
Microchip Technology - ATSAM4E8CA-AUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, Ethernet, IrDA, MMC/SD, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 79

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4e8ca-aur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4e8ca-aur-4391967
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


9. Real-time Event Management
The events generated by peripherals are designed to be directly routed to peripherals managing/using these
events without processor intervention. Peripherals receiving events contain logic by which to select the one
required.

9.1 Embedded Characteristics
• Timers, PWM, IO peripherals generate event triggers which are directly routed to event managers such as

AFEC or DACC, for example, to start measurement/conversion without processor intervention.

• UART, USART, SPI, TWI, PWM, HSMCI, AES, AFEC, DACC, PIO, TIMER (capture mode) also generate event
triggers directly connected to Peripheral DMA Controller (PDC) for data transfer without processor intervention.

• Parallel capture logic is directly embedded in PIO and generates trigger event to Peripheral DMA Controller to
capture data without processor intervention.

• PWM security events (faults) are in combinational form and directly routed from event generators (ADC, ACC,
PMC, TIMER) to PWM module.

• PWM output comparators generate events directly connected to TIMER.

• PMC security event (clock failure detection) can be programmed to switch the MCK on reliable main RC internal
clock without processor intervention.
 29SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



12.4.1.15  Base Priority Mask Register
Name: BASEPRI

Access: Read-write

Reset: 0x000000000 

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it pre-
vents the activation of all exceptions with same or lower priority level as the BASEPRI value. 

• BASEPRI

Priority mask bits:

0x0000 = No effect.

Nonzero = Defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field, 
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers”  for more information. Remember that higher priority 
field values correspond to lower exception priorities.

31 30 29 28 27 26 25 24
–

23 22 21 20 19 18 17 16
–

15 14 13 12 11 10 9 8
–

7 6 5 4 3 2 1 0
BASEPRI
 55SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



When PC is in reglist in an LDM instruction:
 Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned 

address
 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples
LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3-R6,R11,R12}

Incorrect Examples
STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list

12.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{cond} reglist

POP{cond} reglist

where:

cond is an optional condition code, see “Conditional Execution” .

reglist is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or 
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on SP,
and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in these
cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered register using
the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register using the
lowest memory address and the highest numbered register using the highest memory address. 

See “LDM and STM”  for more information.

Restrictions

In these instructions:
 reglist must not contain SP
 For the PUSH instruction, reglist must not contain PC
 For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:
 Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned 

address
 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples
 97SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



12.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions:

Table 12-21. Multiply and Divide Instructions 

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result

MLS Multiply and Subtract, 32-bit result

MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX Signed Multiply Accumulate Dual

SMLAL Signed Multiply with Accumulate (32x32+64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)

SMLALD, SMLALDX Signed Multiply Accumulate Long Dual

SMLAW[B|T] Signed Multiply Accumulate (word by halfword)

SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX Signed Dual Multiply Add

SMUL[B,T] Signed Multiply (word by halfword)

SMMUL, SMMULR Signed Most Significant Word Multiply

SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT Signed Multiply (word by halfword)

SMUSD, SMUSDX Signed Dual Multiply Subtract

UDIV Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long 
(32x32+32+32), 64-bit result

UMLAL Unsigned Multiply with Accumulate (32x32+64), 64-bit result

UMULL Unsigned Multiply (32x32), 64-bit result
 125SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



 If X is not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the bottom 
signed halfword values of Rn with the bottom signed halfword of Rm.

 Or if X is present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and the 
bottom signed halfword values of Rn with the top signed halfword of Rm.

 Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit product.
 Write the 64-bit product in RdLo and RdHi.

Restrictions

In these instructions:
 Do not use SP and do not use PC.
 RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SMLAL R4, R5, R3, R8 ; Multiplies R3 and R8, adds R5:R4 and writes to

; R5:R4
SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top

; halfword of R7, sign extends to 32-bit, adds
; R1:R2 and writes to R1:R2

SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
; halfword of R7,sign extends to 32-bit, adds R1:R2
; and writes to R1:R2

SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and bottom
; halfwords of R5 and R1, adds R8:R6 and writes to
; R8:R6

SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
; halfword of R1, and bottom halfword of R5 with
; top halfword of R1, adds R8:R6 and writes to
; R8:R6.

12.6.6.6  SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm, Ra

where:

op is one of:

SMLSD Signed Multiply Subtract Dual.

SMLSDX Signed Multiply Subtract Dual Reversed.

SMLSLD Signed Multiply Subtract Long Dual.

SMLSLDX Signed Multiply Subtract Long Dual Reversed.

SMLAW Signed Multiply Accumulate (word by halfword).

If X is present, the multiplications are bottom × top and top × bottom.
If the X is omitted, the multiplications are bottom × bottom and top × top.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Ra is the register holding the accumulate value.

Operation
 131SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



Write:

0: No effect.

1: Removes the pending state from the PendSV exception.

• PENDSTSET: SysTick Exception Set-pending

Write:

0: No effect.

1: Changes SysTick exception state to pending.

Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

• PENDSTCLR: SysTick Exception Clear-pending

Write:

0: No effect.

1: Removes the pending state from the SysTick exception.

This bit is Write-only. On a register read, its value is Unknown.

• ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)

0: Interrupt not pending.

1: Interrupt pending.

• VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception

0: No pending exceptions.

Nonzero: The exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the PRI-
MASK register.

• RETTOBASE: Preempted Active Exceptions Present or Not

0: There are preempted active exceptions to execute.

1: There are no active exceptions, or the currently-executing exception is the only active exception.

• VECTACTIVE: Active Exception Number Contained

0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt Program 
Status Register” .

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-Pend-
ing, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” .
Note: When the user writes to the SCB_ICSR register, the effect is unpredictable if:

- Writing 1 to the PENDSVSET bit and writing 1 to the PENDSVCLR bit
- Writing 1 to the PENDSTSET bit and writing 1 to the PENDSTCLR bit.
 204SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



12.9.1.14  Configurable Fault Status Register (Byte Access)
Name: SCB_CFSR (BYTE)

Access: Read-write

Reset: 0x000000000

• MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section 
12.9.1.13.

• BFSR: Bus Fault Status Subregister

The flags in the BFSR subregister indicate the cause of a bus access fault. See bitfield [14..8] description in Section 12.9.1.13.

• UFSR: Usage Fault Status Subregister

The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 12.9.1.13.
Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is set 

to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

The SCB_CFSR register indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The 
user can access the SCB_CFSR register or its subregisters as follows:

• Access complete SCB_CFSR with a word access to 0xE000ED28

• Access MMFSR with a byte access to 0xE000ED28

• Access MMFSR and BFSR with a halfword access to 0xE000ED28

• Access BFSR with a byte access to 0xE000ED29

• Access UFSR with a halfword access to 0xE000ED2A.

31 30 29 28 27 26 25 24
UFSR

23 22 21 20 19 18 17 16
UFSR

15 14 13 12 11 10 9 8
BFSR

7 6 5 4 3 2 1 0
MMFSR
 221SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



18.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1888

Access: Read-only 

• ACK: Acknowledge Update Interrupt Mask

0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

• ALR: Alarm Interrupt Mask

0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

• SEC: Second Event Interrupt Mask

0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

• TIM: Time Event Interrupt Mask

0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

• CAL: Calendar Event Interrupt Mask

0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – CAL TIM SEC ALR ACK
 323SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



19.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1854

Access: Read-write Once 

Note: The first write access prevents any further modification of the value of this register, read accesses remain possible.
Note: The WDD and WDV values must not be modified within a period of time of 3 slow clock periods following a restart of 

the watchdog performed by means of a write access in the WDT_CR register, else the watchdog may trigger an end 
of period earlier than expected.

• WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit Watchdog Counter. 

• WDFIEN: Watchdog Fault Interrupt Enable

0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable

0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

• WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

• WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer. 

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer. 

If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

• WDDBGHLT: Watchdog Debug Halt

0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

31 30 29 28 27 26 25 24
WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16
WDD

15 14 13 12 11 10 9 8
WDDIS WDRPROC WDRSTEN WDFIEN WDV

7 6 5 4 3 2 1 0
WDV
 331SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



30.1.5 Main Clock
Figure 30-3 shows the Main Clock block diagram.

Figure 30-3. Main Clock Block Diagram

The Main Clock has two sources:

• 4/8/12 MHz Fast RC Oscillator which starts very quickly and is used at start-up.

• 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator which can be bypassed.

30.1.5.1 Fast RC Oscillator
After reset, the 4/8/12 MHz Fast RC Oscillator is enabled with the 4 MHz frequency selected and
it is selected as the source of MAINCK. MAINCK is the default clock selected to start up the
system.

The Fast RC Oscillator frequencies are calibrated in production except the lowest frequency
which is not calibrated.

Please refer to the “DC Characteristics” section of the product datasheet.

The software can disable or enable the 4/8/12 MHz Fast RC Oscillator with the MOSCRCEN bit
in the Clock Generator Main Oscillator Register (CKGR_MOR).

The user can also select the output frequency of the Fast RC Oscillator, either 4/8/12 MHz are
available. It can be done through MOSCRCF bits in CKGR_MOR. When changing this fre-

XIN

XOUT

MOSCXTEN

MOSCXTST

MOSCXTS

Main Clock
Frequency

Counter

MAINF

MAINRDY

SLCK
Slow Clock

3-20 MHz
Crystal

or
Ceramic Resonator

Oscillator

3-20 MHz
Oscillator
Counter

MOSCRCEN

Fast RC
Oscillator

MOSCRCS

MOSCRCF

MOSCRCEN

MOSCXTEN

MOSCSEL

MOSCSEL MOSCSELS

1

0

MAINCK
Main Clock

MAINCK
Main Clock

Ref.

RCMEAS
 534SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13

Atmel Confidential



When disabling the main oscillator by clearing the MOSCXTEN bit in CKGR_MOR, the
MOSCXTS bit in PMC_SR is automatically cleared, indicating the Main Clock is off.

When enabling the main oscillator, the user must initiate the main oscillator counter with a value
corresponding to the start-up time of the oscillator. This start-up time depends on the crystal fre-
quency connected to the oscillator.

When the MOSCXTEN bit and the MOSCXTST are written in CKGR_MOR to enable the main
oscillator, the XIN and XOUT pins are automatically switched into oscillator mode and
MOSCXTS bit in the Power Management Controller Status Register (PMC_SR) is cleared and
the counter starts counting down on the slow clock divided by 8 from the MOSCXTST value.
Since the MOSCXTST value is coded with 8 bits, the maximum start-up time is about 62 ms.

When the counter reaches 0, the MOSCXTS bit is set, indicating that the main clock is valid.
Setting the MOSCXTS bit in PMC_IMR can trigger an interrupt to the processor.

30.1.5.4 Main Clock Oscillator Selection
The user can select either the 4/8/12 MHz Fast RC Oscillator or the 3 to 20 MHz Crystal or
Ceramic Resonator-based oscillator to be the source of Main Clock.

The advantage of the 4/8/12 MHz Fast RC Oscillator is that it provides fast start-up time, this is
why it is selected by default (to start up the system) and when entering Wait Mode.

The advantage of the 3 to 20 MHz Crystal or Ceramic Resonator-based oscillator is that it is very
accurate.

The selection is made by writing the MOSCSEL bit in the Main Oscillator Register
(CKGR_MOR). The switch of the Main Clock source is glitch free, so there is no need to run out
of SLCK, PLLACK in order to change the selection. The MOSCSELS bit of the Power Manage-
ment Controller Status Register (PMC_SR) allows knowing when the switch sequence is done.

Setting the MOSCSELS bit in PMC_IMR can trigger an interrupt to the processor.

Enabling the Fast RC Oscillator (MOSCRCEN = 1) and changing the Fast RC Frequency
(MOSCCRF) at the same time is not allowed.

The Fast RC must be enabled first and its frequency changed in a second step.

30.1.5.5 Software Sequence to Detect the Presence of Fast Crystal
The frequency meter carried on the CKGR_MCFR register is operating on the selected main
clock and not on the fast crystal clock nor on the fast RC Oscillator clock.

Therefore, to check for the presence of the fast crystal clock, it is necessary to have the main
clock (MAINCK) driven by the fast crystal clock (MOSCSEL=1).

The following software sequence order must be followed:

– MCK must select the slow clock (CSS=0 in the PMC_MCKR register).

– Wait for the MCKRDY flag in the PMC_SR register to be 1.

– The fast crystal must be enabled by programming 1 in the MOSCXTEN field in the
CKGR_MOR register with the MOSCXTST field being programmed to the
appropriate value (see the Electrical Characteristics chapter).

– Wait for the MOSCXTS flag to be 1 in the PMC_SR register to get the end of a start-
up period of the fast crystal oscillator.
 536SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13

Atmel Confidential



30.2.16.11 PMC USB Clock Register
Name: PMC_USB

Address: 0x400E0438

Access: Read-write

This register can only be written if the WPEN bit is cleared in “PMC Write Protect Mode Register” .

• USBDIV: Divider for USB Clock

USB Clock is Input clock divided by USBDIV+1.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – USBDIV

7 6 5 4 3 2 1 0
– – – – – – – –
 564SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13

Atmel Confidential



31.6.8 AES Input Data Register x

Name: AES_IDATARx

Address: 0x40004040

Access: Write-only

• IDATA: Input Data Word

The four 32-bit Input Data registers set the 128-bit data block used for encryption/decryption. 

AES_IDATAR0 corresponds to the first word of the data to be encrypted/decrypted, and AES_IDATAR3 to the last one.

These registers are write-only to prevent the input data from being read by another application.

31 30 29 28 27 26 25 24

IDATA

23 22 21 20 19 18 17 16

IDATA

15 14 13 12 11 10 9 8

IDATA

7 6 5 4 3 2 1 0

IDATA
 596SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



32.9.10 CAN Transfer Command Register

Name: CAN_TCR

Address: 0x40010024 (0), 0x40014024 (1)

Access: Write-only

This register initializes several transfer requests at the same time.

• MBx: Transfer Request for Mailbox x

This flag clears the MRDY and MABT flags in the corresponding CAN_MSRx register.

When several mailboxes are requested to be transmitted simultaneously, they are transmitted in turn, starting with the mailbox 
with the highest priority. If several mailboxes have the same priority, then the mailbox with the lowest number is sent first (i.e., 
MB0 will be transferred before MB1).

• TIMRST: Timer Reset

Resets the internal timer counter. If the internal timer counter is frozen, this command automatically re-enables it. This command 
is useful in Time Triggered mode.

31 30 29 28 27 26 25 24
TIMRST – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –
7 6 5 4 3 2 1 0

MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

Mailbox Object Type Description

Receive It receives the next message. 

Receive with overwrite This triggers a new reception.

Transmit Sends data prepared in the mailbox as soon as possible.

Consumer Sends a remote frame. 

Producer Sends data prepared in the mailbox after receiving a remote frame from a 
consumer.
 641SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



33.7.39 PIO Edge Select Register

Name: PIO_ESR

Address: 0x400E0EC0 (PIOA), 0x400E10C0 (PIOB), 0x400E12C0 (PIOC), 0x400E14C0 (PIOD), 0x400E16C0 (PIOE)

Access: Write-only 

• P0-P31: Edge Interrupt Selection

0: No effect.

1: The interrupt source is an Edge detection event.

33.7.40 PIO Level Select Register

Name: PIO_LSR

Address: 0x400E0EC4 (PIOA), 0x400E10C4 (PIOB), 0x400E12C4 (PIOC), 0x400E14C4 (PIOD), 0x400E16C4 (PIOE)

Access: Write-only 

• P0-P31: Level Interrupt Selection

0: No effect.

1: The interrupt source is a Level detection event.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
 706SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



37.7.9 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback capability allows on-
board diagnostics. In the loopback mode the USART interface pins are disconnected or not and reconfigured for
loopback internally or externally. 

37.7.9.1 Normal Mode
Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD pin.

Figure 37-40. Normal Mode Configuration

37.7.9.2 Automatic Echo Mode
Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it is sent to the TXD pin, as
shown in Figure 37-41. Programming the transmitter has no effect on the TXD pin. The RXD pin is still connected to the
receiver input, thus the receiver remains active.

Figure 37-41. Automatic Echo Mode Configuration

37.7.9.3 Local Loopback Mode
Local loopback mode connects the output of the transmitter directly to the input of the receiver, as shown in Figure 37-42.
The TXD and RXD pins are not used. The RXD pin has no effect on the receiver and the TXD pin is continuously driven
high, as in idle state.

Figure 37-42. Local Loopback Mode Configuration

37.7.9.4 Remote Loopback Mode
Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 37-43. The transmitter and the
receiver are disabled and have no effect. This mode allows bit-by-bit retransmission.

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
1

 857SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



37.8.18 USART FI DI RATIO Register

Name: US_FIDI

Address: 0x400A0040 (0), 0x400A4040 (1)

Access: Read-write

Reset Value: 0x174 

This register can only be written if the WPEN bit is cleared in “USART Write Protect Mode Register” on page 893.

• FI_DI_RATIO: FI Over DI Ratio Value

0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1 - : If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
FI_DI_RATIO

7 6 5 4 3 2 1 0
FI_DI_RATIO
 888SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



Figure 39-10. Multiple Write Functional Flow Diagram 

Note: 1. It is assumed that this command has been correctly sent (see Figure 39-7).

Send SELECT/DESELECT_CARD
command(1) to select the card

Send SET_BLOCKLEN command(1)

Set the PDCMODE bit
HSMCI_MR = PDCMODE
Set the block length
HSMCI_BLKR = (BlockLength << 16)

Configure the PDC channel
HSMCI_TPR = Data Buffer Address
HSMCI_TCR = BlockLength/4

Send WRITE_MULTIPLE_BLOCK
command(1)

Read status register HSMCI_SR

Poll the bit
BLKE = 0

Yes

No

HSMCI_PTCR = TXTEN

Poll the bit
NOTBUSY = 0

Yes

RETURN

No

Send STOP_TRANSMISSION
command(1)
 966SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



Note: 1. Contains the address of the transmitting device
The sequence above shows the beginning of an Ethernet frame. Byte order of transmission is from top to bottom as
shown. For a successful match to specific address 1, the following address matching registers must be set up:

Specific Address 1 Bottom [31:0] Register (GMAC_SAB1)(Address 0x088)   0x87654321

Specific Address 1 Top [47:32] Register (GMAC_SAT1) (Address 0x08C)     0x0000CBA9

And for a successful match to the type ID, the following type ID match 1 register must be set up:

Type ID Match 1 Register (GMAC_TIDM1) (Address 0x0A8)          0x80004321

44.5.8 Broadcast Address

Frames with the broadcast address of 0xFFFFFFFFFFFF are stored to memory only if the 'no broadcast' bit in the
Network Configuration Register is set to zero.

44.5.9 Hash Addressing

The hash address register is 64 bits long and takes up two locations in the memory map. The least significant bits are
stored in Hash Register Bottom and the most significant bits in Hash Register Top.

The unicast hash enable and the multicast hash enable bits in the Network Configuration Register enable the reception
of hash matched frames. The destination address is reduced to a 6-bit index into the 64-bit Hash Register using the
following hash function: The hash function is an XOR of every sixth bit of the destination address.

hash_index[05] = da[05] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ 

da[47]

hash_index[04] = da[04] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ 

da[46]

hash_index[03] = da[03] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ 

da[45]

hash_index[02] = da[02] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ 

da[44]

hash_index[01] = da[01] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ 

da[43]

hash_index[00] = da[00] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ 

da[42]

da[0] represents the least significant bit of the first byte received, that is, the multicast/unicast indicator, and da[47]

represents the most significant bit of the last byte received.

If the hash index points to a bit that is set in the Hash Register then the frame will be matched according to whether the
frame is multicast or unicast.

DA (Octet 3) 87

DA (Octet 4) A9

DA (Octet 5 - MSB) CB

SA (LSB) 00(1)

SA 00(1)

SA 00(1)

SA 00(1)

SA 00(1)

SA (MSB) 00(1)

Type ID (MSB) 43

Type ID (LSB) 21
 1203SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



Figure 46-2. VDDIO Supply Monitor

Figure 46-3. Zero-Power-On Reset Characteristics

Vth

Vhyst

VDDIO

Reset

Vth +

Table 46-7. Zero-Power-On Reset Characteristics

Symbol Parameter Conditions Min Typ Max Units

Vth+ Threshold voltage rising At Startup 1.45 1.53 1.59 V

Vth- Threshold voltage falling 1.35 1.45 1.55 V

Tres Reset Time-out Period 100 340 580 μs

Vth-

Vth+

VDDIO

Reset

Table 46-8. DC Flash Characteristics

Symbol Parameter Conditions Typ Max Units

ICC Active current

Random 128-bit Read:

Maximum Read Frequency onto VDDCORE = 1.2V @ 25°C 16 25
mA

Random 64-bit Read:

Maximum Read Frequency onto VDDCORE = 1.2V @ 25°C
10 18 mA

Program onto VDDCORE = 1.2V @ 25°C 3 5 mA
 1315SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13


