32-bit up/down autoreload
- Programmable prescaler
- PWM output generation
- Capture, compare, and capture/compare capability
- External pin multiplexed with GPIO for timer input, clock gating, or capture
- Timer output pin
- Configurable as 2 × 16-bit general-purpose timers
- Timer interrupt

The MAX32660 provides three 32-bit timers: TIMER0, TIMER1, and TIMER2.

I/O functionality is supported for TIMER0 only (TIMER TMR0 pin). Note that the function of a port can be multiplexed with other functions on the GPIO pins, so it might not be possible to use all the ports depending on the device configuration.

Figure 7. 32-Bit Timer

Ultra-Low Power Arm Cortex-M4 with FPU-Based Microcontroller for Wearable and IoT Sensors

Serial Peripherals

I²C Interface

The I²C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many or many-to-many communications medium. These engines support standard-mode, fast-mode, fast-mode plus and high-speed mode I²C speeds. It provides the following features:

- Master or slave mode operation
 - Supports up to 4 different slave addresses in slave mode
- Supports standard 7-bit addressing or 10-bit addressing
- RESTART condition
- Interactive receive mode
- Tx FIFO preloading
- Support for clock stretching to allow slower slave devices to operate on higher speed busses
- Multiple transfer rates

Standard mode: 100kbpsFast mode: 400kbps

Fast mode plus: 1000kbpsHigh-speed mode: 3400kbps

- Internal filter to reject noise spikes
- Receiver FIFO depth of 8 bytes
- Transmitter FIFO depth of 8 bytes

The MAX32660 provides two instances of the I²C peripheral (I2C0 and I2C1).

Serial Peripheral Interface

The serial peripheral interface (SPI) is a highly configurable, flexible, and efficient synchronous interface between multiple SPI devices on a single bus. The bus uses a single clock signal and multiple data signals, and one or more slave select lines to address only the intended target device. The SPI operates independently and requires minimal processor overhead.

The provided SPI peripherals can operate in either slave or master mode and provide the following features:

- SPI modes 0, 1, 2, 3 for single-bit communication
- 3- or 4-wire mode for single-bit slave device communication
- Full-duplex operation in single-bit, 4-wire mode
- Multimaster mode fault detection
- Programmable interface timing
- Programmable SCK frequency and duty cycle
- 32-byte transmit and receive FIFOs
- Slave select assertion and deassertion timing with respect to leading/trailing SCK edge

The MAX32660 provides two instances of this SPI peripheral (SPI0, SPI1) with the following specifications (Table 1):

Table 1. SPI Configuration Options

INSTANCE	DATA	SLAVE SELECT LINES		MAXIMUM FREQUENCY	
		20 TQFN	16 WLP	(MASTER MODE) (MHz)	(SLAVE MODE) (MHz)
SPI0	3 wire, 4 wire	1	1	48	48
SPI1	3 wire, 4 wire	1	1	48	48

I2S Interface

The I²S interface is a bidirectional, four-wire serial bus that provides serial communications for codecs and audio amplifiers compliant with the I²S Bus Specification, June 5, 1996. It provides the following features:

- Slave mode operation
- Normal and left-justified data alignment
- 16-bit audio transfer
- Wake-up on FIFO status (full/empty/threshold)
- · Interrupts generated for FIFO status
- Receiver FIFO depth of 32 bytes
- Transmitter FIFO depth of 32 bytes

The MAX32660 provides one instance of the I²S peripheral that is multiplexed with the SPI1 peripheral.

UART

The universal asynchronous receiver-transmitter (UART) interface supports full-duplex asynchronous communication with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry standard request to send (RTS) and clear to send (CTS) flow control signaling. Each UART is individually programmable.

- 2-wire interface or 4-wire interface with flow control
- 32-byte send/receive FIFO
- Full-duplex operation for asynchronous data transfers
- Interrupts available for frame error, parity error, CTS, Rx FIFO overrun and FIFO full/partially full conditions
- Automatic parity and frame error detection
- Independent baud-rate generator
- · Programmable 9th bit parity support
- Multidrop support
- Start/stop bit support

Ultra-Low Power Arm Cortex-M4 with FPU-Based Microcontroller for Wearable and IoT Sensors

- Hardware flow control using RTS/CTS
- 4000kb maximum baud rate
- Two DMA channels can be connected (read and write FIFOs)
- Programmable word size (5 bits to 8 bits)

The MAX32660 provides two instances of the UART peripheral (UART0 and UART1) with the following specifications (Table 2):

Table 2. UART Configuration Options

INSTANCE	FLOW C	ONTROL	MAXIMUM BAUD
INSTANCE	20 TQFP	16 WLP	RATE (KB)
UART0	Yes	Yes	4000
UART1	Yes	No	4000

Debug and Development Interface (SWD)

The serial wire debug interface is used for code loading and ICE debug activities. All devices in mass production have the debugging/development interface enabled.

Additional Documentation and Technical Support

Designers must have the following documents to use all the features of this device:

- This data sheet, which contains electrical/timing specifications, package information, and pin descriptions
- The corresponding revision-specific errata sheet
- The corresponding user guide, which contains detailed information and programming guidelines for core features and peripherals

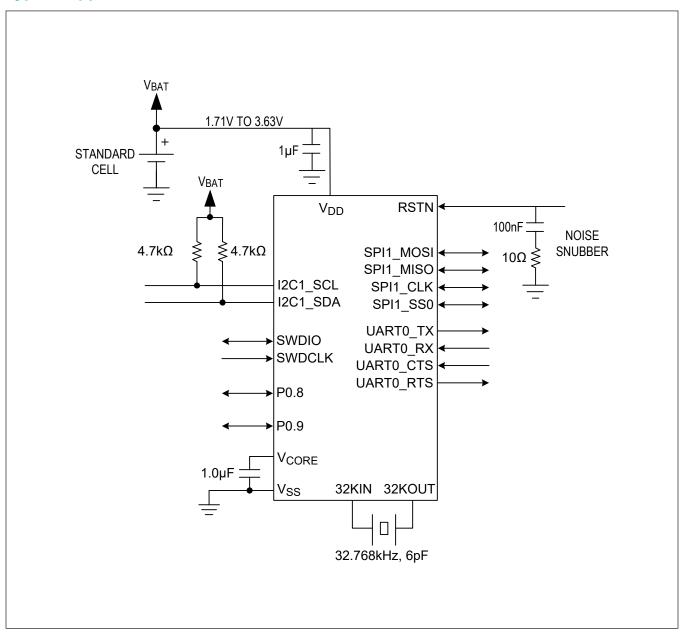
Technical support is available at https://support.maxi-mintegrated.com/micro.

Applications Information

Table 3. GPIO and Alternate Function Matrix, 16 WLP

GPIO	ALTERNATE FUNCTION 1	ALTERNATE FUNCTION 2	ALTERNATE FUNCTION 3
P0.0	SWDIO**	SPI1_MISO (I2S_SDI)†	UART1_TX**
P0.1	SWDCLK**	SPI1_MOSI (I2S_SDO)†	UART1_RX**
P0.2	I2C1_SCL	SPI1_SCK (I2S_BCLK)†	32KCAL
P0.3	I2C1_SDA	SPI1_SS0 (I2S_LRCLK)†	TMR0
P0.4	SPI0_MISO	UART0_TX	_
P0.5	SPI0_MOSI	UART0_RX	_
P0.6	SPI0_SCK	UART0_CTS	UART1_TX**
P0.7	SPI0_SS0	UART0_RTS	UART1_RX**
P0.8	I2C0_SCL	SWDIO**	_
P0.9	I2C0_SDA	SWDCLK**	_
P0.10*	_	_	_
P0.11*	_	_	_
P0.12*	_	_	_
P0.13*	_	_	_

^{*}GPIO not pinned out.


Table 4. GPIO and Alternate Function Matrix, 20 TQFN and 24 TQFN

GPIO	ALTERNATE FUNCTION 1	ALTERNATE FUNCTION 2	ALTERNATE FUNCTION 3
P0.0	SWDIO**	SPI1_MISO (I2S_SDI)†**	UART1_TX**
P0.1	SWDCLK**	SPI1_MOSI (I2S_SDO)†**	UART1_RX**
P0.2	I2C1_SCL	SPI1_SCK (I2S_BCLK)†**	32KCAL
P0.3	I2C1_SDA	SPI1_SS0 (I2S_LRCLK)†**	TMR0
P0.4	SPI0_MISO	UART0_TX	_
P0.5	SPI0_MOSI	UART0_RX	_
P0.6	SPI0A_SCK	UART0_CTS	UART1_TX**
P0.7	SPI0A_SS0	UART0_RTS	UART1_RX**
P0.8	I2C0_SCL	SWDIO**	_
P0.9	I2C0_SDA	SWDCLK**	_
P0.10	SPI1_MISO (I2S_SDI)†**	UART1_TX	_
P0.11	SPI1_MOSI (I2S_SDO)†**	UART1_RX	_
P0.12	SPI1_SCK (I2S_BCLK)†**	UART1_CTS	_
P0.13	SPI1_SS0 (I2S_LRCLK)†**	UART1_RTS	_

^{**}This signal can be mapped to more than one GPIO, but there is only one instance of this peripheral. †I2S_BCLK, I2S_LRCLK, I2S_SDI, I2S_SDO when enabled.

^{**}This signal can be mapped to more than one GPIO, but there is only one instance of this peripheral. †I2S_BCLK, I2S_LRCLK, I2S_SDI, I2S_SDO when enabled.

Typical Application Circuit

Ordering Information

PART	FLASH (KB)	SRAM (KB)	BOOT LOADER	PIN-PACKAGE
MAX32660GWE+	256	96	No	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32660GWE+T	256	96	No	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32660GTP+*	256	96	No	20 TQFN-EP (4mm x 4mm x 0.75mm, 0.5mm pitch)
MAX32660GTP+T*	256	96	No	20 TQFN-EP (4mm x 4mm x 0.75mm, 0.5mm pitch)
MAX32660GTG+*	256	96	No	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.4mm pitch)
MAX32660GTG+T*	256	96	No	24 TQFN-EP (3mm x 3mm x 0.75mm, 0.4mm pitch)
MAX32660GTPBL+*	256	96	Yes	20 TQFN-EP (4mm x 4mm x 0.75mm, 0.5mm pitch)
MAX32660GTPBL+T*	256	96	Yes	20 TQFN-EP (4mm x 4mm x 0.75mm, 0.5mm pitch)
MAX32660GWEBL+*	256	96	Yes	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)
MAX32660GWEBL+T*	256	96	Yes	16 WLP (1.6mm x 1.6mm x 0.65mm, 0.35mm pitch)

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel. Full reel.

^{*}Future product—contact factory for availability.