# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                         |
| Core Size                  | 32-Bit Single-Core                                                      |
| Speed                      | 120MHz                                                                  |
| Connectivity               | CANbus, Ethernet, IrDA, MMC/SD, SPI, UART/USART, USB                    |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, PWM, WDT                              |
| Number of I/O              | 79                                                                      |
| Program Memory Size        | 512KB (512K x 8)                                                        |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 128K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.62V ~ 3.6V                                                            |
| Data Converters            | A/D 16x12b; D/A 2x12b                                                   |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 100-LQFP                                                                |
| Supplier Device Package    | 100-LQFP (14x14)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsam4e8ca-au |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 11. Peripherals

## 11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM4E device. A peripheral identifier is required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the Power Management Controller.

| Instance ID | Instance<br>Name | NVIC<br>Interrupt | PMC<br>Clock Control | Instance Description               |
|-------------|------------------|-------------------|----------------------|------------------------------------|
| 0           | SUPC             | X                 |                      | Supply Controller                  |
| 1           | RSTC             | X                 |                      | Reset Controller                   |
| 2           | RTC              | X                 |                      | Real-time Clock                    |
| 3           | RTT              | X                 |                      | Real-time Timer                    |
| 4           | WDT              | X                 |                      | Watchdog/Dual Watchdog Timer       |
| 5           | РМС              | X                 |                      | Power Management Controller        |
| 6           | EFC              | X                 |                      | Enhanced Embedded Flash Controller |
| 7           | UART0            | X                 | x                    | UART 0                             |
| 8           | SMC              |                   | x                    | Static Memory Controller           |
| 9           | PIOA             | X                 | X                    | Parallel I/O Controller A          |
| 10          | PIOB             | x                 | x                    | Parallel I/O Controller B          |
| 11          | PIOC             | X                 | X                    | Parallel I/O Controller C          |
| 12          | PIOD             | X                 | X                    | Parallel I/O Controller D          |
| 13          | PIOE             | x                 | x                    | Parallel I/O Controller E          |
| 14          | USART0           | x                 | X                    | USART 0                            |
| 15          | USART1           | x                 | x                    | USART 1                            |
| 16          | HSMCI            | x                 | x                    | Multimedia Card Interface          |
| 17          | TWIO             | x                 | x                    | Two-wire Interface 0               |
| 18          | TWI1             | x                 | x                    | Two-wire Interface 1               |
| 19          | SPI              | x                 | x                    | Serial Peripheral Interface        |
| 20          | DMAC             | x                 | x                    | DMAC                               |
| 21          | TC0              | x                 | x                    | Timer/Counter 0                    |
| 22          | TC1              | x                 | x                    | Timer/Counter 1                    |
| 23          | TC2              | x                 | x                    | Timer/Counter 2                    |
| 24          | ТСЗ              | x                 | x                    | Timer/Counter 3                    |
| 25          | TC4              | x                 | x                    | Timer/Counter 4                    |
| 26          | TC5              | x                 | x                    | Timer/Counter 5                    |
| 27          | TC6              | x                 | x                    | Timer/Counter 6                    |
| 28          | TC7              | X                 | X                    | Timer/Counter 7                    |
| 29          | TC8              | X                 | X                    | Timer/Counter 8                    |

Table 11-1. Peripheral Identifiers

Atmel

#### 12.4.1.12 Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the value of PRIMASK or FAULTMASK. See "MRS", "MSR", and "CPS" for more information.

|         | mach nogicio |    |    |    |    |    |         |
|---------|--------------|----|----|----|----|----|---------|
| Name:   | PRIMASK      |    |    |    |    |    |         |
| Access: | Read-write   |    |    |    |    |    |         |
| Reset:  | 0x000000000  |    |    |    |    |    |         |
| 31      | 30           | 29 | 28 | 27 | 26 | 25 | 24      |
|         |              |    | -  | -  |    |    |         |
| 23      | 22           | 21 | 20 | 19 | 18 | 17 | 16      |
|         |              |    | -  | -  |    |    |         |
| 15      | 14           | 13 | 12 | 11 | 10 | 9  | 8       |
|         |              |    | -  | -  |    |    |         |
| 7       | 6            | 5  | 4  | 3  | 2  | 1  | 0       |
|         |              |    | _  |    |    |    | PRIMASK |

12.4.1.13 Priority Mask Register

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

#### • PRIMASK

0: No effect

1: Prevents the activation of all exceptions with a configurable priority.

#### 19.5.2 Watchdog Timer Mode Register

| Name:    | WDT_MR          |           |          |    |    |    |    |
|----------|-----------------|-----------|----------|----|----|----|----|
| Address: | 0x400E1854      |           |          |    |    |    |    |
| Access:  | Read-write Once |           |          |    |    |    |    |
| 31       | 30              | 29        | 28       | 27 | 26 | 25 | 24 |
|          |                 | WDIDLEHLT | WDDBGHLT |    | WE | D  |    |
| 23       | 22              | 21        | 20       | 19 | 18 | 17 | 16 |
|          |                 |           | W        | DD |    |    |    |
|          |                 |           |          |    |    |    |    |
| 15       | 14              | 13        | 12       | 11 | 10 | 9  | 8  |
| WDDIS    | WDRPROC         | WDRSTEN   | WDFIEN   |    | WE | )V |    |
| _        | _               |           |          | _  | _  |    | _  |
| 7        | 6               | 5         | 4        | 3  | 2  | 1  | 0  |
|          |                 |           | WI       | V  |    |    |    |

Note: The first write access prevents any further modification of the value of this register, read accesses remain possible. Note: The WDD and WDV values must not be modified within a period of time of 3 slow clock periods following a restart of the watchdog performed by means of a write access in the WDT\_CR register, else the watchdog may trigger an end of period earlier than expected.

#### • WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit Watchdog Counter.

#### • WDFIEN: Watchdog Fault Interrupt Enable

0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

#### • WDRSTEN: Watchdog Reset Enable

- 0: A Watchdog fault (underflow or error) has no effect on the resets.
- 1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

#### WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

#### WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT\_CR with WDRSTT = 1 restarts the timer. If the Watchdog Timer value is greater than WDD, writing WDT\_CR with WDRSTT = 1 causes a Watchdog error.

#### • WDDBGHLT: Watchdog Debug Halt

- 0: The Watchdog runs when the processor is in debug state.
- 1: The Watchdog stops when the processor is in debug state.



### 20.5.7 System Controller Wake-up Inputs Register

| Name:    | SUPC_WUIR  |          |          |          |          |         |         |
|----------|------------|----------|----------|----------|----------|---------|---------|
| Address: | 0x400E1820 |          |          |          |          |         |         |
| Access:  | Read-write |          |          |          |          |         |         |
| 31       | 30         | 29       | 28       | 27       | 26       | 25      | 24      |
| WKUPT15  | WKUPT14    | WKUPT13  | WKUPT12  | WKUPT11  | WKUPT10  | WKUPT9  | WKUPT8  |
|          |            |          |          | 10       | 10       | . –     | 4.0     |
| 23       | 22         | 21       | 20       | 19       | 18       | 17      | 16      |
| WKUPT7   | WKUPT6     | WKUPT5   | WKUPT4   | WKUPT3   | WKUPT2   | WKUPT1  | WKUPT0  |
|          |            |          |          |          |          |         |         |
| 15       | 14         | 13       | 12       | 11       | 10       | 9       | 8       |
| WKUPEN15 | WKUPEN14   | WKUPEN13 | WKUPEN12 | WKUPEN11 | WKUPEN10 | WKUPEN9 | WKUPEN8 |
|          |            |          |          |          |          |         |         |
| 7        | 6          | 5        | 4        | 3        | 2        | 1       | 0       |
| WKUPEN7  | WKUPEN6    | WKUPEN5  | WKUPEN4  | WKUPEN3  | WKUPEN2  | WKUPEN1 | WKUPEN0 |

#### • WKUPEN0 - WKUPEN15: Wake-up Input Enable 0 to 15

0 (DISABLE) = the corresponding wake-up input has no wake-up effect.

1 (ENABLE) = the corresponding wake-up input forces the wake-up of the core power supply.

#### • WKUPT0 - WKUPT15: Wake-up Input Type 0 to 15

0 (LOW) = a low level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake-up of the core power supply.

1 (HIGH) = a high level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake-up of the core power supply.

# 21. General Purpose Backup Registers (GPBR)

## 21.1 Description

The System Controller embeds 20 General Purpose Backup Registers (GPBR).

It is possible to generate an immediate clear of the content of general purpose backup registers 0 to 9 (first half), if a low power debounce event is detected on a wakeup pin, WKUP0 or WKUP1. The content of the other general-purpose backup registers (second half) remains unchanged.

To enter this mode of operation, the supply controller module must be programmed accordingly. In supply controller SUPC\_WUMR register, LPDBCCLR, LPDBCEN0 and/or LPDBCEN1 bit must be configured to 1 and LPDBC must be other than 0.

If a tamper event has been detected, it is not possible to write into general purpose backup registers while the LPDBCS0 or LPDBCS1 flags are not cleared in supply controller status register SUPC\_SR.

## 21.2 Embedded Characteristics

• Twenty 32-bit General Purpose Backup Registers

#### 26.12.6 SMC NAND Flash Chip Select Configuration Register

| Name:    | CCFG_SMCNFCS |    |    |           |           |           |           |
|----------|--------------|----|----|-----------|-----------|-----------|-----------|
| Address: | 0x400E0324   |    |    |           |           |           |           |
| Туре:    | Read-write   |    |    |           |           |           |           |
| Reset:   | 0x0000_0000  |    |    |           |           |           |           |
| 31       | 30           | 29 | 28 | 27        | 26        | 25        | 24        |
| -        | -            | -  | -  | -         | -         | -         | -         |
| 23       | 22           | 21 | 20 | 19        | 18        | 17        | 16        |
| -        | -            | -  | -  | -         | -         | -         | -         |
| 15       | 14           | 13 | 12 | 11        | 10        | 9         | 8         |
| -        | -            | -  | -  | -         | -         | -         | -         |
|          |              |    |    |           |           |           |           |
| 7        | 6            | 5  | 4  | 3         | 2         | 1         | 0         |
| -        | -            | _  | _  | SMC_NFCS3 | SMC_NFCS2 | SMC_NFCS1 | SMC_NFCS0 |

#### • SMC\_NFCS0: SMC NAND Flash Chip Select 0 Assignment

0 = NCS0 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS0)

1 = NCS0 is assigned to a NAND Flash (NANDOE and NANWE used for NCS0)

#### • SMC\_NFCS1: SMC NAND Flash Chip Select 1 Assignment

0 = NCS1 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS1)

1 = NCS1 is assigned to a NAND Flash (NANDOE and NANWE used for NCS1)

#### • SMC\_NFCS2: SMC NAND Flash Chip Select 2 Assignment

0 = NCS2 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS2)

1 = NCS2 is assigned to a NAND Flash (NANDOE and NANWE used for NCS2)

#### • SMC\_NFCS3: SMC NAND Flash Chip Select 3 Assignment

0 = NCS3 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS3)

1 = NCS3 is assigned to a NAND Flash (NANDOE and NANWE used for NCS3)

# 27. DMA Controller (DMAC)

## 27.1 Description

The DMA Controller (DMAC) is an AHB-central DMA controller core that transfers data from a source peripheral to a destination peripheral over one or more AMBA buses. One channel is required for each source/destination pair. In the most basic configuration, the DMAC has one master interface and one channel. The master interface reads the data from a source and writes it to a destination. Two AMBA transfers are required for each DMAC data transfer. This is also known as a dual-access transfer.

The DMAC is programmed via the APB interface.

## 27.2 Embedded Characteristics

- 1 AHB-Lite Master Interfaces
- DMA Module Supports the Following Transfer Schemes: Peripheral-to-Memory, Memory-to-Peripheral, Peripheralto-Peripheral and Memory-to-Memory
- Source and Destination Operate independently on BYTE (8-bit), HALF-WORD (16-bit) and WORD (32-bit)
- Supports Hardware and Software Initiated Transfers
- Supports Multiple Buffer Chaining Operations
- Supports Incrementing/decrementing/fixed Addressing Mode Independently for Source and Destination
- Programmable Arbitration Policy, Modified Round Robin and Fixed Priority are Available
- Supports Specified Length and Unspecified Length AMBA AHB Burst Access to Maximize Data Bandwidth
- AMBA APB Interface Used to Program the DMA Controller
- 4 DMA Channels
- 16 External Request Lines
- Embedded FIFO
- Channel Locking and Bus Locking Capability

The DMA Controller can handle the transfer between peripherals and memory and so receives the triggers from the peripherals listed below.

The hardware interface numbers are given in Table 27-1.

| Instance Name | Channel T/R      | DMA Channel HW<br>Interface Number |
|---------------|------------------|------------------------------------|
| HSMCI         | Transmit/Receive | 0                                  |
| SPI           | Transmit         | 1                                  |
| SPI           | Receive          | 2                                  |
| USART0        | Transmit         | 3                                  |
| USART0        | Receive          | 4                                  |
| USART1        | Transmit         | 5                                  |
| USART1        | Receive          | 6                                  |
| AES           | Transmit         | 11                                 |
| AES           | Receive          | 12                                 |
| PWM           | Transmit         | 13                                 |

#### Table 27-1. DMA Controller

#### 27.7.20 DMAC Write Protect Status Register

| Name:    | DMAC_WPSR      |    |     |      |    |    |      |
|----------|----------------|----|-----|------|----|----|------|
| Address: | 0x400C01E8     |    |     |      |    |    |      |
| Access:  | Read-only      |    |     |      |    |    |      |
| Reset:   | See Table 27-4 |    |     |      |    |    |      |
| 31       | 30             | 29 | 28  | 27   | 26 | 25 | 24   |
|          | —              | —  | —   | —    | —  | —  | —    |
| 23       | 22             | 21 | 20  | 19   | 18 | 17 | 16   |
|          |                |    | WPV | /SRC |    |    |      |
| 15       | 14             | 13 | 12  | 11   | 10 | 9  | 8    |
|          |                |    | WPV | SRC  |    |    |      |
| 7        | 6              | 5  | 4   | 3    | 2  | 1  | 0    |
| _        | —              | _  | _   | _    | _  | —  | WPVS |

#### • WPVS: Write Protect Violation Status

0 = No Write Protect Violation has occurred since the last read of the DMAC\_WPSR register.

1 = A Write Protect Violation has occurred since the last read of the DMAC\_WPSR register. If this violation is an unauthorized attempt to write a protected register, the associated violation is reported into field WPVSRC.

#### • WPVSRC: Write Protect Violation Source

When WPVS is active, this field indicates the write-protected register (through address offset or code) in which a write access has been attempted.

Note: Reading DMAC\_WPSR automatically clears all fields.

Atmel

## 28.15 Static Memory Controller (SMC) User Interface

The SMC is programmed using the registers listed in Table 28-7. For each chip select, a set of 4 registers is used to program the parameters of the external device connected on it. In Table 28-7, "CS\_number" denotes the chip select number. 16 bytes (0x10) are required per chip select.

The user must complete writing the configuration by writing any one of the SMC\_MODE registers.

#### Table 28-7. Register Mapping

| Offset                  | Register                          | Name      | Access     | Reset      |
|-------------------------|-----------------------------------|-----------|------------|------------|
| 0x10 x CS_number + 0x00 | SMC Setup Register                | SMC_SETUP | Read-write | 0x01010101 |
| 0x10 x CS_number + 0x04 | SMC Pulse Register                | SMC_PULSE | Read-write | 0x01010101 |
| 0x10 x CS_number + 0x08 | SMC Cycle Register                | SMC_CYCLE | Read-write | 0x00030003 |
| 0x10 x CS_number + 0x0C | SMC Mode Register                 | SMC_MODE  | Read-write | 0x1000003  |
| 0x80                    | SMC OCMS MODE Register            | SMC_OCMS  | Read-write | 0x0000000  |
| 0x84                    | SMC OCMS KEY1 Register            | SMC_KEY1  | Write once | 0x0000000  |
| 0x88                    | SMC OCMS KEY2 Register            | SMC_KEY2  | Write once | 0x00000000 |
| 0xE4                    | SMC Write Protect Mode Register   | SMC_WPMR  | Read-write | 0x0000000  |
| 0xE8                    | SMC Write Protect Status Register | SMC_WPSR  | Read-only  | 0x0000000  |
| 0xEC-0xFC               | Reserved                          | -         | -          | -          |

| 30.2.16.10<br>Name: | PMC Master Clo<br>PMC_MCKR | ck Register |          |    |    |    |    |
|---------------------|----------------------------|-------------|----------|----|----|----|----|
| Address:            | 0x400E0430                 |             |          |    |    |    |    |
| Access:             | Read-write                 |             |          |    |    |    |    |
| 31                  | 30                         | 29          | 28       | 27 | 26 | 25 | 24 |
| _                   | -                          | -           | -        | -  | -  | -  | -  |
| 23                  | 22                         | 21          | 20       | 19 | 18 | 17 | 16 |
| _                   | -                          | -           | -        | -  | -  | -  | -  |
| 15                  | 14                         | 13          | 12       | 11 | 10 | 9  | 8  |
| -                   | -                          | -           | PLLADIV2 | -  | -  | -  | -  |
| 7                   | 6                          | 5           | 4        | 3  | 2  | 1  | 0  |
| _                   |                            | PRES        |          | -  | -  | C  | SS |

This register can only be written if the WPEN bit is cleared in "PMC Write Protect Mode Register" .

#### CSS: Master Clock Source Selection

| Value | Name     | Description            |
|-------|----------|------------------------|
| 0     | SLOW_CLK | Slow Clock is selected |
| 1     | MAIN_CLK | Main Clock is selected |
| 2     | PLLA_CLK | PLLA Clock is selected |

## • PRES: Processor Clock Prescaler

| Value    | Name   | Description                  |  |
|----------|--------|------------------------------|--|
| 0        | CLK_1  | Selected clock               |  |
| 1        | CLK_2  | Selected clock divided by 2  |  |
| 2        | CLK_4  | Selected clock divided by 4  |  |
| 3        | CLK_8  | Selected clock divided by 8  |  |
| 4        | CLK_16 | Selected clock divided by 16 |  |
| 5        | CLK_32 | Selected clock divided by 32 |  |
| 6 CLK_64 |        | Selected clock divided by 64 |  |
| 7        | CLK_3  | Selected clock divided by 3  |  |

#### • PLLADIV2: PLLA Divisor by 2

| PLLADIV2 | PLLA Clock Division                   |
|----------|---------------------------------------|
| 0        | PLLA clock frequency is divided by 1. |
| 1        | PLLA clock frequency is divided by 2. |

| 30.2.16.15<br>Name: | PMC Status Regis | ster |     |        |         |         |          |
|---------------------|------------------|------|-----|--------|---------|---------|----------|
| Address:            | 0x400E0468       |      |     |        |         |         |          |
| Access:             | Read-only        |      |     |        |         |         |          |
| 31                  | 30               | 29   | 28  | 27     | 26      | 25      | 24       |
| _                   | -                | _    | -   | -      | -       | -       | -        |
| 23                  | 22               | 21   | 20  | 19     | 18      | 17      | 16       |
| _                   | -                | _    | FOS | CFDS   | CFDEV   | MOSCRCS | MOSCSELS |
| 15                  | 14               | 13   | 12  | 11     | 10      | 9       | 8        |
| _                   | -                | _    | -   | -      | PCKRDY2 | PCKRDY1 | PCKRDY0  |
| 7                   | 6                | 5    | 4   | 3      | 2       | 1       | 0        |
| OSCSELS             | -                | _    | _   | MCKRDY | _       | LOCKA   | MOSCXTS  |

#### • MOSCXTS: Main XTAL Oscillator Status

0 = Main XTAL oscillator is not stabilized.

1 = Main XTAL oscillator is stabilized.

#### • LOCKA: PLLA Lock Status

0 = PLLA is not locked

1 = PLLA is locked.

#### • MCKRDY: Master Clock Status

0 = Master Clock is not ready.

1 = Master Clock is ready.

#### OSCSELS: Slow Clock Oscillator Selection

0 = Internal slow clock RC oscillator is selected.

1 = External slow clock 32 kHz oscillator is selected.

#### • PCKRDYx: Programmable Clock Ready Status

0 = Programmable Clock x is not ready.

1 = Programmable Clock x is ready.

### MOSCSELS: Main Oscillator Selection Status

0 = Selection is in progress.

1 = Selection is done.

## • MOSCRCS: Main On-Chip RC Oscillator Status

- 0 = Main on-chip RC oscillator is not stabilized.
- 1 = Main on-chip RC oscillator is stabilized.
- CFDEV: Clock Failure Detector Event

Atmel

| 30.2.16.24<br>Name: | PMC Peripheral Clock Status Register 1<br>PMC_PCSR1 |       |       |       |       |       |       |  |
|---------------------|-----------------------------------------------------|-------|-------|-------|-------|-------|-------|--|
| Address:            | 0x400E0508                                          |       |       |       |       |       |       |  |
| Access:             | Read-only                                           |       |       |       |       |       |       |  |
| 31                  | 30                                                  | 29    | 28    | 27    | 26    | 25    | 24    |  |
| _                   | -                                                   | _     | _     | _     | _     | _     | _     |  |
| 23                  | 22                                                  | 21    | 20    | 19    | 18    | 17    | 16    |  |
| _                   | -                                                   | -     | _     | —     | -     | —     | _     |  |
| 15                  | 14                                                  | 13    | 12    | 11    | 10    | 9     | 8     |  |
| PID47               | PID46                                               | PID45 | PID44 | PID43 | PID42 | PID41 | PID40 |  |
| 7                   | 6                                                   | 5     | 4     | 3     | 2     | 1     | 0     |  |
| PID39               | PID38                                               | PID37 | PID36 | PID35 | PID34 | PID33 | PID32 |  |

#### • PIDx: Peripheral Clock x Status

0 = The corresponding peripheral clock is disabled.

1 = The corresponding peripheral clock is enabled.

Note: To get PIDx, refer to identifiers as defined in the section "Peripheral Identifiers" in the product datasheet.

# 32. Controller Area Network (CAN) Programmer Datasheet

## 32.1 Description

The CAN controller provides all the features required to implement the serial communication protocol CAN defined by Robert Bosch GmbH, the CAN specification as referred to by ISO/11898A (2.0 Part A and 2.0 Part B) for high speeds and ISO/11519-2 for low speeds. The CAN Controller is able to handle all types of frames (Data, Remote, Error and Overload) and achieves a bitrate of 1 Mbps.

CAN controller accesses are made through configuration registers. 8 independent message objects (mailboxes) are implemented.

Any mailbox can be programmed as a reception buffer block (even non-consecutive buffers). For the reception of defined messages, one or several message objects can be masked without participating in the buffer feature. An interrupt is generated when the buffer is full. According to the mailbox configuration, the first message received can be locked in the CAN controller registers until the application acknowledges it, or this message can be discarded by new received messages.

Any mailbox can be programmed for transmission. Several transmission mailboxes can be enabled in the same time. A priority can be defined for each mailbox independently.

An internal 16-bit timer is used to stamp each received and sent message. This timer starts counting as soon as the CAN controller is enabled. This counter can be reset by the application or automatically after a reception in the last mailbox in Time Triggered Mode.

The CAN controller offers optimized features to support the Time Triggered Communication (TTC) protocol.

### 32.2 Embedded Characteristics

- Fully Compliant with CAN 2.0 Part A and 2.0 Part B
- Bit Rates up to 1Mbit/s
- 8 Object Oriented Mailboxes with the Following Properties:
  - CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message
  - Object Configurable in Receive (with Overwrite or Not) or Transmit Modes
  - Independent 29-bit Identifier and Mask Defined for Each Mailbox
  - 32-bit Access to Data Registers for Each Mailbox Data Object
  - Uses a 16-bit Timestamp on Receive and Transmit Messages
  - Hardware Concatenation of ID Masked Bitfields To Speed Up Family ID Processing
- 16-bit Internal Timer for Timestamping and Network Synchronization
- Programmable Reception Buffer Length up to 8 Mailbox Objects
- Priority Management between Transmission Mailboxes
- Autobaud and Listening Mode
- Low Power Mode and Programmable Wake-up on Bus Activity or by the Application
- Data, Remote, Error and Overload Frame Handling
- Write Protected Registers

#### 32.9.8 CAN Timestamp Register

| Name:    | CAN_TIMESTP     |                |       |       |    |    |    |
|----------|-----------------|----------------|-------|-------|----|----|----|
| Address: | 0x4001001C (0), | 0x4001401C (1) | )     |       |    |    |    |
| Access:  | Read-only       |                |       |       |    |    |    |
| 31       | 30              | 29             | 28    | 27    | 26 | 25 | 24 |
| -        | -               | _              | -     | -     | _  | -  | _  |
| 23       | 22              | 21             | 20    | 19    | 18 | 17 | 16 |
| -        | -               | _              | _     | -     | -  | _  | -  |
| 15       | 14              | 13             | 12    | 11    | 10 | 9  | 8  |
|          |                 |                | MTIME | STAMP |    |    |    |
| 7        | 6               | 5              | 4     | 3     | 2  | 1  | 0  |
|          |                 |                | MTIME | STAMP |    |    |    |

#### • MTIMESTAMP: Timestamp

This field carries the value of the internal CAN controller 16-bit timer value at the start or end of frame.

If the TEOF bit is cleared in the CAN\_MR register, the internal Timer Counter value is captured in the MTIMESTAMP field at each start of frame else the value is captured at each end of frame. When the value is captured, the TSTP flag is set in the CAN\_SR register. If the TSTP mask in the CAN\_IMR register is set, an interrupt is generated while TSTP flag is set in the CAN\_SR register. This flag is cleared by reading the CAN\_SR register.

Note: The CAN\_TIMESTP register is reset when the CAN is disabled then enabled thanks to the CANEN bit in the CAN\_MR.



The SD Memory Card bus includes the signals listed in Table 39-5.

 Table 39-5.
 SD Memory Card Bus Signals

| Pin<br>Number | Name      | Type <sup>(1)</sup> | Description                  | HSMCI Pin Name <sup>(2)</sup><br>(Slot z) |
|---------------|-----------|---------------------|------------------------------|-------------------------------------------|
| 1             | CD/DAT[3] | I/O/PP              | Card detect/ Data line Bit 3 | MCDz3                                     |
| 2             | CMD       | PP                  | Command/response             | MCCDz                                     |
| 3             | VSS1      | S                   | Supply voltage ground        | VSS                                       |
| 4             | VDD       | S                   | Supply voltage               | VDD                                       |
| 5             | CLK       | I/O                 | Clock                        | MCCK                                      |
| 6             | VSS2      | S                   | Supply voltage ground        | VSS                                       |
| 7             | DAT[0]    | I/O/PP              | Data line Bit 0              | MCDz0                                     |
| 8             | DAT[1]    | I/O/PP              | Data line Bit 1 or Interrupt | MCDz1                                     |
| 9             | DAT[2]    | I/O/PP              | Data line Bit 2              | MCDz2                                     |

Notes: 1. I: input, O: output, PP: Push Pull, OD: Open Drain.

2. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx\_CK, MCCDA to HSMCIx\_CDA, MCDAy to HSMCIx\_DAy.

Figure 39-6. SD Card Bus Connections with One Slot



Note: When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx\_CK, MCCDA to HSMCIx\_CDA MCDAy to HSMCIx\_DAy.

When the HSMCI is configured to operate with SD memory cards, the width of the data bus can be selected in the HSMCI\_SDCR register. Clearing the SDCBUS bit in this register means that the width is one bit; setting it means that the width is four bits. In the case of High Speed MultiMedia cards, only the data line 0 is used. The other data lines can be used as independent PIOs.

#### Figure 40-5. Waveform Properties



## 44.4 Signal Interface

The GMAC includes the following signal interfaces

- MII to an external PHY
- MDIO interface for external PHY management
- Slave APB interface for accessing GMAC registers
- Master AHB interface for memory access

Table 44-1. GMAC connections in the different modes

| Signal Name | Function                          | MII      |
|-------------|-----------------------------------|----------|
| GTXCK       | Transmit Clock or Reference Clock | ТХСК     |
| GTXEN       | Transmit Enable                   | TXEN     |
| GTX[30]     | Transmit Data                     | TXD[3:0] |
| GTXER       | Transmit Coding Error             | TXER     |
| GRXCK       | Receive Clock                     | RXCK     |
| GRXDV       | Receive Data Valid                | RXDV     |
| GRX[30]     | Receive Data                      | RXD[3:0] |
| GRXER       | Receive Error                     | RXER     |
| GCRS        | Carrier Sense and Data Valid      | CRS      |
| GCOL        | Collision Detect                  | COL      |
| GMDC        | Management Data Clock             | MDC      |
| GMDIO       | Management Data Input/Output      | MDIO     |

Atmel

| Namo     | CMAC TMYREP  |    | -  |    |    |    |    |
|----------|--------------|----|----|----|----|----|----|
| Name.    | GWAC_TWADI K |    |    |    |    |    |    |
| Address: | 0x40034180   |    |    |    |    |    |    |
| Access:  | Read-only    |    |    |    |    |    |    |
| 31       | 30           | 29 | 28 | 27 | 26 | 25 | 24 |
|          |              |    | NF | RX |    |    |    |
| 23       | 22           | 21 | 20 | 19 | 18 | 17 | 16 |
|          |              |    | NF | RX |    |    |    |
| 15       | 14           | 13 | 12 | 11 | 10 | 9  | 8  |
|          |              |    | NF | RX |    |    |    |
| 7        | 6            | 5  | 4  | 3  | 2  | 1  | 0  |
|          |              |    | NF | RX |    |    |    |

## 44.7.68 1519 to Maximum Byte Frames Received Register

## • NFRX: 1519 to Maximum Byte Frames Received without Error

This register counts the number of 1519 byte or above frames successfully received without error. Maximum frame size is determined by the Network Configuration Register bit 8 (1536 maximum frame size) or bit 3 (jumbo frame size). Excludes pause frames, and is only incremented if the frame is successfully filtered and copied to memory. See: Section 44.7.2 "Network Configuration Register".

## 45.7 Digital-to-Analog Converter Controller (DACC) User Interface

#### Table 45-3. Register Mapping

| Offset      | Register                      | Name      | Access     | Reset      |
|-------------|-------------------------------|-----------|------------|------------|
| 0x00        | Control Register              | DACC_CR   | Write-only | -          |
| 0x04        | Mode Register                 | DACC_MR   | Read-write | 0x00000000 |
| 0x08        | Reserved                      | _         | _          | _          |
| 0x0C        | Reserved                      | _         | _          | _          |
| 0x10        | Channel Enable Register       | DACC_CHER | Write-only | _          |
| 0x14        | Channel Disable Register      | DACC_CHDR | Write-only | _          |
| 0x18        | Channel Status Register       | DACC_CHSR | Read-only  | 0x0000000  |
| 0x1C        | Reserved                      | _         | _          | _          |
| 0x20        | Conversion Data Register      | DACC_CDR  | Write-only | 0x0000000  |
| 0x24        | Interrupt Enable Register     | DACC_IER  | Write-only | _          |
| 0x28        | Interrupt Disable Register    | DACC_IDR  | Write-only | _          |
| 0x2C        | Interrupt Mask Register       | DACC_IMR  | Read-only  | 0x0000000  |
| 0x30        | Interrupt Status Register     | DACC_ISR  | Read-only  | 0x0000000  |
| 0x94        | Analog Current Register       | DACC_ACR  | Read-write | 0x0000000  |
| 0xE4        | Write Protect Mode register   | DACC_WPMR | Read-write | 0x0000000  |
| 0xE8        | Write Protect Status register | DACC_WPSR | Read-only  | 0x0000000  |
|             |                               |           |            |            |
| 0xEC - 0xFC | Reserved                      | _         | _          | _          |

#### 46.7.2 Static Performance Characteristics

In the tables that follow, the LSB is relative to analog scale:

- Single Ended (ex: ADVREF=3.0V),
  - Gain = 1, LSB = (3.0V / 4096) = 732 uV
  - Gain = 2, LSB = (1.5V / 4096) = 366 uV
  - Gain = 4, LSB = (750 mV / 4096) = 183 uV
- Differential (ex: ADVREF=3.0V),
  - Gain = 0.5, LSB = (6.0V / 4096) = 1465 uV
  - Gain = 1, LSB = (3.0V / 4096) = 732 uV
  - Gain = 2, LSB = (1.5V / 4096) = 366 uV

#### Table 46-32. INL, DNL, 12-bit mode, VDDIN 2.4V to 3.6V Supply Voltage Conditions for All Gains

| Parameter                        | Conditions                                                                  | Min | Тур    | Max | Units |
|----------------------------------|-----------------------------------------------------------------------------|-----|--------|-----|-------|
| Resolution                       |                                                                             |     | 12     |     | bit   |
| Integral Non-linearity (INL)     | f <sub>ADC</sub> = 2 MHz; differential mode or single<br>mode,<br>Gain = xx | -2  | +/-1   | 2   | LSB   |
| Differential Non-linearity (DNL) | f <sub>ADC</sub> = 2 MHz; differential mode or single<br>mode,<br>Gain = xx | -1  | +/-0.5 | 1   | LSB   |

#### Table 46-33. Gain and Error Offset, 12-bit Mode, VDDIN 2.4V to 3.6V Supply Voltage Conditions

| Parameter                     | Conditions                    | Min   | Тур | Max | Units |  |  |  |
|-------------------------------|-------------------------------|-------|-----|-----|-------|--|--|--|
|                               | Differential mode, Gain = 0.5 | -18   | _   | 18  |       |  |  |  |
|                               | Differential mode, Gain = 1   | -35   |     | 35  |       |  |  |  |
| Offset Error                  | Differential mode, Gain = 2   | -60   | _   | 60  |       |  |  |  |
| (Without DAC Compensation)    | Single Ended Gain = 1         | -18   | _   | 18  | - LSB |  |  |  |
|                               | Single Ended Gain = 2         | -35   | _   | 35  |       |  |  |  |
|                               | Single Ended Gain = 4         | -60   | _   | 60  |       |  |  |  |
|                               | Differential mode,            | 50    | _   | 0   |       |  |  |  |
| Gain Error, after calibration | Gain = xx                     | -50   |     | 0   |       |  |  |  |
|                               | Single Ended                  | -25 — |     | 0   |       |  |  |  |
|                               | Gain = xx                     |       |     |     |       |  |  |  |