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2 Features
This section summarizes features of the MPC755 implementation of the PowerPC architecture. Major 
features of the MPC755 are as follows:

• Branch processing unit
— Four instructions fetched per clock
— One branch processed per cycle (plus resolving two speculations)
— Up to one speculative stream in execution, one additional speculative stream in fetch
— 512-entry branch history table (BHT) for dynamic prediction
— 64-entry, four-way set-associative branch target instruction cache (BTIC) for eliminating 

branch delay slots
• Dispatch unit

— Full hardware detection of dependencies (resolved in the execution units)
— Dispatch two instructions to six independent units (system, branch, load/store, fixed-point 

unit 1, fixed-point unit 2, floating-point)
— Serialization control (predispatch, postdispatch, execution serialization)

• Decode
— Register file access
— Forwarding control
— Partial instruction decode

• Completion
— Six-entry completion buffer
— Instruction tracking and peak completion of two instructions per cycle
— Completion of instructions in program order while supporting out-of-order instruction 

execution, completion serialization, and all instruction flow changes
• Fixed point units (FXUs) that share 32 GPRs for integer operands

— Fixed Point Unit 1 (FXU1)—multiply, divide, shift, rotate, arithmetic, logical
— Fixed Point Unit 2 (FXU2)—shift, rotate, arithmetic, logical
— Single-cycle arithmetic, shifts, rotates, logical
— Multiply and divide support (multi-cycle)
— Early out multiply

• Floating-point unit and a 32-entry FPR file
— Support for IEEE standard 754 single- and double-precision floating-point arithmetic
— Hardware support for divide
— Hardware support for denormalized numbers
— Single-entry reservation station
— Supports non-IEEE mode for time-critical operations
— Three-cycle latency, one-cycle throughput, single-precision multiply-add
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— Three-cycle latency, one-cycle throughput, double-precision add
— Four-cycle latency, two-cycle throughput, double-precision multiply-add

• System unit
— Executes CR logical instructions and miscellaneous system instructions
— Special register transfer instructions

• Load/store unit
— One-cycle load or store cache access (byte, half-word, word, double word)
— Effective address generation
— Hits under misses (one outstanding miss)
— Single-cycle unaligned access within double-word boundary
— Alignment, zero padding, sign extend for integer register file
— Floating-point internal format conversion (alignment, normalization)
— Sequencing for load/store multiples and string operations
— Store gathering
— Cache and TLB instructions
— Big- and little-endian byte addressing supported

• Level 1 cache structure
— 32K, 32-byte line, eight-way set-associative instruction cache (iL1)
— 32K, 32-byte line, eight-way set-associative data cache (dL1)
— Cache locking for both instruction and data caches, selectable by group of ways
— Single-cycle cache access
— Pseudo least-recently-used (PLRU) replacement
— Copy-back or write-through data cache (on a page per page basis)
— MEI data cache coherency maintained in hardware
— Nonblocking instruction and data cache (one outstanding miss under hits)
— No snooping of instruction cache

• Level 2 (L2) cache interface (not implemented on MPC745)
— Internal L2 cache controller and tags; external data SRAMs
— 256K, 512K, and 1 Mbyte two-way set-associative L2 cache support
— Copy-back or write-through data cache (on a page basis, or for all L2)
— Instruction-only mode and data-only mode
— 64-byte (256K/512K) or 128-byte (1M) sectored line size
— Supports flow through (register-buffer) synchronous BurstRAMs, pipelined (register-register) 

synchronous BurstRAMs (3-1-1-1 or strobeless 4-1-1-1) and pipelined (register-register) late 
write synchronous BurstRAMs

— L2 configurable to cache, private memory, or split cache/private memory
— Core-to-L2 frequency divisors of ÷1, ÷1.5, ÷2, ÷2.5, and ÷3 supported
— 64-bit data bus
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Packages MPC745: Surface mount 255 plastic ball grid array (PBGA)
MPC755: Surface mount 360 ceramic ball grid array (CBGA)
Surface mount 360 plastic ball grid array (PBGA)

Core power supply 2.0 V ± 100 mV DC (nominal; some parts support core voltages down to 
1.8 V; see Table 3 for recommended operating conditions)

I/O power supply 2.5 V ± 100 mV DC or
3.3 V ± 165 mV DC (input thresholds are configuration pin selectable)

4 Electrical and Thermal Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the MPC755.

4.1 DC Electrical Characteristics
Table 1 through Table 7 describe the MPC755 DC electrical characteristics. Table 1 provides the absolute 
maximum ratings.

Table 1.  Absolute Maximum Ratings1

Characteristic Symbol Maximum Value Unit Notes

Core supply voltage VDD –0.3 to 2.5 V 4

PLL supply voltage AVDD –0.3 to 2.5 V 4

L2 DLL supply voltage L2AVDD –0.3 to 2.5 V 4

Processor bus supply voltage OVDD –0.3 to 3.6 V 3

L2 bus supply voltage L2OVDD –0.3 to 3.6 V 3

Input voltage Processor bus Vin –0.3 to OVDD + 0.3 V V 2, 5

L2 bus Vin –0.3 to L2OVDD + 0.3 V V 2, 5

JTAG signals Vin –0.3 to 3.6 V

Storage temperature range Tstg –55 to 150 °C

Notes: 
1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and 

functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause 
permanent damage to the device.

2. Caution: Vin must not exceed OVDD or L2OVDD by more than 0.3 V at any time including during power-on reset. 
3. Caution: L2OVDD/OVDD must not exceed VDD/AVDD/L2AVDD by more than 1.6 V during normal operation. During power-on 

reset and power-down sequences, L2OVDD/OVDD may exceed VDD/AVDD/L2AVDD by up to 3.3 V for up to 20 ms, or by 2.5 V 
for up to 40 ms. Excursions beyond 3.3 V or 40 ms are not supported.

4. Caution: VDD/AVDD/L2AVDD must not exceed L2OVDD/OVDD by more than 0.4 V during normal operation. During power-on 
reset and power-down sequences, VDD/AVDD/L2AVDD may exceed L2OVDD/OVDD by up to 1.0 V for up to 20 ms, or by 0.7 V 
for up to 40 ms. Excursions beyond 1.0 V or 40 ms are not supported.

5. This is a DC specifications only. Vin may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2. 
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Figure 2 shows the allowable undershoot and overshoot voltage on the MPC755.

Figure 2. Overshoot/Undershoot Voltage

The MPC755 provides several I/O voltages to support both compatibility with existing systems and 
migration to future systems. The MPC755 core voltage must always be provided at nominal 2.0 V (see 
Table 3 for actual recommended core voltage). Voltage to the L2 I/Os and processor interface I/Os are 
provided through separate sets of supply pins and may be provided at the voltages shown in Table 2. The 
input voltage threshold for each bus is selected by sampling the state of the voltage select pins BVSEL and 
L2VSEL during operation. These signals must remain stable during part operation and cannot change. The 
output voltage will swing from GND to the maximum voltage applied to the OVDD or L2OVDD power 
pins.

Table 2 describes the input threshold voltage setting. 
Table 2.  Input Threshold Voltage Setting

Part
Revision

BVSEL Signal
Processor Bus 

Interface Voltage
L2VSEL Signal

 L2 Bus
Interface Voltage

E 0 Not Available 0 Not Available

1  2.5 V/3.3 V 1  2.5 V/3.3 V

Caution: The input threshold selection must agree with the OVDD/L2OVDD voltages supplied.
Note: The input threshold settings above are different for all revisions prior to Rev. 2.8 (Rev. E). For more information, 
refer to Section 10.2, “Part Numbers Not Fully Addressed by This Document.”

VIH

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

(L2)OVDD + 20%

VIL

(L2)OVDD

(L2)OVDD + 5%

of tSYSCLK
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Table 7 provides the power consumption for the MPC755.

Capacitance, Vin = 0 V, f = 1 MHz Cin — 5.0 pF 3, 4

Notes: 
1. Nominal voltages; see Table 3 for recommended operating conditions.

2. For processor bus signals, the reference is OVDD while L2OVDD is the reference for the L2 bus signals.
3. Excludes test signals (LSSD_MODE, L1_TSTCLK, L2_TSTCLK) and IEEE 1149.1 boundary scan (JTAG) signals.

4. Capacitance is periodically sampled rather than 100% tested.

5. The leakage is measured for nominal OVDD and VDD, or both OVDD and VDD must vary in the same direction (for example, 
both OVDD and VDD vary by either +5% or –5%).

Table 7. Power Consumption for MPC755

Processor (CPU) Frequency
Unit Notes

300 MHz 350 MHz 400 MHz

Full-Power Mode

Typical 3.1 3.6 5.4 W 1, 3, 4

Maximum 4.5 6.0 8.0 W 1, 2

Doze Mode

Maximum 1.8 2.0 2.3 W 1, 2, 4

Nap Mode

Maximum 1.0 1.0 1.0 W 1, 2, 4

Sleep Mode

Maximum 550 550 550 mW 1, 2, 4

Sleep Mode (PLL and DLL Disabled)

Maximum 510 510 510 mW 1, 2

Notes: 
1. These values apply for all valid processor bus and L2 bus ratios. The values do not include I/O supply power (OVDD and 

L2OVDD) or PLL/DLL supply power (AVDD and L2AVDD). OVDD and L2OVDD power is system dependent, but is typically 
<10% of VDD power. Worst case power consumption for AVDD = 15 mW and L2AVDD = 15 mW.

2. Maximum power is measured at nominal VDD (see Table 3) while running an entirely cache-resident, contrived sequence of 
instructions which keep the execution units maximally busy.

3. Typical power is an average value measured at the nominal recommended VDD (see Table 3) and 65°C in a system while 
running a typical code sequence.

4. Not 100% tested. Characterized and periodically sampled.

Table 6. DC Electrical Specifications (continued)
At recommended operating conditions (see Table 3) 

Characteristic
Nominal 

Bus 
Voltage 1

Symbol Min Max Unit Notes



MPC755 RISC Microprocessor Hardware Specifications, Rev. 8

Freescale Semiconductor 13
 

Electrical and Thermal Characteristics

Figure 3 provides the SYSCLK input timing diagram.

Figure 3. SYSCLK Input Timing Diagram

4.2.2 Processor Bus AC Specifications
Table 9 provides the processor bus AC timing specifications for the MPC755 as defined in Figure 4 and 
Figure 6. Timing specifications for the L2 bus are provided in Section 4.2.3, “L2 Clock AC 
Specifications.” 

s

Table 9. Processor Bus Mode Selection AC Timing Specifications 1

At recommended operating conditions (see Table 3) 

Parameter Symbol 2
All Speed Grades

Unit Notes
Min Max

Mode select input setup to HRESET tMVRH 8 — t
sysclk

3, 4, 5, 
6, 7

HRESET to mode select input hold tMXRH 0 — ns 3, 4, 6, 
7, 8

Notes: 
1. All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input 

SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal 
in question. All output timings assume a purely resistive 50-Ω load (see Figure 5). Input and output timings are measured at 
the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbology used for timing specifications herein follows the pattern of t(signal)(state)(reference)(state) for inputs and 
t(reference)(state)(signal)(state) for outputs. For example, tIVKH symbolizes the time input signals (I) reach the valid state (V) relative 
to the SYSCLK reference (K) going to the high (H) state or input setup time. And tKHOV symbolizes the time from SYSCLK 
(K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the input 
signal (I) went invalid (X) with respect to the rising clock edge (KH)—note the position of the reference and its state for 
inputs—and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX). 

3. The setup and hold time is with respect to the rising edge of HRESET (see Figure 4).

4. This specification is for configuration mode select only. Also note that the HRESET must be held asserted for a minimum of 
255 bus clocks after the PLL-relock time during the power-on reset sequence.

5. tsysclk is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of 
SYSCLK to compute the actual time duration (in ns) of the parameter in question.

6. Mode select signals are BVSEL, L2VSEL, PLL_CFG[0:3], and TLBISYNC.
7. Guaranteed by design and characterization.

8. Bus mode select pins must remain stable during operation. Changing the logic states of BVSEL or L2VSEL during operation 
will cause the bus mode voltage selection to change. Changing the logic states of the PLL_CFG pins during operation will 
cause the PLL division ratio selection to change. Both of these conditions are considered outside the specification and are 
not supported. Once HRESET is negated the states of the bus mode selection pins must remain stable.

SYSCLK VMVMVM
KVIH

VM = Midpoint Voltage (OVDD/2)

tSYSCLK

tKR tKF
tKHKL

KVIL
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SRAM. Note that revisions of the MPC755 prior to Rev. 2.8 (Rev. E) were limited in performance, and 
were typically limited to 175 MHz with similarly-rated SRAM. For more information, see Section 10.2, 
“Part Numbers Not Fully Addressed by This Document.”

Freescale is similarly limited by system constraints and cannot perform tests of the L2 interface on a 
socketed part on a functional tester at the maximum frequencies of Table 11. Therefore, functional 
operation and AC timing information are tested at core-to-L2 divisors of 2 or greater. Functionality of 
core-to-L2 divisors of 1 or 1.5 is verified at less than maximum rated frequencies.

L2 input and output signals are latched or enabled, respectively, by the internal L2CLK (which is SYSCLK 
multiplied up to the core frequency and divided down to the L2CLK frequency). In other words, the AC 
timings of Table 12 and Table 13 are entirely independent of L2SYNC_IN. In a closed loop system, where 
L2SYNC_IN is driven through the board trace by L2SYNC_OUT, L2SYNC_IN only controls the output 
phase of L2CLK_OUTA and L2CLK_OUTB which are used to latch or enable data at the SRAMs. 
However, since in a closed loop system L2SYNC_IN is held in phase alignment with the internal L2CLK, 
the signals of Table 12 and Table 13 are referenced to this signal rather than the not-externally-visible 
internal L2CLK. During manufacturing test, these times are actually measured relative to SYSCLK.

The L2SYNC_OUT signal is intended to be routed halfway out to the SRAMs and then returned to the 
L2SYNC_IN input of the MPC755 to synchronize L2CLK_OUT at the SRAM with the processor’s 
internal clock. L2CLK_OUT at the SRAM can be offset forward or backward in time by shortening or 
lengthening the routing of L2SYNC_OUT to L2SYNC_IN. See Freescale Application Note AN1794/D, 
Backside L2 Timing Analysis for PCB Design Engineers.

The L2CLK_OUTA and L2CLK_OUTB signals should not have more than two loads.
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Figure 9 shows the L2 bus output timing diagrams for the MPC755.

Figure 9. L2 Bus Output Timing Diagrams

Figure 10 provides the AC test load for L2 interface of the MPC755.

Figure 10. AC Test Load for the L2 Interface

L2SYNC_IN

All Outputs

VM

VM = Midpoint Voltage (L2OVDD/2)

tL2CHOV
tL2CHOX

VM

L2DATA BUS

tL2CHOZ

Output Z0 = 50 Ω L2OVDD/2
RL = 50 Ω
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Figure 15 provides the test access port timing diagram.

Figure 15. Test Access Port Timing Diagram

TCK

TDI, TMS

TDO

VM = Midpoint Voltage (OVDD/2)

TDO

VMVM

tIXJH
tIVJH

tJLOV

tJLOZ

Input
Data Valid

Output

Output Data Valid

tJLOH

Data
Valid
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6 Pinout Listings
Table 14 provides the pinout listing for the MPC745, 255 PBGA package.

Table 14. Pinout Listing for the MPC745, 255 PBGA Package

Signal Name Pin Number Active I/O I/F Voltage 1 Notes

A[0:31] C16, E4, D13, F2, D14, G1, D15, E2, D16, D4, E13, G2, 
E15, H1, E16, H2, F13, J1, F14, J2, F15, H3, F16, F4, 
G13, K1, G15, K2, H16, M1, J15, P1

High I/O OVDD

AACK L2 Low Input OVDD

ABB K4 Low I/O OVDD

AP[0:3] C1, B4, B3, B2 High I/O OVDD

ARTRY J4 Low I/O OVDD

AVDD A10 — — 2.0 V

BG L1 Low Input OVDD

BR B6 Low Output OVDD

BVSEL B1 High Input OVDD 3, 4, 5

CI E1 Low Output OVDD

CKSTP_IN D8 Low Input OVDD

CKSTP_OUT A6 Low Output OVDD

CLK_OUT D7 — Output OVDD

DBB J14 Low I/O OVDD

DBG N1 Low Input OVDD

DBDIS H15 Low Input OVDD

DBWO G4 Low Input OVDD

DH[0:31] P14, T16, R15, T15, R13, R12, P11, N11, R11, T12, 
T11, R10, P9, N9, T10, R9, T9, P8, N8, R8, T8, N7, R7, 
T7, P6, N6, R6, T6, R5, N5, T5, T4

High I/O OVDD

DL[0:31] K13, K15, K16, L16, L15, L13, L14, M16, M15, M13, 
N16, N15, N13, N14, P16, P15, R16, R14, T14, N10, 
P13, N12, T13, P3, N3, N4, R3, T1, T2, P4, T3, R4

High I/O OVDD

DP[0:7] M2, L3, N2, L4, R1, P2, M4, R2 High I/O OVDD

DRTRY G16 Low Input OVDD

GBL F1 Low I/O OVDD

GND C5, C12, E3, E6, E8, E9, E11, E14, F5, F7, F10, F12, 
G6, G8, G9, G11, H5, H7, H10, H12, J5, J7, J10, J12, 
K6, K8, K9, K11, L5, L7, L10, L12, M3, M6, M8, M9, 
M11, M14, P5, P12

— — GND

HRESET A7 Low Input OVDD
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The MPC755 generates the clock for the external L2 synchronous data SRAMs by dividing the core clock 
frequency of the MPC755. The divided-down clock is then phase-adjusted by an on-chip delay-lock-loop 
(DLL) circuit and should be routed from the MPC755 to the external RAMs. A separate clock output, 
L2SYNC_OUT is sent out half the distance to the SRAMs and then returned as an input to the DLL on pin 
L2SYNC_IN so that the rising-edge of the clock as seen at the external RAMs can be aligned to the 
clocking of the internal latches in the L2 bus interface.

The core-to-L2 frequency divisor for the L2 PLL is selected through the L2CLK bits of the L2CR register. 
Generally, the divisor must be chosen according to the frequency supported by the external RAMs, the 
frequency of the MPC755 core, and the phase adjustment range that the L2 DLL supports. Table 17 shows 
various example L2 clock frequencies that can be obtained for a given set of core frequencies. The 
minimum L2 frequency target is 80 MHz.

0011 PLL off/bypass PLL off, SYSCLK clocks core circuitry directly, 1x bus-to-core implied

1111 PLL off PLL off, no core clocking occurs

Notes: 
1. PLL_CFG[0:3] settings not listed are reserved.

2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, 
or VCO frequencies which are not useful, not supported, or not tested for by the MPC755; see Section 4.2.1, “Clock 
AC Specifications,” for valid SYSCLK, core, and VCO frequencies.

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the 
bus mode is set for 1:1 mode operation. This mode is intended for factory use and emulator tool use only. 
Note: The AC timing specifications given in this document do not apply in PLL-bypass mode.

4. In PLL off mode, no clocking occurs inside the MPC755 regardless of the SYSCLK input.

Table 17. Sample Core-to-L2 Frequencies

Core Frequency (MHz) ÷1 ÷1.5 ÷2 ÷2.5 ÷3

250 250 166 125 100 83

266 266 177 133 106 89

275 275 183 138 110 92

300 300 200 150 120 100

325 325 217 163 130 108

333 333 222 167 133 111

350 350 233 175 140 117

366 366 244 183 146 122

Table 16. MPC755 Microprocessor PLL Configuration Example for 400 MHz Parts (continued)

PLL_CFG
[0:3]

Example Bus-to-Core Frequency in MHz (VCO Frequency in MHz)

Bus-to-
Core

Multiplier

Core-to-
VCO

Multiplier

Bus
33 MHz

Bus
50 MHz

Bus
66 MHz

Bus
75 MHz

Bus
80 MHz

Bus
100 MHz
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Figure 22 describes the driver impedance measurement circuit described above.

Figure 22. Driver Impedance Measurement Circuit

Alternately, the following is another method to determine the output impedance of the MPC755. A voltage 
source, Vforce, is connected to the output of the MPC755 as shown in Figure 23. Data is held low, the 
voltage source is set to a value that is equal to (L2)OVDD/2 and the current sourced by Vforce is measured. 
The voltage drop across the pull-down device, which is equal to (L2)OVDD/2, is divided by the measured 
current to determine the output impedance of the pull-down device, RN. Similarly, the impedance of the 
pull-up device is determined by dividing the voltage drop of the pull-up, (L2)OVDD/2, by the current sank 
by the pull-up when the data is high and Vforce is equal to (L2)OVDD/2. This method can be employed with 
either empirical data from a test setup or with data from simulation models, such as IBIS.

RP and RN are designed to be close to each other in value. Then Z0 = (RP + RN)/2.

Figure 23 describes the alternate driver impedance measurement circuit.

Figure 23. Alternate Driver Impedance Measurement Circuit

(L2)OVDD

OGND
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Pad
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SW1
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(L2)OVDD

(L2)OVDD

BGA
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should be left unconnected by the system. If all parity generation is disabled through HID0, then all parity 
checking should also be disabled through HID0, and all parity pins may be left unconnected by the system.

The L2 interface does not require pull-up resistors.

8.7 JTAG Configuration Signals
Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the 
IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture. 
While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more 
reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. 
Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, 
simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically, a PC with dedicated 
hardware and debugging software) to access and control the internal operations of the processor. The COP 
interface connects primarily through the JTAG port of the processor, with some additional status 
monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order 
to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 24 allows the COP port to independently assert HRESET or TRST, 
while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not 
be used, TRST should be tied to HRESET through a 0-Ω isolation resistor so that it is asserted when the 
system reset signal (HRESET) is asserted ensuring that the JTAG scan chain is initialized during power-on. 
While Freescale recommends that the COP header be designed into the system as shown in Figure 24, if 
this is not possible, the isolation resistor will allow future access to TRST in the case where a JTAG 
interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 24 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post 0.100" centered header assembly (often called a Berg header). The connector typically has pin 
14 removed as a connector key.
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The board designer can choose between several types of heat sinks to place on the MPC755. There are 
several commercially-available heat sinks for the MPC755 provided by the following vendors:

Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com
Alpha Novatech 408-749-7601
473 Sapena Ct. #15
Santa Clara, CA 95054
Internet: www.alphanovatech.com
International Electronic Research Corporation (IERC)818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com
Tyco Electronics 800-522-6752
Chip Coolers™
P.O. Box 3668
Harrisburg, PA 17105-3668
Internet: www.chipcoolers.com
Wakefield Engineering 603-635-5102
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal 
performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost. 

8.8.1 Internal Package Conduction Resistance
For the exposed-die packaging technology, shown in Table 4, the intrinsic conduction thermal resistance 
paths are as follows:

• The die junction-to-case (or top-of-die for exposed silicon) thermal resistance
• The die junction-to-ball thermal resistance

Figure 26 depicts the primary heat transfer path for a package with an attached heat sink mounted to a 
printed-circuit board.

Heat generated on the active side of the chip is conducted through the silicon, then through the heat sink 
attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air 
convection. 

Since the silicon thermal resistance is quite small, for a first-order analysis, the temperature drop in the 
silicon may be neglected. Thus, the heat sink attach material and the heat sink conduction/convective 
thermal resistances are the dominant terms.
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Figure 26. C4 Package with Heat Sink Mounted to a Printed-Circuit Board 

8.8.2 Adhesives and Thermal Interface Materials
A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the 
thermal contact resistance. For those applications where the heat sink is attached by spring clip 
mechanism, Figure 27 shows the thermal performance of three thin-sheet thermal-interface materials 
(silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact 
pressure. As shown, the performance of these thermal interface materials improves with increasing contact 
pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare 
joint results in a thermal resistance approximately seven times greater than the thermal grease joint. 

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see 
Figure 25). This spring force should not exceed 5.5 pounds of force. Therefore, the synthetic grease offers 
the best thermal performance, considering the low interface pressure. Of course, the selection of any 
thermal interface material depends on many factors—thermal performance requirements, 
manufacturability, service temperature, dielectric properties, cost, etc.

Figure 27 describes the thermal performance of select thermal interface materials.
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Figure 27. Thermal Performance of Select Thermal Interface Materials

The board designer can choose between several types of thermal interface. Heat sink adhesive materials 
should be selected based on high conductivity, yet adequate mechanical strength to meet equipment 
shock/vibration requirements. There are several commercially-available thermal interfaces and adhesive 
materials provided by the following vendors:

The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany.com
Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01888-4014
Internet: www.chomerics.com
Dow-Corning Corporation 800-248-2481
Dow-Corning Electronic Materials
2200 W. Salzburg Rd.
Midland, MI 48686-0997
Internet: www.dow.com
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9 Document Revision History
Table 19 provides a revision history for this hardware specification.

Table 19. Document Revision History

Revision Date Substantive Change(s)

8 2/8/2006 Changed processor descriptor from ‘B’ to ‘C’ for 350 MHz devices and increased power specifications 
for full-power mode in Table 7. 

7 4/05/2005 Removed phrase “for the ceramic ball grid array (CBGA) package” from Section 8.8; this information 
applies to devices in both CBGA and PBGA packages.

Figure 24—updated COP Connector Diagram to recommend a weak pull-up resistor on TCK.

Table 20—added MPC745BPXLE, MPC755BRXLE, MPC755BPXLE, MPC755CVTLE, 
MPC755BVTLE and MPC745BVTLE part numbers. These devices are fully addressed by this 
document.

Corrected Revision Level in Table 23: Rev E devices are Rev 2.8, not 2.7.

Added MPC755CRX400LE and MPC755CPX400LE to devices supported by this specification in 
Table 20.

Removed “Advance Information” from title block on page 1.

6.1 1/21/2005 Updated document template.

6 — Removed 450 MHz speed grade throughout document. These devices are no longer supported for new 
designs; see Section 1.10.2 for more information.

Relaxed voltage sequencing requirements in Notes 3 and 4 of Table 1.

Corrected Note 2 of Table 7.

Changed processor descriptor from ‘B’ to ‘C’ for 400 MHz devices and increased power specifications 
for full-power mode in Table 7. XPC755Bxx400LE devices are no longer produced and are documented 
in a separate part number specification; see Section 1.10.2 for more information.

Increased power specifications for sleep mode for all speed grades in Table 7.

Removed ‘Sleep Mode (PLL and DLL Disabled)—Typical’ specification from Table 7; this is no longer 
tested or characterized.

Added Note 4 to Table 7.

Revised L2 clock duty cycle specification in Table 11 and changed Note 7.

Corrected Note 3 in Table 20.

Replaced Table 21 and added Tables 22 and 23.

5 — Added Note 6 to Table 10; clarification only as this information is already documented in the MPC750 
RISC Microprocessor Family User’s Manual.

Revised Figure 24 and Section 1.8.7.

Corrected Process Identifier for 450 MHz part in Table 20.

Added XPC755BRXnnnTx series to Table 21.
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1 — Corrected errors in Section 1.2.

Removed references to MPC745 CBGA package in Sections 1.3 and 1.4.

Added airflow values for θJA to Table 5.

Corrected VIH maximum for 1.8 V mode in Table 6.

Power consumption values added to Table 7.

Corrected tMXRH in Table 9, deleted Note 2 application note reference.

Added Max fL2CLK and Min tL2CLK values to Table 11.

Updated timing values in Table 12.

Corrected Note 2 of Table 13.

Changed Table 14 to reflect I/F voltages supported.

Removed 133 and 150 MHz columns from Table 16.

Added document reference to Section 1.7.

Added DBB to list of signals requiring pull-ups in Section 1.8.7.

Removed log entries from Table 20 for revisions prior to public release.

0 — Product announced. Documentation made publicly available.

Table 19. Document Revision History (continued)

Revision Date Substantive Change(s)
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10 Ordering Information
Ordering information for the devices fully covered by this specification document is provided in 
Section 10.1, “Part Numbers Fully Addressed by This Document.” Note that the individual part numbers 
correspond to a maximum processor core frequency. For available frequencies, contact your local 
Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an 
application modifier which may specify special application conditions. Each part number also contains a 
revision code which refers to the die mask revision number. Section 10.2, “Part Numbers Not Fully 
Addressed by This Document,” lists the part numbers which do not fully conform to the specifications of 
this document. These special part numbers require an additional document called a hardware specifications 
addendum. 

10.1 Part Numbers Fully Addressed by This Document
Table 20 provides the Freescale part numbering nomenclature for the MPC755 and MPC745 devices fully 
addressed by this document.

Table 20. Part Numbering Nomenclature

MPC xxx x xx nnn x x

Product 
Code

Part 
Identifier

Process 
Descriptor

Package 1
Processor 
Frequency

Application Modifier Revision Level

XPC2 755
745

B = HiP4DP PX = PBGA
RX = CBGA

300
350

L: 2.0 V ± 100 mV 
0° to 105°C

E: 2.8; PVR = 0008 3203

755 C = HiP4DP 400

MPC 755 B = HiP4DP 300
350

C = HiP4DP 350
400

745 B = HiP4DP PX = PBGA 300
350

745 C = HiP4DP PX = PBGA
VT = PBGAPb-
free BGA

350

755
745

B = HiP4DP VT = PBGAPb-
free BGA

300
350

755 C = HiP4DP 350
400

Notes: 
1. See Section 7, “Package Description,” for more information on available package types.

2. The X prefix in a Freescale part number designates a “Pilot Production Prototype” as defined by Freescale SOP 3-13. 
These are from a limited production volume of prototypes manufactured, tested, and Q.A. inspected on a qualified 
technology to simulate normal production. These parts have only preliminary reliability and characterization data. Before 
pilot production prototypes may be shipped, written authorization from the customer must be on file in the applicable 
sales office acknowledging the qualification status and the fact that product changes may still occur while shipping pilot 
production prototypes
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