

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, IrDA, MMC/SD, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4e8ca-anr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Interrupt Service Routines (ISRs) Interrupts IRQ0 to IRQ47 are the exceptions handled by ISRs.
- Fault Handlers Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.
- System Handlers NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system handlers.

12.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors, for all exception handlers. Figure 12-6 shows the order of the exception vectors in the vector table. The least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 12-6. Vector Table

Exception number	IRQ number	Offset	Vector
255	239	0x03FC	IRQ239
18 17 16 15 14 13	2 1 0 -1 -2	0x004C 0x0048 0x0044 0x0040 0x003C 0x0038	IRQ2 IRQ1 IRQ0 SysTick PendSV Reserved
12 11	-5		Reserved for Debug
10 9 8 7	5	0x002C	Reserved
6	-10	020018	Usage fault
5	-11	0x0014	Bus fault
4	-12	0x0014	Memory management fault
3	-13	0x0000	Hard fault
2	-14	0x0000	NMI
1		0x0004	Reset
		0x0000	Initial SP value

On system reset, the vector table is fixed at address 0x0000000. Privileged software can write to the SCB_VTOR register to relocate the vector table start address to a different memory location, in the range 0x00000080 to 0x3FFFF80, see "Vector Table Offset Register".

12.4.3.5 Exception Priorities

As Table 12-9 shows, all exceptions have an associated priority, with:

- A lower priority value indicating a higher priority
- Configurable priorities for all exceptions except Reset, Hard fault and NMI.

12.6.5.14 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax

 $op\{cond\}$ {Rd}, Rm, Rn

where:

ор	is any of:
	SASX Signed Add and Subtract with Exchange.
	SSAX Signed Subtract and Add with Exchange.
cond	is an optional condition code, see "Conditional Execution"
Rd	is the destination register.
Rn, Rm	are registers holding the first and second operands.

Operation

The SASX instruction:

- 1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
- 2. Writes the signed result of the addition to the top halfword of the destination register.
- 3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
- 4. Writes the signed result of the subtraction to the bottom halfword of the destination register.

The SSAX instruction:

- 1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
- 2. Writes the signed result of the addition to the bottom halfword of the destination register.
- 3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
- 4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SASX	R0,	R4,	R5	;	Adds top halfword of R4 to bottom halfword of R5 and
				;	writes to top halfword of R0
				;	Subtracts bottom halfword of R5 from top halfword of R4 $$
				;	and writes to bottom halfword of RO
SSAX	R7,	R3,	R2	;	Subtracts top halfword of R2 from bottom halfword of R3
				;	and writes to bottom halfword of R7
				;	Adds top halfword of R3 with bottom halfword of R2 and
				;	writes to top halfword of R7.

Value	Name	Description
0xB1	SAM4LxB	SAM4LxB Series (64-pin version)
0xB2	SAM4LxC	SAM4LxC Series (100-pin version)
0xF0	AT75Cxx	AT75Cxx Series

• NVPTYP: Nonvolatile Program Memory Type

Value	Name	Description
0	ROM	ROM
1	ROMLESS	ROMless or on-chip Flash
4	SRAM	SRAM emulating ROM
2	FLASH	Embedded Flash Memory
		ROM and Embedded Flash Memory
3	ROM_FLASH	NVPSIZ is ROM size
		NVPSIZ2 is Flash size

• EXT: Extension Flag

0 = Chip ID has a single register definition without extension

1 = An extended Chip ID exists.

15. Reset Controller (RSTC)

15.1 Embedded Characteristics

- Manages all Resets of the System, Including
 - External Devices through the NRST Pin
 - Processor Reset
 - Peripheral Set Reset
- Based on Embedded Power-on Cell
- Reset Source Status
 - Status of the Last Reset
 - Either Software Reset, User Reset, Watchdog Reset
- External Reset Signal Shaping

15.2 Block Diagram

Figure 15-1. Reset Controller Block Diagram

15.3 Functional Description

15.3.1 Reset Controller Overview

The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at Slow Clock and generates the following reset signals:

- proc_nreset: Processor reset line. It also resets the Watchdog Timer
- periph_nreset: Affects the whole set of embedded peripherals
- nrst_out: Drives the NRST pin

These reset signals are asserted by the Reset Controller, either on external events or on software action. The Reset State Manager controls the generation of reset signals and provides a signal to the NRST Manager when an assertion of the NRST pin is required.

22.5.2 EEFC Flash Command Register

Name:	EEFC_FCR						
Address:	0x400E0A04						
Access:	Write-only						
Offset:	0x04						
31	30	29	28	27	26	25	24
			FK	EY			
23	22	21	20	19	18	17	16
			FAI	RG			
15	14	13	12	11	10	9	8
			FAI	RG			
7	6	5	4	3	2	1	0
			FCI	MD			

• FCMD: Flash Command

Value	Name	Description
0x00	GETD	Get Flash Descriptor
0x01	WP	Write page
0x02	WPL	Write page and lock
0x03	EWP	Erase page and write page
0x04	EWPL	Erase page and write page then lock
0x05	EA	Erase all
0x07	EPA	Erase Pages
0x08	SLB	Set Lock Bit
0x09	CLB	Clear Lock Bit
0x0A	GLB	Get Lock Bit
0x0B	SGPB	Set GPNVM Bit
0x0C	CGPB	Clear GPNVM Bit
0x0D	GGPB	Get GPNVM Bit
0x0E	STUI	Start Read Unique Identifier
0x0F	SPUI	Stop Read Unique Identifier
0x10	GCALB	Get CALIB Bit
0x11	ES	Erase Sector
0x12	WUS	Write User Signature
0x13	EUS	Erase User Signature
0x14	STUS	Start Read User Signature
0x15	SPUS	Stop Read User Signature

26.12 Bus Matrix (MATRIX) User Interface

Table 26-3. Register Mapping

Offset	Register	Name	Access	Reset
0x0000	Master Configuration Register 0	MATRIX_MCFG0	Read-write	0x0000001
0x0004	Master Configuration Register 1	MATRIX_MCFG1	Read-write	0x00000000
0x0008	Master Configuration Register 2	MATRIX_MCFG2	Read-write	0x00000000
0x000C	Master Configuration Register 3	MATRIX_MCFG3	Read-write	0x00000000
0x0010	Master Configuration Register 4	MATRIX_MCFG4	Read-write	0x00000000
0x0014	Master Configuration Register 5	MATRIX_MCFG5	Read-write	0x00000000
0x0018	Master Configuration Register 6	MATRIX_MCFG6	Read-write	0x0000000
0x001C-0x003C	Reserved	-	-	_
0x0040	Slave Configuration Register 0	MATRIX_SCFG0	Read-write	0x000001FF
0x0044	Slave Configuration Register 1	MATRIX_SCFG1	Read-write	0x000001FF
0x0048	Slave Configuration Register 2	MATRIX_SCFG2	Read-write	0x000001FF
0x004C	Slave Configuration Register 3	MATRIX_SCFG3	Read-write	0x000001FF
0x0050	Slave Configuration Register 4	MATRIX_SCFG4	Read-write	0x000001FF
0x0054	Slave Configuration Register 5	MATRIX_SCFG5	Read-write	0x000001FF
0x0058-0x007C	Reserved	-	-	_
0x0080	Priority Register A for Slave 0	MATRIX_PRAS0	Read-write	0x33333333 ⁽¹⁾
0x0084	Reserved	-	_	_
0x0088	Priority Register A for Slave 1	MATRIX_PRAS1	Read-write	0x33333333 ⁽¹⁾
0x008C	Reserved	-	-	_
0x0090	Priority Register A for Slave 2	MATRIX_PRAS2	Read-write	0x33333333 ⁽¹⁾
0x0094	Reserved	-	-	_
0x0098	Priority Register A for Slave 3	MATRIX_PRAS3	Read-write	0x33333333 ⁽¹⁾
0x009C	Reserved	-	_	_
0x00A0	Priority Register A for Slave 4	MATRIX_PRAS4	Read-write	0x33333333 ⁽¹⁾
0x00A4	Reserved	-	-	_
0x00A8	Priority Register A for Slave 5	MATRIX_PRAS5	Read-write	0x33333333 ⁽¹⁾
0x00AC	Reserved	-	-	_
0x00B4-0x00FC	Reserved	-	-	_
0x0100	Master Remap Control Register	MATRIX_MRCR	Read-write	0x00000000
0x0104 - 0x010C	Reserved	-	-	_
0x0110	Reserved	-	-	_
0x0114	System I/O Configuration Register	CCFG_SYSIO	Read-write	0x0000000
0x0118 - 0x0120	Reserved	-	_	_
0x0124	SMC NAND Flash Chip Select Configuration Register	CCFG_SMCNFCS	Read-write	0x0000000

1: Enable TOVF interrupt.

• TSTP: TimeStamp Interrupt Enable

0: No effect.

1: Enable TSTP interrupt.

• CERR: CRC Error Interrupt Enable

- 0: No effect.
- 1: Enable CRC Error interrupt.

• SERR: Stuffing Error Interrupt Enable

0: No effect.

1: Enable Stuffing Error interrupt.

• AERR: Acknowledgment Error Interrupt Enable

0: No effect.

1: Enable Acknowledgment Error interrupt.

• FERR: Form Error Interrupt Enable

0: No effect.

1: Enable Form Error interrupt.

• BERR: Bit Error Interrupt Enable

0: No effect.

1: Enable Bit Error interrupt.

33.7.39 PIO Edge Select Register

Name: PIO_ESR

 Address:
 0x400E0EC0 (PIOA), 0x400E10C0 (PIOB), 0x400E12C0 (PIOC), 0x400E14C0 (PIOD), 0x400E16C0 (PIOE)

 Access:
 Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Edge Interrupt Selection

0: No effect.

1: The interrupt source is an Edge detection event.

33.7.40 PIO Level Select Register

Name: PIO_LSR

 Address:
 0x400E0EC4 (PIOA), 0x400E10C4 (PIOB), 0x400E12C4 (PIOC), 0x400E14C4 (PIOD), 0x400E16C4 (PIOE)

 Access:
 Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Level Interrupt Selection

0: No effect.

1: The interrupt source is a Level detection event.

LLB controls the local loopback on the data serializer for testing in Master Mode only. (MISO is internally connected on MOSI.)

• PCS: Peripheral Chip Select

This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:

PCS = xxx0	NPCS[3:0] = 1110
PCS = xx01	NPCS[3:0] = 1101
PCS = x011	NPCS[3:0] = 1011
PCS = 0111	NPCS[3:0] = 0111
PCS = 1111	forbidden (no peripheral is selected)
(x = don't care)	

If PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-overlapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods will be inserted by default.

Otherwise, the following equation determines the delay:

Delay Between Chip Selects = $\frac{DLYBCS}{MCK}$

35.10 Slave Mode

35.10.1 Definition

The Slave Mode is defined as a mode where the device receives the clock and the address from another device called the master.

In this mode, the device never initiates and never completes the transmission (START, REPEATED_START and STOP conditions are always provided by the master).

35.10.2 Application Block Diagram

Figure 35-25. Slave Mode Typical Application Block Diagram

35.10.3 Programming Slave Mode

The following fields must be programmed before entering Slave mode:

- 1. SADR (TWI_SMR): The slave device address is used in order to be accessed by master devices in read or write mode.
- 2. MSDIS (TWI_CR): Disable the master mode.
- 3. SVEN (TWI_CR): Enable the slave mode.

As the device receives the clock, values written in TWI_CWGR are not taken into account.

35.10.4 Receiving Data

After a Start or Repeated Start condition is detected and if the address sent by the Master matches with the Slave address programmed in the SADR (Slave ADdress) field, SVACC (Slave ACCess) flag is set and SVREAD (Slave READ) indicates the direction of the transfer.

SVACC remains high until a STOP condition or a repeated START is detected. When such a condition is detected, EOSACC (End Of Slave ACCess) flag is set.

35.10.4.1 Read Sequence

In the case of a Read sequence (SVREAD is high), TWI transfers data written in the TWI_THR (TWI Transmit Holding Register) until a STOP condition or a REPEATED_START + an address different from SADR is detected. Note that at the end of the read sequence TXCOMP (Transmission Complete) flag is set and SVACC reset.

As soon as data is written in the TWI_THR, TXRDY (Transmit Holding Register Ready) flag is reset, and it is set when the shift register is empty and the sent data acknowledged or not. If the data is not acknowledged, the NACK flag is set.

Note that a STOP or a repeated START always follows a NACK.

See Figure 35-26 on page 776.

Figure 36-11. Test Modes

36.6 Universal Asynchronous Receiver Transmitter (UART) User Interface

Offset	Register	Name	Access	Reset
0x0000	Control Register	UART_CR	Write-only	-
0x0004	Mode Register	UART_MR	Read-write	0x0
0x0008	Interrupt Enable Register	UART_IER	Write-only	_
0x000C	Interrupt Disable Register	UART_IDR	Write-only	_
0x0010	Interrupt Mask Register	UART_IMR	Read-only	0x0
0x0014	Status Register	UART_SR	Read-only	_
0x0018	Receive Holding Register	UART_RHR	Read-only	0x0
0x001C	Transmit Holding Register	UART_THR	Write-only	_
0x0020	Baud Rate Generator Register	UART_BRGR	Read-write	0x0
0x0024 - 0x003C	Reserved	_	_	_
0x004C - 0x00FC	Reserved	_	_	_
0x0100 - 0x0124	Reserved for PDC registers	-	-	-

Table 36-3. Register Mapping

38.7.3 TC Channel Mode Register: Waveform Mode

Name:	TC_CMRx [x=02] (WAVE = 1)

Access: Read-write

31	30	29	28	27	26	25	24
BSW	/TRG	BE	EVT	BC	PC	BC	PB
23	22	21	20	19	18	17	16
ASW	/TRG	AE	EVT	AC	PC	AC	PA
15	14	13	12	11	10	9	8
WAVE	WAV	/SEL	ENETRG	EE	VT	EEV	TEDG
7	6	5	4	3	2	1	0
CPCDIS	CPCSTOP	BL	IRST	CLKI		TCCLKS	

This register can only be written if the WPEN bit is cleared in "TC Write Protect Mode Register" on page 952

• TCCLKS: Clock Selection

Value	Name	Description
0	TIMER_CLOCK1	Clock selected: TCLK1
1	TIMER_CLOCK2	Clock selected: TCLK2
2	TIMER_CLOCK3	Clock selected: TCLK3
3	TIMER_CLOCK4	Clock selected: TCLK4
4	TIMER_CLOCK5	Clock selected: TCLK5
5	XC0	Clock selected: XC0
6	XC1	Clock selected: XC1
7	XC2	Clock selected: XC2

To operate at maximum clock frequency (MCK) please refer to "TC Extended Mode Register" on page 943.

• CLKI: Clock Invert

0 =Counter is incremented on rising edge of the clock.

1 = Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

Value	Name	Description
0	NONE	The clock is not gated by an external signal.
1	XC0	XC0 is ANDed with the selected clock.
2	XC1	XC1 is ANDed with the selected clock.
3	XC2	XC2 is ANDed with the selected clock.

CPCSTOP: Counter Clock Stopped with RC Compare

0 = Counter clock is not stopped when counter reaches RC.

1 = Counter clock is stopped when counter reaches RC.

• CPCDIS: Counter Clock Disable with RC Compare

• POSEN: POSition ENabled

0 = Disable position.

1 = Enables the position measure on channel 0 and 1.

• SPEEDEN: SPEED ENabled

0 = Disabled.

1 = Enables the speed measure on channel 0, the time base being provided by channel 2.

• QDTRANS: Quadrature Decoding TRANSparent

0 = Full quadrature decoding logic is active (direction change detected).

1 = Quadrature decoding logic is inactive (direction change inactive) but input filtering and edge detection are performed.

• EDGPHA: EDGe on PHA count mode

0 = Edges are detected on PHA only.

1 = Edges are detected on both PHA and PHB.

• INVA: INVerted phA

0 = PHA (TIOA0) is directly driving quadrature decoder logic.

1 = PHA is inverted before driving quadrature decoder logic.

• INVB: INVerted phB

0 = PHB (TIOB0) is directly driving quadrature decoder logic.

1 = PHB is inverted before driving quadrature decoder logic.

• SWAP: SWAP PHA and PHB

0 = No swap between PHA and PHB.

1 = Swap PHA and PHB internally, prior to driving quadrature decoder logic.

INVIDX: INVerted InDeX

0 = IDX (TIOA1) is directly driving quadrature logic.

1 = IDX is inverted before driving quadrature logic.

• IDXPHB: InDeX pin is PHB pin

0 = IDX pin of the rotary sensor must drive TIOA1.

1 = IDX pin of the rotary sensor must drive TIOB0.

• FILTER:

0 = IDX, PHA, PHB input pins are not filtered.

1 = IDX,PHA, PHB input pins are filtered using MAXFILT value.

• MAXFILT: MAXimum FILTer

1.. 63: Defines the filtering capabilities.

Pulses with a period shorter than MAXFILT+1 MCK clock cycles are discarded.

Figure 39-7. Command/Response Functional Flow Diagram

Note: 1. If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3 response in the High Speed MultiMedia Card specification).

40.6.2.8 Additional Edges

The PWM macrocell is able to generate additional edges of the channel output waveform by inverting the waveform polarity CPOL, in top of these generated by the duty cycle value.

There are several complementary ways in order to invert the polarity:

- By inverting the polarity at any time: write a new value for CPOL in "PWM Channel Mode Register" on page 1075. The polarity of the output waveform changes immediately.
- By inverting the polarity at the next PWM period border: write the field CPOLUP in "PWM Channel Mode Update Register" on page 1084, the polarity will be updated synchronously with the PWM period. If you want to invert the polarity whatever the current polarity is, write the bit CPOLINVUP at 1 in the same register. In this case the polarity will be inverted synchronously with the PWM period and the bit CPOLUP is not taken into account.
- By inverting the polarity at a precise moment of the PWM period: write the field ADEDGV and the field ADEDGM in "PWM Channel Additional Edge Register" on page 1085. As soon as the channel counter reaches the value defined by ADEDGV, the polarity of the output waveform is inverted. The field ADEDGM is used when the channel is center-aligned (CALG=1 in "PWM Channel Mode Register" on page 1075), if ADEDGM=0 the additional edge occurs when the channel counter is incrementing, if ADEDGM=1 the additional edge occurs when it is decrementing, if ADEDGM=2 the additional edge occurs whether the counter is incrementing or not.
- By inverting the polarity at a precise moment of the next PWM period: write the field ADEDGVUP and the field ADEDGMUP in "PWM Channel Additional Edge Update Register" on page 1086. As soon as the channel counter reaches the value defined by ADEDGVUP at the next PWM period, the polarity of the output waveform is inverted. The field ADEDGMUP is used when the channel is center-aligned (CALG=1 in "PWM Channel Mode Register" on page 1075), if ADEDGMUP=0 the additional edge occurs when the channel counter is incrementing, if ADEDGMUP=1 the additional edge occurs when it is decrementing, if ADEDGMUP=2 the additional edge occurs whether the counter is incrementing or not.

Figure 40-11 on page 1017 illustrates various ways to insert additional edges on the channel waveform by inverting the waveform polarity.

41.6.3.2 Entering Attached State

To enable integrated pull-up, the PUON bit in the UDP_TXVC register must be set.

Warning: To write to the UDP_TXVC register, MCK clock must be enabled on the UDP. This is done in the Power Management Controller.

After pull-up connection, the device enters the powered state. In this state, the UDPCK and MCK must be enabled in the Power Management Controller. The transceiver can remain disabled.

41.6.3.3 From Powered State to Default State

After its connection to a USB host, the USB device waits for an end-of-bus reset. The unmaskable flag ENDBUSRES is set in the register UDP_ISR and an interrupt is triggered.

Once the ENDBUSRES interrupt has been triggered, the device enters Default State. In this state, the UDP software must:

- Enable the default endpoint, setting the EPEDS flag in the UDP_CSR[0] register and, optionally, enabling the interrupt for endpoint 0 by writing 1 to the UDP_IER register. The enumeration then begins by a control transfer.
- Configure the interrupt mask register which has been reset by the USB reset detection
- Enable the transceiver clearing the TXVDIS flag in the UDP_TXVC register.

In this state UDPCK and MCK must be enabled.

Warning: Each time an ENDBUSRES interrupt is triggered, the Interrupt Mask Register and UDP_CSR registers have been reset.

41.6.3.4 From Default State to Address State

After a set address standard device request, the USB host peripheral enters the address state.

Warning: Before the device enters in address state, it must achieve the Status IN transaction of the control transfer, i.e., the UDP device sets its new address once the TXCOMP flag in the UDP_CSR[0] register has been received and cleared.

To move to address state, the driver software sets the FADDEN flag in the UDP_GLB_STAT register, sets its new address, and sets the FEN bit in the UDP_FADDR register.

41.6.3.5 From Address State to Configured State

Once a valid Set Configuration standard request has been received and acknowledged, the device enables endpoints corresponding to the current configuration. This is done by setting the EPEDS and EPTYPE fields in the UDP_CSRx registers and, optionally, enabling corresponding interrupts in the UDP_IER register.

41.6.3.6 Entering in Suspend State

When a Suspend (no bus activity on the USB bus) is detected, the RXSUSP signal in the UDP_ISR register is set. This triggers an interrupt if the corresponding bit is set in the UDP_IMR register. This flag is cleared by writing to the UDP_ICR register. Then the device enters Suspend Mode.

In this state bus powered devices must drain less than 500uA from the 5V VBUS. As an example, the microcontroller switches to slow clock, disables the PLL and main oscillator, and goes into Idle Mode. It may also switch off other devices on the board.

The USB device peripheral clocks can be switched off. Resume event is asynchronously detected. MCK and UDPCK can be switched off in the Power Management controller and the USB transceiver can be disabled by setting the TXVDIS field in the UDP_TXVC register.

Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the UDP peripheral. Switching off MCK for the UDP peripheral must be one of the last operations after writing to the UDP_TXVC and acknowledging the RXSUSP.

41.6.3.7 Receiving a Host Resume

In suspend mode, a resume event on the USB bus line is detected asynchronously, transceiver and clocks are disabled (however the pull-up shall not be removed).

43.7.9 AFEC Last Converted Data Register

Name:	AFEC_LCDR						
Address:	0x400B0020 (0), 0x400B4020 (1)						
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	-	-		СН	NB	
23	22	21	20	19	18	17	16
-	-	-	-	-	-	—	-
15	14	13	12	11	10	9	8
LDATA							
7	6	5	4	3	2	1	0
LDATA							

• LDATA: Last Data Converted

The Analog-Front-End conversion data is placed into this register at the end of a conversion and remains until a new conversion is completed.

• CHNB: Channel Number

Indicates the last converted channel when the TAG option is set to 1 in the AFEC_EMR register. If TAG option is not set, CHNB = 0.

	31.4	Functional Description	82
	31.5	Security Features	87
	31.6	Advanced Encryption Standard (AES) User Interface	88
32.	Cont	roller Area Network (CAN) Programmer Datasheet 59	99
	32.1	Description	99
	32.2	Embedded Characteristics	99
	32.3	Block Diagram	00
	32.4	Application Block Diagram	00
	32.5	I/O Lines Description	01
	32.6	Product Dependencies	01
	32.7	CAN Controller Features	02
	32.8	Functional Description	13
	32.9	Controller Area Network (CAN) User Interface	26
33.	Para	Ilel Input/Output (PIO) Controller 65	57
	33.1	Description	57
	33.2	Embedded Characteristics	57
	33.3	Block Diagram	57
	33.4	Froduct Dependencies	00
	33.5	Functional Description	
	33.0 22.7	Parallel Input/Output Controller (PIO) Licer Interface	74
	55.7		10
34.	Seria	al Peripheral Interface (SPI)	21
	34.1		21
	34.2	Embedded Characteristics	22
	34.3	Application Reak Diagram	23
	34.4	Signal Description	23
	34.5	Product Dependencies 7	24
	34.7	Functional Description 7	25
	34.8	Serial Peripheral Interface (SPI) User Interface	39
35	Two	wire Interface (TW/I)	55
55.	35.1		55
	35.2	Embedded Characteristics 74	55
	35.3	List of Abbreviations 7	56
	35.4	Block Diagram	56
	35.5	Application Block Diagram	57
	35.6	Product Dependencies	57
	35.7	Functional Description	58
	35.8	Master Mode	59
	35.9	Multi-master Mode	72
	35.10	Slave Mode	75
	35.11	Write Protection System	82
	35.12	Two-wire Interface (TWI) User Interface	83
36.	Unive	ersal Asynchronous Receiver Transmitter (UART) 80)1
	36.1	Description	01
	36.2	Embedded Characteristics	01
	36.3	Block Diagram	02