E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Obsolete
PowerPC
1 Core, 32-Bit
350MHz
-
-
No
-
-
-
·
2.5V, 3.3V
0°C ~ 105°C (TA)
-
360-BBGA, FCBGA
360-FCPBGA (25x25)
https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc755cvt350le

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Features

This section summarizes features of the MPC755 implementation of the PowerPC architecture. Major features of the MPC755 are as follows:

- Branch processing unit
 - Four instructions fetched per clock
 - One branch processed per cycle (plus resolving two speculations)
 - Up to one speculative stream in execution, one additional speculative stream in fetch
 - 512-entry branch history table (BHT) for dynamic prediction
 - 64-entry, four-way set-associative branch target instruction cache (BTIC) for eliminating branch delay slots
- Dispatch unit
 - Full hardware detection of dependencies (resolved in the execution units)
 - Dispatch two instructions to six independent units (system, branch, load/store, fixed-point unit 1, fixed-point unit 2, floating-point)
 - Serialization control (predispatch, postdispatch, execution serialization)
- Decode
 - Register file access
 - Forwarding control
 - Partial instruction decode
- Completion
 - Six-entry completion buffer
 - Instruction tracking and peak completion of two instructions per cycle
 - Completion of instructions in program order while supporting out-of-order instruction execution, completion serialization, and all instruction flow changes
- Fixed point units (FXUs) that share 32 GPRs for integer operands
 - Fixed Point Unit 1 (FXU1)-multiply, divide, shift, rotate, arithmetic, logical
 - Fixed Point Unit 2 (FXU2)—shift, rotate, arithmetic, logical
 - Single-cycle arithmetic, shifts, rotates, logical
 - Multiply and divide support (multi-cycle)
 - Early out multiply
- Floating-point unit and a 32-entry FPR file
 - Support for IEEE standard 754 single- and double-precision floating-point arithmetic
 - Hardware support for divide
 - Hardware support for denormalized numbers
 - Single-entry reservation station
 - Supports non-IEEE mode for time-critical operations
 - Three-cycle latency, one-cycle throughput, single-precision multiply-add

MPC755 RISC Microprocessor Hardware Specifications, Rev. 8

Features

- Three-cycle latency, one-cycle throughput, double-precision add
- Four-cycle latency, two-cycle throughput, double-precision multiply-add
- System unit
 - Executes CR logical instructions and miscellaneous system instructions
 - Special register transfer instructions
- Load/store unit
 - One-cycle load or store cache access (byte, half-word, word, double word)
 - Effective address generation
 - Hits under misses (one outstanding miss)
 - Single-cycle unaligned access within double-word boundary
 - Alignment, zero padding, sign extend for integer register file
 - Floating-point internal format conversion (alignment, normalization)
 - Sequencing for load/store multiples and string operations
 - Store gathering
 - Cache and TLB instructions
 - Big- and little-endian byte addressing supported
- Level 1 cache structure
 - 32K, 32-byte line, eight-way set-associative instruction cache (iL1)
 - 32K, 32-byte line, eight-way set-associative data cache (dL1)
 - Cache locking for both instruction and data caches, selectable by group of ways
 - Single-cycle cache access
 - Pseudo least-recently-used (PLRU) replacement
 - Copy-back or write-through data cache (on a page per page basis)
 - MEI data cache coherency maintained in hardware
 - Nonblocking instruction and data cache (one outstanding miss under hits)
 - No snooping of instruction cache
- Level 2 (L2) cache interface (not implemented on MPC745)
 - Internal L2 cache controller and tags; external data SRAMs
 - 256K, 512K, and 1 Mbyte two-way set-associative L2 cache support
 - Copy-back or write-through data cache (on a page basis, or for all L2)
 - Instruction-only mode and data-only mode
 - 64-byte (256K/512K) or 128-byte (1M) sectored line size
 - Supports flow through (register-buffer) synchronous BurstRAMs, pipelined (register-register) synchronous BurstRAMs (3-1-1-1 or strobeless 4-1-1-1) and pipelined (register-register) late write synchronous BurstRAMs
 - L2 configurable to cache, private memory, or split cache/private memory
 - Core-to-L2 frequency divisors of $\div 1$, $\div 1.5$, $\div 2$, $\div 2.5$, and $\div 3$ supported
 - 64-bit data bus

Electrical and Thermal Characteristics

Packages	MPC745: Surface mount 255 plastic ball grid array (PBGA) MPC755: Surface mount 360 ceramic ball grid array (CBGA) Surface mount 360 plastic ball grid array (PBGA)
Core power supply	$2.0 \text{ V} \pm 100 \text{ mV}$ DC (nominal; some parts support core voltages down to 1.8 V; see Table 3 for recommended operating conditions)
I/O power supply	2.5 V \pm 100 mV DC or 3.3 V \pm 165 mV DC (input thresholds are configuration pin selectable)

4 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC755.

4.1 DC Electrical Characteristics

Table 1 through Table 7 describe the MPC755 DC electrical characteristics. Table 1 provides the absolute maximum ratings.

Chara	acteristic	Symbol	Maximum Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 2.5	V	4
PLL supply voltage		AV _{DD}	-0.3 to 2.5	V	4
L2 DLL supply voltage		L2AV _{DD}	-0.3 to 2.5	V	4
Processor bus supply voltage	Processor bus supply voltage		-0.3 to 3.6	V	3
L2 bus supply voltage		L2OV _{DD}	-0.3 to 3.6	V	3
Input voltage	Processor bus	V _{in}	–0.3 to OV _{DD} + 0.3 V	V	2, 5
	L2 bus	V _{in}	-0.3 to L2OV _{DD} + 0.3 V	V	2, 5
	JTAG signals	V _{in}	-0.3 to 3.6	V	
Storage temperature range		T _{stg}	–55 to 150	°C	

Table 1. Absolute Maximum Ratings¹

Notes:

- 1. Functional and tested operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. Caution: Vin must not exceed OV_{DD} or L2OV_{DD} by more than 0.3 V at any time including during power-on reset.
- 3. **Caution:** L2OV_{DD}/OV_{DD} must not exceed V_{DD}/AV_{DD}/L2AV_{DD} by more than 1.6 V during normal operation. During power-on reset and power-down sequences, L2OV_{DD}/OV_{DD} may exceed V_{DD}/AV_{DD}/L2AV_{DD} by up to 3.3 V for up to 20 ms, or by 2.5 V for up to 40 ms. Excursions beyond 3.3 V or 40 ms are not supported.
- 4. Caution: V_{DD}/AV_{DD}/L2AV_{DD} must not exceed L2OV_{DD}/OV_{DD} by more than 0.4 V during normal operation. During power-on reset and power-down sequences, V_{DD}/AV_{DD}/L2AV_{DD} may exceed L2OV_{DD}/OV_{DD} by up to 1.0 V for up to 20 ms, or by 0.7 V for up to 40 ms. Excursions beyond 1.0 V or 40 ms are not supported.
- 5. This is a DC specifications only. V_{in} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.

Figure 2 shows the allowable undershoot and overshoot voltage on the MPC755.

The MPC755 provides several I/O voltages to support both compatibility with existing systems and migration to future systems. The MPC755 core voltage must always be provided at nominal 2.0 V (see Table 3 for actual recommended core voltage). Voltage to the L2 I/Os and processor interface I/Os are provided through separate sets of supply pins and may be provided at the voltages shown in Table 2. The input voltage threshold for each bus is selected by sampling the state of the voltage select pins BVSEL and L2VSEL during operation. These signals must remain stable during part operation and cannot change. The output voltage will swing from GND to the maximum voltage applied to the OV_{DD} or L2OV_{DD} power pins.

Figure 2. Overshoot/Undershoot Voltage

of t_{SYSCLK}

Table 2 describes the input threshold voltage setting.

Table 2.	Input	Threshold	Voltage Setting
----------	-------	-----------	-----------------

Part Revision	BVSEL Signal	Processor Bus Interface Voltage	L2VSEL Signal	L2 Bus Interface Voltage
E	0	Not Available	0	Not Available
	1	2.5 V/3.3 V	1	2.5 V/3.3 V

Caution: The input threshold selection must agree with the OV_{DD}/L2OV_{DD} voltages supplied.

Note: The input threshold settings above are different for all revisions prior to Rev. 2.8 (Rev. E). For more information, refer to Section 10.2, "Part Numbers Not Fully Addressed by This Document."

Table 6. DC Electrical Specifications (continued)

At recommended operating conditions (see Table 3)

Characteristic	Nominal Bus Voltage ¹	Symbol	Min	Max	Unit	Notes
Capacitance, V _{in} = 0 V, f = 1 MHz		C _{in}	—	5.0	pF	3, 4

Notes:

1. Nominal voltages; see Table 3 for recommended operating conditions.

2. For processor bus signals, the reference is OV_{DD} while L2OV_{DD} is the reference for the L2 bus signals.

3. Excludes test signals (LSSD_MODE, L1_TSTCLK, L2_TSTCLK) and IEEE 1149.1 boundary scan (JTAG) signals.

4. Capacitance is periodically sampled rather than 100% tested.

5. The leakage is measured for nominal OV_{DD} and V_{DD} , or both OV_{DD} and V_{DD} must vary in the same direction (for example, both OV_{DD} and V_{DD} vary by either +5% or -5%).

Table 7 provides the power consumption for the MPC755.

|--|

	Proce	essor (CPU) Frequ	lency	Unit	Notoo		
	300 MHz	350 MHz	400 MHz	Onit	Notes		
	Full-Powe	r Mode					
Typical	3.1	3.6	5.4	W	1, 3, 4		
Maximum	4.5	6.0	8.0	W	1, 2		
Doze Mode							
Maximum	1.8	1.8 2.0 2.3		W	1, 2, 4		
	Nap Mo	ode					
Maximum	1.0	1.0	1.0	W	1, 2, 4		
Sleep Mode							
Maximum	550	550	550	mW	1, 2, 4		
Sleep Mode (PLL and DLL Disabled)							
Maximum	510	510	510	mW	1, 2		

Notes:

1. These values apply for all valid processor bus and L2 bus ratios. The values do not include I/O supply power (OV_{DD} and $L2OV_{DD}$) or PLL/DLL supply power (AV_{DD} and $L2AV_{DD}$). OV_{DD} and $L2OV_{DD}$ power is system dependent, but is typically <10% of V_{DD} power. Worst case power consumption for AV_{DD} = 15 mW and $L2AV_{DD}$ = 15 mW.

 Maximum power is measured at nominal V_{DD} (see Table 3) while running an entirely cache-resident, contrived sequence of instructions which keep the execution units maximally busy.

3. Typical power is an average value measured at the nominal recommended V_{DD} (see Table 3) and 65°C in a system while running a typical code sequence.

4. Not 100% tested. Characterized and periodically sampled.

MPC755 RISC Microprocessor Hardware Specifications, Rev. 8

Figure 3 provides the SYSCLK input timing diagram.

VM = Midpoint Voltage (OV_{DD}/2)

Figure 3. SYSCLK Input Timing Diagram

4.2.2 **Processor Bus AC Specifications**

Table 9 provides the processor bus AC timing specifications for the MPC755 as defined in Figure 4 and Figure 6. Timing specifications for the L2 bus are provided in Section 4.2.3, "L2 Clock AC Specifications."

Table 9. Processor Bus Mode Selection AC Timing Specifications ¹

At recommended operating conditions (see Table 3)

Parameter	Symbol ²	All Spee	d Grades	Unit	Notes	
Falameter	Symbol		Max	Onit	NOICS	
Mode select input setup to HRESET	t _{MVRH}	8	—	t _{sysclk}	3, 4, 5, 6, 7	
HRESET to mode select input hold	t _{MXRH}	0	—	ns	3, 4, 6, 7, 8	

Notes:

- All input specifications are measured from the midpoint of the signal in question to the midpoint of the rising edge of the input SYSCLK. All output specifications are measured from the midpoint of the rising edge of SYSCLK to the midpoint of the signal in question. All output timings assume a purely resistive 50-Ω load (see Figure 5). Input and output timings are measured at the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbology used for timing specifications herein follows the pattern of t_{(signal)(state)(reference)(state)} for inputs and t_{(reference)(state)(signal)(state)} for outputs. For example, t_{IVKH} symbolizes the time input signals (I) reach the valid state (V) relative to the SYSCLK reference (K) going to the high (H) state or input setup time. And t_{KHOV} symbolizes the time from SYSCLK (K) going high (H) until outputs (O) are valid (V) or output valid time. Input hold time can be read as the time that the input signal (I) went invalid (X) with respect to the rising clock edge (KH)—note the position of the reference and its state for inputs—and output hold time can be read as the time from the rising edge (KH) until the output went invalid (OX).
- 3. The setup and hold time is with respect to the rising edge of HRESET (see Figure 4).
- 4. This specification is for configuration mode select only. Also note that the HRESET must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the power-on reset sequence.
- 5. t_{sysclk} is the period of the external clock (SYSCLK) in ns. The numbers given in the table must be multiplied by the period of SYSCLK to compute the actual time duration (in ns) of the parameter in question.
- 6. Mode select signals are BVSEL, L2VSEL, PLL_CFG[0:3], and TLBISYNC.
- 7. Guaranteed by design and characterization.
- 8. Bus mode select pins must remain stable during operation. Changing the logic states of BVSEL or L2VSEL during operation will cause the bus mode voltage selection to change. Changing the logic states of the PLL_CFG pins during operation will cause the PLL division ratio selection to change. Both of these conditions are considered outside the specification and are not supported. Once HRESET is negated the states of the bus mode selection pins must remain stable.

SRAM. Note that revisions of the MPC755 prior to Rev. 2.8 (Rev. E) were limited in performance, and were typically limited to 175 MHz with similarly-rated SRAM. For more information, see Section 10.2, "Part Numbers Not Fully Addressed by This Document."

Freescale is similarly limited by system constraints and cannot perform tests of the L2 interface on a socketed part on a functional tester at the maximum frequencies of Table 11. Therefore, functional operation and AC timing information are tested at core-to-L2 divisors of 2 or greater. Functionality of core-to-L2 divisors of 1 or 1.5 is verified at less than maximum rated frequencies.

L2 input and output signals are latched or enabled, respectively, by the internal L2CLK (which is SYSCLK multiplied up to the core frequency and divided down to the L2CLK frequency). In other words, the AC timings of Table 12 and Table 13 are entirely independent of L2SYNC_IN. In a closed loop system, where L2SYNC_IN is driven through the board trace by L2SYNC_OUT, L2SYNC_IN only controls the output phase of L2CLK_OUTA and L2CLK_OUTB which are used to latch or enable data at the SRAMs. However, since in a closed loop system L2SYNC_IN is held in phase alignment with the internal L2CLK, the signals of Table 12 and Table 13 are referenced to this signal rather than the not-externally-visible internal L2CLK. During manufacturing test, these times are actually measured relative to SYSCLK.

The L2SYNC_OUT signal is intended to be routed halfway out to the SRAMs and then returned to the L2SYNC_IN input of the MPC755 to synchronize L2CLK_OUT at the SRAM with the processor's internal clock. L2CLK_OUT at the SRAM can be offset forward or backward in time by shortening or lengthening the routing of L2SYNC_OUT to L2SYNC_IN. See Freescale Application Note AN1794/D, *Backside L2 Timing Analysis for PCB Design Engineers*.

The L2CLK_OUTA and L2CLK_OUTB signals should not have more than two loads.

Figure 9 shows the L2 bus output timing diagrams for the MPC755.

VM = Midpoint Voltage (L2OV_{DD}/2)

Figure 9. L2 Bus Output Timing Diagrams

Figure 10 provides the AC test load for L2 interface of the MPC755.

Figure 10. AC Test Load for the L2 Interface

Electrical and Thermal Characteristics

Figure 15 provides the test access port timing diagram.

Figure 15. Test Access Port Timing Diagram

6 Pinout Listings

N

Table 14 provides the pinout listing for the MPC745, 255 PBGA package.

Signal Name	Pin Number	Active	I/O	I/F Voltage ¹	Notes
A[0:31]	C16, E4, D13, F2, D14, G1, D15, E2, D16, D4, E13, G2, E15, H1, E16, H2, F13, J1, F14, J2, F15, H3, F16, F4, G13, K1, G15, K2, H16, M1, J15, P1	High	I/O	OV _{DD}	
AACK	L2	Low	Input	OV _{DD}	
ABB	К4	Low	I/O	OV _{DD}	
AP[0:3]	C1, B4, B3, B2	High	I/O	OV _{DD}	
ARTRY	J4	Low	I/O	OV _{DD}	
AV _{DD}	A10	_	_	2.0 V	
BG	L1	Low	Input	OV _{DD}	
BR	B6	Low	Output	OV _{DD}	
BVSEL	B1	High	Input	OV _{DD}	3, 4, 5
CI	E1	Low	Output	OV _{DD}	
CKSTP_IN	D8	Low	Input	OV _{DD}	
CKSTP_OUT	A6	Low	Output	OV _{DD}	
CLK_OUT	D7	_	Output	OV _{DD}	
DBB	J14	Low	I/O	OV _{DD}	
DBG	N1	Low	Input	OV _{DD}	
DBDIS	H15	Low	Input	OV _{DD}	
DBWO	G4	Low	Input	OV _{DD}	
DH[0:31]	P14, T16, R15, T15, R13, R12, P11, N11, R11, T12, T11, R10, P9, N9, T10, R9, T9, P8, N8, R8, T8, N7, R7, T7, P6, N6, R6, T6, R5, N5, T5, T4	High	I/O	OV _{DD}	
DL[0:31]	K13, K15, K16, L16, L15, L13, L14, M16, M15, M13, N16, N15, N13, N14, P16, P15, R16, R14, T14, N10, P13, N12, T13, P3, N3, N4, R3, T1, T2, P4, T3, R4	High	I/O	OV _{DD}	
DP[0:7]	M2, L3, N2, L4, R1, P2, M4, R2	High	I/O	OV _{DD}	
DRTRY	G16	Low	Input	OV _{DD}	
GBL	F1	Low	I/O	OV _{DD}	
GND	C5, C12, E3, E6, E8, E9, E11, E14, F5, F7, F10, F12, G6, G8, G9, G11, H5, H7, H10, H12, J5, J7, J10, J12, K6, K8, K9, K11, L5, L7, L10, L12, M3, M6, M8, M9, M11, M14, P5, P12		_	GND	
HRESET	A7	Low	Input	OV _{DD}	

Table 14. Pinout Listing for the MPC745, 255 PBGA Package

Table 16. MPC755 Microprocessor PLL Configuration Example for 400 MHz Parts (continued)

	Example Bus-to-Core Frequency in MHz (VCO Frequency in MHz)								
PLL_CFG [0:3]	Bus-to- Core Multiplier	Core-to- VCO Multiplier	Bus 33 MHz	Bus 50 MHz	Bus 66 MHz	Bus 75 MHz	Bus 80 MHz	Bus 100 MHz	
0011	PLL off	/bypass	PLL off, SYSCLK clocks core circuitry directly, 1x bus-to-core implied						
1111	PLI	_ off	PLL off, no core clocking occurs						

Notes:

1. PLL_CFG[0:3] settings not listed are reserved.

2. The sample bus-to-core frequencies shown are for reference only. Some PLL configurations may select bus, core, or VCO frequencies which are not useful, not supported, or not tested for by the MPC755; see Section 4.2.1, "Clock AC Specifications," for valid SYSCLK, core, and VCO frequencies.

3. In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is disabled, and the bus mode is set for 1:1 mode operation. This mode is intended for factory use and emulator tool use only. **Note:** The AC timing specifications given in this document do not apply in PLL-bypass mode.

4. In PLL off mode, no clocking occurs inside the MPC755 regardless of the SYSCLK input.

The MPC755 generates the clock for the external L2 synchronous data SRAMs by dividing the core clock frequency of the MPC755. The divided-down clock is then phase-adjusted by an on-chip delay-lock-loop (DLL) circuit and should be routed from the MPC755 to the external RAMs. A separate clock output, L2SYNC_OUT is sent out half the distance to the SRAMs and then returned as an input to the DLL on pin L2SYNC_IN so that the rising-edge of the clock as seen at the external RAMs can be aligned to the clocking of the internal latches in the L2 bus interface.

The core-to-L2 frequency divisor for the L2 PLL is selected through the L2CLK bits of the L2CR register. Generally, the divisor must be chosen according to the frequency supported by the external RAMs, the frequency of the MPC755 core, and the phase adjustment range that the L2 DLL supports. Table 17 shows various example L2 clock frequencies that can be obtained for a given set of core frequencies. The minimum L2 frequency target is 80 MHz.

Core Frequency (MHz)	÷1	÷1.5	÷2	÷2.5	÷3
250	250	166	125	100	83
266	266	177	133	106	89
275	275	183	138	110	92
300	300	200	150	120	100
325	325	217	163	130	108
333	333	222	167	133	111
350	350	233	175	140	117
366	366	244	183	146	122

NP

System Design Information

Figure 22 describes the driver impedance measurement circuit described above.

Figure 22. Driver Impedance Measurement Circuit

Alternately, the following is another method to determine the output impedance of the MPC755. A voltage source, V_{force} , is connected to the output of the MPC755 as shown in Figure 23. Data is held low, the voltage source is set to a value that is equal to (L2)OV_{DD}/2 and the current sourced by V_{force} is measured. The voltage drop across the pull-down device, which is equal to (L2)OV_{DD}/2, is divided by the measured current to determine the output impedance of the pull-down device, R_N . Similarly, the impedance of the pull-up device is determined by dividing the voltage drop of the pull-up, (L2)OV_{DD}/2, by the current sank by the pull-up when the data is high and V_{force} is equal to (L2)OV_{DD}/2. This method can be employed with either empirical data from a test setup or with data from simulation models, such as IBIS.

 R_P and R_N are designed to be close to each other in value. Then $Z_0 = (R_P + R_N)/2$.

Figure 23 describes the alternate driver impedance measurement circuit.

Figure 23. Alternate Driver Impedance Measurement Circuit

MPC755 RISC Microprocessor Hardware Specifications, Rev. 8

System Design Information

should be left unconnected by the system. If all parity generation is disabled through HID0, then all parity checking should also be disabled through HID0, and all parity pins may be left unconnected by the system.

The L2 interface does not require pull-up resistors.

8.7 JTAG Configuration Signals

Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.

The COP function of these processors allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 24 allows the COP port to independently assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$, while ensuring that the target can drive $\overline{\text{HRESET}}$ as well. If the JTAG interface and COP header will not be used, $\overline{\text{TRST}}$ should be tied to $\overline{\text{HRESET}}$ through a 0- Ω isolation resistor so that it is asserted when the system reset signal ($\overline{\text{HRESET}}$) is asserted ensuring that the JTAG scan chain is initialized during power-on. While Freescale recommends that the COP header be designed into the system as shown in Figure 24, if this is not possible, the isolation resistor will allow future access to $\overline{\text{TRST}}$ in the case where a JTAG interface may need to be wired onto the system in debug situations.

The COP header shown in Figure 24 adds many benefits—breakpoints, watchpoints, register and memory examination/modification, and other standard debugger features are possible through this interface—and can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" square-post 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a connector key.

The board designer can choose between several types of heat sinks to place on the MPC755. There are several commercially-available heat sinks for the MPC755 provided by the following vendors:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #15 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IER 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	C)818-842-7277
Tyco Electronics Chip Coolers [™] P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-6752
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102

Ultimately, the final selection of an appropriate heat sink depends on many factors, such as thermal performance at a given air velocity, spatial volume, mass, attachment method, assembly, and cost.

8.8.1 Internal Package Conduction Resistance

For the exposed-die packaging technology, shown in Table 4, the intrinsic conduction thermal resistance paths are as follows:

- The die junction-to-case (or top-of-die for exposed silicon) thermal resistance
- The die junction-to-ball thermal resistance

Figure 26 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

Heat generated on the active side of the chip is conducted through the silicon, then through the heat sink attach material (or thermal interface material), and finally to the heat sink where it is removed by forced-air convection.

Since the silicon thermal resistance is quite small, for a first-order analysis, the temperature drop in the silicon may be neglected. Thus, the heat sink attach material and the heat sink conduction/convective thermal resistances are the dominant terms.

System Design Information

Figure 26. C4 Package with Heat Sink Mounted to a Printed-Circuit Board

8.8.2 Adhesives and Thermal Interface Materials

A thermal interface material is recommended at the package lid-to-heat sink interface to minimize the thermal contact resistance. For those applications where the heat sink is attached by spring clip mechanism, Figure 27 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. The use of thermal grease significantly reduces the interface thermal resistance. That is, the bare joint results in a thermal resistance approximately seven times greater than the thermal grease joint.

Heat sinks are attached to the package by means of a spring clip to holes in the printed-circuit board (see Figure 25). This spring force should not exceed 5.5 pounds of force. Therefore, the synthetic grease offers the best thermal performance, considering the low interface pressure. Of course, the selection of any thermal interface material depends on many factors—thermal performance requirements, manufacturability, service temperature, dielectric properties, cost, etc.

Figure 27 describes the thermal performance of select thermal interface materials.

Figure 27. Thermal Performance of Select Thermal Interface Materials

The board designer can choose between several types of thermal interface. Heat sink adhesive materials should be selected based on high conductivity, yet adequate mechanical strength to meet equipment shock/vibration requirements. There are several commercially-available thermal interfaces and adhesive materials provided by the following vendors:

The Bergquist Company	800-347-4572
18930 West 78 th St.	
Chanhassen, MN 55317	
Internet: www.bergquistcompany.com	
Chomerics, Inc.	781-935-4850
77 Dragon Ct.	
Woburn, MA 01888-4014	
Internet: www.chomerics.com	
Dow-Corning Corporation	800-248-2481
Dow-Corning Electronic Materials	
2200 W. Salzburg Rd.	
Midland, MI 48686-0997	
Internet: www.dow.com	

MPC755 RISC Microprocessor Hardware Specifications, Rev. 8

Document Revision History

9 Document Revision History

Table 19 provides a revision history for this hardware specification.

Table 13. Document nevision mistory	Table	19.	Document	Revision	History
-------------------------------------	-------	-----	----------	----------	---------

Revision	Date	Substantive Change(s)			
8	2/8/2006	Changed processor descriptor from 'B' to 'C' for 350 MHz devices and increased power specifications for full-power mode in Table 7.			
7	4/05/2005	Removed phrase "for the ceramic ball grid array (CBGA) package" from Section 8.8; this information applies to devices in both CBGA and PBGA packages.			
		Figure 24—updated COP Connector Diagram to recommend a weak pull-up resistor on TCK.			
		Table 20—added MPC745BPXLE, MPC755BRXLE, MPC755BPXLE, MPC755CVTLE, MPC755BVTLE and MPC745BVTLE part numbers. These devices are fully addressed by this document.			
		Corrected Revision Level in Table 23: Rev E devices are Rev 2.8, not 2.7.			
		Added MPC755CRX400LE and MPC755CPX400LE to devices supported by this specification in Table 20.			
		Removed "Advance Information" from title block on page 1.			
6.1	1/21/2005	Updated document template.			
6 —		Removed 450 MHz speed grade throughout document. These devices are no longer supported for new designs; see Section 1.10.2 for more information.			
		Relaxed voltage sequencing requirements in Notes 3 and 4 of Table 1.			
		Corrected Note 2 of Table 7.			
		Changed processor descriptor from 'B' to 'C' for 400 MHz devices and increased power specifications for full-power mode in Table 7. XPC755Bxx400LE devices are no longer produced and are documented in a separate part number specification; see Section 1.10.2 for more information.			
		Increased power specifications for sleep mode for all speed grades in Table 7.			
		Removed 'Sleep Mode (PLL and DLL Disabled)—Typical' specification from Table 7; this is no longer tested or characterized.			
		Added Note 4 to Table 7.			
		Revised L2 clock duty cycle specification in Table 11 and changed Note 7.			
		Corrected Note 3 in Table 20.			
		Replaced Table 21 and added Tables 22 and 23.			
5 — Added Note 6 RISC Microp		Added Note 6 to Table 10; clarification only as this information is already documented in the MPC750 RISC Microprocessor Family User's Manual.			
		Revised Figure 24 and Section 1.8.7.			
		Corrected Process Identifier for 450 MHz part in Table 20.			
		Added XPC755BRX <i>nnn</i> T <i>x</i> series to Table 21.			

Document Revision History

Revision	Date	Substantive Change(s)				
1		Corrected errors in Section 1.2.				
		Removed references to MPC745 CBGA package in Sections 1.3 and 1.4.				
		Added airflow values for θ_{JA} to Table 5.				
		Corrected V _{IH} maximum for 1.8 V mode in Table 6.				
		Power consumption values added to Table 7.				
		Corrected t _{MXRH} in Table 9, deleted Note 2 application note reference.				
		Added Max f_{L2CLK} and Min t_{L2CLK} values to Table 11.				
		Updated timing values in Table 12.				
		Corrected Note 2 of Table 13.				
		Changed Table 14 to reflect I/F voltages supported.				
		Removed 133 and 150 MHz columns from Table 16.				
		Added document reference to Section 1.7.				
		Added $\overline{\text{DBB}}$ to list of signals requiring pull-ups in Section 1.8.7.				
		Removed log entries from Table 20 for revisions prior to public release.				
0	_	Product announced. Documentation made publicly available.				

Table 19. Document Revision History (continued)

10 Ordering Information

Ordering information for the devices fully covered by this specification document is provided in Section 10.1, "Part Numbers Fully Addressed by This Document." Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme also includes an application modifier which may specify special application conditions. Each part number also contains a revision code which refers to the die mask revision number. Section 10.2, "Part Numbers Not Fully Addressed by This Document," lists the part numbers which do not fully conform to the specifications of this document. These special part numbers require an additional document called a hardware specifications addendum.

10.1 Part Numbers Fully Addressed by This Document

Table 20 provides the Freescale part numbering nomenclature for the MPC755 and MPC745 devices fully addressed by this document.

MPC	XXX	X	XX	nnn	X	X
Product Code	Part Identifier	Process Descriptor	Package ¹	Processor Frequency	Application Modifier	Revision Level
XPC ²	755 745	B = HiP4DP	PX = PBGA RX = CBGA	300 350	L: 2.0 V ± 100 mV 0° to 105°C	E: 2.8; PVR = 0008 3203
	755	C = HiP4DP		400		
MPC	755	B = HiP4DP		300 350		
		C = HiP4DP		350 400		
	745	B = HiP4DP	PX = PBGA	300 350		
	745	C = HiP4DP	PX = PBGA VT = PBGAPb- free BGA	350		
	755 745	B = HiP4DP	VT = PBGAPb- free BGA	300 350		
	755	C = HiP4DP		350 400		

Table 20. Part Numbering Nomenclature

Notes:

1. See Section 7, "Package Description," for more information on available package types.

2. The X prefix in a Freescale part number designates a "Pilot Production Prototype" as defined by Freescale SOP 3-13. These are from a limited production volume of prototypes manufactured, tested, and Q.A. inspected on a qualified technology to simulate normal production. These parts have only preliminary reliability and characterization data. Before pilot production prototypes may be shipped, written authorization from the customer must be on file in the applicable sales office acknowledging the qualification status and the fact that product changes may still occur while shipping pilot production prototypes

How to Reach Us:

Home Page: www.freescale.com

email: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 1-800-521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064, Japan 0120 191014 +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate, Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC755EC Rev. 8 02/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2006.

