
Microchip Technology - ATSAM4E8EA-AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity CANbus, EBI/EMI, Ethernet, IrDA, SD, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 117

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-LQFP

Supplier Device Package 144-LQFP (20x20)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4e8ea-au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4e8ea-au-4386479
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority Registers” .
The software can disable the execution of the handlers for these faults, see “System Handler Control and State Register” 
.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model” .

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and the
fault is described as escalated to hard fault. Escalation to hard fault occurs when:
 A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because 

a fault handler cannot preempt itself; it must have the same priority as the current priority level.
 A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler 

for the new fault cannot preempt the currently executing fault handler.
 An exception handler causes a fault for which the priority is the same as or lower than the currently executing 

exception.
 A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault.
This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler
failed. The fault handler operates but the stack contents are corrupted. 
Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than 

Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address
register indicates the address accessed by the operation that caused the fault, as shown in Table 12-12.

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until either:
 It is reset
 An NMI occurs
 It is halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the 
lockup state.

Table 12-12. Fault Status and Fault Address Registers 

Handler Status Register 
Name

Address 
Register Name

Register Description

Hard fault SCB_HFSR - “Hard Fault Status Register” 

Memory 
management fault MMFSR SCB_MMFAR

“MMFSR: Memory Management Fault 
Status Subregister” 
“MemManage Fault Address Register” 

Bus fault BFSR SCB_BFAR
“BFSR: Bus Fault Status Subregister” 

“Bus Fault Address Register” 

Usage fault UFSR - “UFSR: Usage Fault Status 
Subregister” 
 74SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



12.6.5.12 SHSUB16 and SHSUB8
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUB8 Signed Halving Subtract 8.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:

The SHSUB16 instruction: 
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.

The SHSUBB8 instruction: 
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SHSUB16 R1, R0     ; Subtracts halfwords in R0 from corresponding halfword

                   ; of R1 and writes to corresponding halfword of R1

SHSUB8  R4, R0, R5 ; Subtracts bytes of R0 from corresponding byte in R5,

                   ; and writes to corresponding byte in R4.
 113SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



12.6.11.18 VMOV ARM Core Register to Scalar
Transfers one word to a floating-point register from an ARM core register.

Syntax
VMOV{cond}{.32} Dd[x], Rt

where:

cond is an optional condition code, see “Conditional Execution” .

32 is an optional data size specifier.

Dd[x] is the destination, where [x] defines which half of the doubleword is transferred,
as follows:
If x is 0, the lower half is extracted
If x is 1, the upper half is extracted.

Rt is the source ARM core register.

Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM core
register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

12.6.11.19 VMRS
Move to ARM Core register from floating-point System Register.

Syntax
VMRS{cond} Rt, FPSCR

VMRS{cond} APSR_nzcv, FPSCR

where:

cond is an optional condition code, see “Conditional Execution” .

Rt is the destination ARM core register. This register can be R0-R14.

APSR_nzcv Transfer floating-point flags to the APSR flags.

Operation

This instruction performs one of the following actions:
 Copies the value of the FPSCR to a general-purpose register.
 Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions optionally change the flags: N, Z, C, V
 174SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



12.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 12-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

0xE000E100 Interrupt Set-enable Register 0 NVIC_ISER0 Read-write 0x00000000

... ... ... ... ...

0xE000E11C Interrupt Set-enable Register 7 NVIC_ISER7 Read-write 0x00000000

0XE000E180 Interrupt Clear-enable Register0 NVIC_ICER0 Read-write 0x00000000

... ... ... ... ...

0xE000E19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read-write 0x00000000

0XE000E200 Interrupt Set-pending Register 0 NVIC_ISPR0 Read-write 0x00000000

... ... ... ... ...

0xE000E21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read-write 0x00000000

0XE000E280 Interrupt Clear-pending Register 0 NVIC_ICPR0 Read-write 0x00000000

... ... ... ... ...

0xE000E29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read-write 0x00000000

0xE000E300 Interrupt Active Bit Register 0 NVIC_IABR0 Read-write 0x00000000

... ... ... ... ...

0xE000E31C Interrupt Active Bit Register 7 NVIC_IABR7 Read-write 0x00000000

0xE000E400 Interrupt Priority Register 0 NVIC_IPR0 Read-write 0x00000000

... ... ... ... ...

0XE000E42C Interrupt Priority Register 12 NVIC_IPR12 Read-write 0x00000000

0xE000EF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000
 191SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



13.6.10 ID Code Register

Access: Read-only

• VERSION[31:28]: Product Version Number

Set to 0x0.

• PART NUMBER[27:12]: Product Part Number

• MANUFACTURER IDENTITY[11:1]

Set to 0x01F.

• Bit[0] Required by IEEE Std. 1149.1.

Set to 0x1. 

31 30 29 28 27 26 25 24
VERSION PART NUMBER

23 22 21 20 19 18 17 16
PART NUMBER

15 14 13 12 11 10 9 8
PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0
MANUFACTURER IDENTITY 1

Chip Name Chip ID

SAM4E 0xA3CC_0CE0

Chip Name JTAG ID Code

SAM4E 0x05B3_703F
 266SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



18.6.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1878

Access: Read-only 

• ACKUPD: Acknowledge for Update

0 (FREERUN) = Time and calendar registers cannot be updated.

1 (UPDATE) = Time and calendar registers can be updated.

• ALARM: Alarm Flag

0 (NO_ALARMEVENT) = No alarm matching condition occurred.

1 (ALARMEVENT) = An alarm matching condition has occurred.

• SEC: Second Event

0 (NO_SECEVENT) = No second event has occurred since the last clear.

1 (SECEVENT) = At least one second event has occurred since the last clear.

• TIMEV: Time Event

0 (NO_TIMEVENT) = No time event has occurred since the last clear.

1 (TIMEVENT) = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following events: min-
ute change, hour change, noon, midnight (day change).

• CALEV: Calendar Event

0 (NO_CALEVENT) = No calendar event has occurred since the last clear.

1 (CALEVENT) = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week change, 
month change and year change.

• TDERR: Time and/or Date Free Running Error

0 (CORRECT) = The internal free running counters are carrying valid values since the last read of RTC_SR.

1 (ERR_TIMEDATE) = The internal free running counters have been corrupted (invalid date or time, non-BCD values) since the 
last read and/or they are still invalid.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TDERR CALEV TIMEV SEC ALARM ACKUPD
 319SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



read operations to the EEFC_FRR register are done after the last word of the descriptor has been returned, then the
EEFC_FRR register value is 0 until the next valid command.

22.4.3.2 Write Commands
Several commands can be used to program the Flash. 

Flash technology requires that an erase be done before programming. The full memory plane can be erased at the same
time, or several pages can be erased at the same time (refer to Figure 22-7, "Example of Partial Page Programming",
and the paragraph below the figure.). Also, a page erase can be automatically done before a page write using EWP or
EWPL commands.

After programming, the page (the whole lock region) can be locked to prevent miscellaneous write or erase sequences.
The lock bit can be automatically set after page programming using WPL or EWPL commands.

Data to be written are stored in an internal latch buffer. The size of the latch buffer corresponds to the page size. The
latch buffer wraps around within the internal memory area address space and is repeated as many times as the number
of pages within this address space.
Note: Writing of 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
Write operations are performed in a number of wait states equal to the number of wait states for read operations.

Data are written to the latch buffer before the programming command is written to the Flash Command Register
EEFC_FCR. The sequence is as follows:
 Write the full page, at any page address, within the internal memory area address space.
 Programming starts as soon as the page number and the programming command are written to the Flash 

Command Register. The FRDY bit in the Flash Programming Status Register (EEFC_FSR) is automatically 
cleared.

 When programming is completed, the FRDY bit in the Flash Programming Status Register (EEFC_FSR) rises. If 
an interrupt has been enabled by setting the bit FRDY in EEFC_FMR, the corresponding interrupt line of the NVIC 
is activated.

Two errors can be detected in the EEFC_FSR register after a programming sequence: 
 Command Error: a bad keyword has been written in the EEFC_FCR register.
 Lock Error: the page to be programmed belongs to a locked region. A command must be previously run to unlock 

the corresponding region.
 Flash Error: at the end of the programming, the WriteVerify test of the Flash memory has failed.

Table 22-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash Interface Description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes. (only for SAM3SD8).

FL_PLANE[0] 4 Number of bytes in the first plane.

...

FL_PLANE[FL_NB_PLANE-1] 4 + FL_NB_PLANE - 1 Number of bytes in the last plane.

FL_NB_LOCK 4 + FL_NB_PLANE

Number of lock bits. A bit is associated 
with a lock region. A lock bit is used to 
prevent write or erase operations in the 
lock region.

FL_LOCK[0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region.

...
 364SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



• FARG: Flash Command Argument

• FKEY: Flash Writing Protection Key

Erase all command Field is meaningless.

Erase sector command FARG must be set with a page number that is in the sector to be erased.

Erase pages command

FARG[1:0] defines the number of pages to be erased.

The page number from which the erase will start is defined as follows:

FARG[1:0]=0, start page = 4*FARG[15:2] 

FARG[1:0]=1, start page = 8*FARG[15:3], FARG[2] undefined

FARG[1:0]=2, start page = 16*FARG[15:4], FARG[3:2] undefined 

FARG[1:0]=3, start page = 32*FARG[15:5], FARG[4:2] undefined 

Note: undefined bit must be written to 0.

Refer to Table 22-4 on page 367

Programming command FARG defines the page number to be programmed.

Lock command FARG defines the page number to be locked.

GPNVM command FARG defines the GPNVM number.

Value Name Description

0x5A PASSWD
The 0x5A value enables the command defined by the bits of 
the register. If the field is written with a different value, the write 
is not performed and no action is started.
 374SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



23.3.5 Device Operations

Several commands on the Flash memory are available. These commands are summarized in Table 23-3 on page 380.
Each command is driven by the programmer through the parallel interface running several read/write handshaking
sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining a read command after a
write automatically flushes the load buffer in the Flash.

23.3.5.1 Flash Read Command
This command is used to read the contents of the Flash memory. The read command can start at any valid address in
the memory plane and is optimized for consecutive reads. Read handshaking can be chained; an internal address buffer
is automatically increased.  

23.3.5.2 Flash Write Command
This command is used to write the Flash contents. 

The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that corresponds
to a Flash memory page. The load buffer is automatically flushed to the Flash:
 Before access to any page other than the current one 
 When a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an internal
address buffer is automatically increased.  

Table 23-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++

5 Read handshaking DATA *Memory Address++

... ... ... ...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++

n+3 Read handshaking DATA *Memory Address++

... ... ... ...

Table 23-8. Write Command 

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

... ... ... ...

n Write handshaking ADDR0 Memory Address LSB
 383SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



29.5.6 Receive Next Counter Register

Name: PERIPH_RNCR

Access: Read-write

• RXNCTR: Receive Next Counter

RXNCTR contains next receive buffer size.

When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
RXNCTR

7 6 5 4 3 2 1 0
RXNCTR
 525SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



31.6.10 AES Initialization Vector Register x

Name: AES_IVRx

Address: 0x40004060

Access: Write-only 

• IV: Initialization Vector

The four 32-bit Initialization Vector registers set the 128-bit Initialization Vector data block that is used by some modes of opera-
tion as an additional initial input. 

AES_IVR0 corresponds to the first word of the Initialization Vector, AES_IVR3 to the last one.

These registers are write-only to prevent the Initialization Vector from being read by another application.

For CBC, OFB and CFB modes, the Initialization Vector corresponds to the initialization vector.

For CTR mode, it corresponds to the counter value.
Note: These registers are not used in ECB mode and must not be written.

31 30 29 28 27 26 25 24

IV

23 22 21 20 19 18 17 16

IV

15 14 13 12 11 10 9 8

IV

7 6 5 4 3 2 1 0

IV
 598SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



32.7 CAN Controller Features

32.7.1 CAN Protocol Overview

The Controller Area Network (CAN) is a multi-master serial communication protocol that efficiently supports real-time
control with a very high level of security with bit rates up to 1 Mbit/s.

The CAN protocol supports four different frame types:
 Data frames: They carry data from a transmitter node to the receiver nodes. The overall maximum data frame 

length is 108 bits for a standard frame and 128 bits for an extended frame.
 Remote frames: A destination node can request data from the source by sending a remote frame with an identifier 

that matches the identifier of the required data frame. The appropriate data source node then sends a data frame 
as a response to this node request.

 Error frames: An error frame is generated by any node that detects a bus error. 
 Overload frames: They provide an extra delay between the preceding and the successive data frames or remote 

frames.

The Atmel CAN controller provides the CPU with full functionality of the CAN protocol V2.0 Part A and V2.0 Part B. It
minimizes the CPU load in communication overhead. The Data Link Layer and part of the physical layer are
automatically handled by the CAN controller itself.

The CPU reads or writes data or messages via the CAN controller mailboxes. An identifier is assigned to each mailbox.
The CAN controller encapsulates or decodes data messages to build or to decode bus data frames. Remote frames,
error frames and overload frames are automatically handled by the CAN controller under supervision of the software
application.

32.7.2 Mailbox Organization

The CAN module has 8 buffers, also called channels or mailboxes. An identifier that corresponds to the CAN identifier is
defined for each active mailbox. Message identifiers can match the standard frame identifier or the extended frame
identifier. This identifier is defined for the first time during the CAN initialization, but can be dynamically reconfigured later
so that the mailbox can handle a new message family. Several mailboxes can be configured with the same ID.

Each mailbox can be configured in receive or in transmit mode independently. The mailbox object type is defined in the
MOT field of the CAN_MMRx register. 

32.7.2.1 Message Acceptance Procedure
If the MIDE field in the CAN_MIDx register is set, the mailbox can handle the extended format identifier; otherwise, the
mailbox handles the standard format identifier. Once a new message is received, its ID is masked with the CAN_MAMx
value and compared with the CAN_MIDx value. If accepted, the message ID is copied to the CAN_MIDx register.
 602SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



In the CAN controller, the length of a bit on the CAN bus is determined by the parameters (BRP, PROPAG, PHASE1 and
PHASE2).

The time quantum is calculated as follows:

Note: The BRP field must be within the range [1, 0x7F], i.e., BRP = 0 is not authorized.

To compensate for phase shifts between clock oscillators of different controllers on the bus, the CAN controller must
resynchronize on any relevant signal edge of the current transmission. The resynchronization shortens or lengthens the
bit time so that the position of the sample point is shifted with regard to the detected edge. The resynchronization jump
width (SJW) defines the maximum of time by which a bit period may be shortened or lengthened by resynchronization.

Figure 32-5. CAN Bit Timing 

Example of bit timing determination for CAN baudrate of 500 Kbps:
MCK = 48 MHz

CAN baudrate= 500 Kbps => bit time= 2us

Delay of the bus driver: 50 ns

Delay of the receiver: 30ns

Delay of the bus line (20m): 110ns

The total number of time quanta in a bit time must be comprised between 8 and 

25. If we fix the bit time to 16 time quanta:

Tcsc = 1 time quanta = bit time / 16 = 125 ns

=> BRP = (Tcsc x MCK) - 1 = 5

The propagation segment time is equal to twice the sum of the signal’s 

propagation time on the bus line, the receiver delay and the output driver 

delay:

Tprs = 2 * (50+30+110) ns = 380 ns = 3 Tcsc

=> PROPAG = Tprs/Tcsc - 1 = 2

The remaining time for the two phase segments is:

Tphs1 + Tphs2 = bit time - Tcsc - Tprs = (16 - 1 - 3)Tcsc

tBIT tCSC tPRS tPHS1 tPHS2+ + +=

tCSC BRP 1+( ) MCK⁄=

tPRS tCSC PROPAG 1+( )×=

tPHS1 tCSC PHASE1 1+( )×=

tPHS2 tCSC PHASE2 1+( )×=

tSJW tCSC SJW 1+( )×=

SYNC_
SEG

PROP_SEG PHASE_SEG1 PHASE_SEG2

NOMINAL BIT TIME

Sample Point Transmission Point

MCK

CAN Clock

tCSC tPRS tPHS1 tPHS2
 607SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



33.7.38 PIO Additional Interrupt Modes Mask Register

Name: PIO_AIMMR

Address: 0x400E0EB8 (PIOA), 0x400E10B8 (PIOB), 0x400E12B8 (PIOC), 0x400E14B8 (PIOD), 0x400E16B8 (PIOE)

Access: Read-only 

• P0-P31: Peripheral CD Status

0: The interrupt source is a Both Edge detection event.

1: The interrupt source is described by the registers PIO_ELSR and PIO_FRLHSR.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
 705SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



34.8.9 SPI Chip Select Register

Name: SPI_CSRx[x=0..3]

Address: 0x40088030

Access: Read/Write 

This register can only be written if the WPEN bit is cleared in ”SPI Write Protection Mode Register”.
Note: SPI_CSRx registers must be written even if the user wants to use the defaults. The BITS field will not be updated with 

the translated value unless the register is written.

• CPOL: Clock Polarity

0 = The inactive state value of SPCK is logic level zero. 

1 = The inactive state value of SPCK is logic level one. 

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the required 
clock/data relationship between master and slave devices.

• NCPHA: Clock Phase

0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK. 

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is used 
with CPOL to produce the required clock/data relationship between master and slave devices.

• CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)

0 = The Peripheral Chip Select does not rise between two transfers if the SPI_TDR is reloaded before the end of the first transfer 
and if the two transfers occur on the same Chip Select.

1 = The Peripheral Chip Select rises systematically after each transfer performed on the same slave. It remains active after the 
end of transfer for a minimal duration of:

– (if DLYBCT field is different from 0)

– (if DLYBCT field equals 0)

• CSAAT: Chip Select Active After Transfer

0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is requested 
on a different chip select. 

• BITS: Bits Per Transfer

31 30 29 28 27 26 25 24

DLYBCT

23 22 21 20 19 18 17 16

DLYBS

15 14 13 12 11 10 9 8

SCBR

7 6 5 4 3 2 1 0

BITS CSAAT CSNAAT NCPHA CPOL

DLYBCT
MCK

------------------------

DLYBCT 1+
MCK

----------------------------------
 750SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



37.8.2 USART Control Register (SPI_MODE)

Name: US_CR (SPI_MODE)

Address: 0x400A0000 (0), 0x400A4000 (1)

Access: Write-only 

This configuration is relevant only if USART_MODE=0xE or 0xF in “USART Mode Register” on page 865.

• RSTRX: Reset Receiver

0: No effect.

1: Resets the receiver. 

• RSTTX: Reset Transmitter

0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable

0: No effect. 

1: Disables the transmitter.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – RCS FCS – –

15 14 13 12 11 10 9 8
– – – – – – – RSTSTA

7 6 5 4 3 2 1 0
TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
 863SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



37.8.18 USART FI DI RATIO Register

Name: US_FIDI

Address: 0x400A0040 (0), 0x400A4040 (1)

Access: Read-write

Reset Value: 0x174 

This register can only be written if the WPEN bit is cleared in “USART Write Protect Mode Register” on page 893.

• FI_DI_RATIO: FI Over DI Ratio Value

0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1 - : If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
FI_DI_RATIO

7 6 5 4 3 2 1 0
FI_DI_RATIO
 888SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



0 = Counter clock is not disabled when counter reaches RC.

1 = Counter clock is disabled when counter reaches RC.

• EEVTEDG: External Event Edge Selection

• EEVT: External Event Selection

Signal selected as external event.

Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and 
subsequently no IRQs.

• ENETRG: External Event Trigger Enable

0 = The external event has no effect on the counter and its clock.

1 = The external event resets the counter and starts the counter clock.
Note: Whatever the value programmed in ENETRG, the selected external event only controls the TIOA output and TIOB 

if not used as input (trigger event input or other input used).

• WAVSEL: Waveform Selection

• WAVE: Waveform Mode

0 = Waveform Mode is disabled (Capture Mode is enabled).

1 = Waveform Mode is enabled.

Value Name Description

0 NONE None

1 RISING Rising edge

2 FALLING Falling edge

3 EDGE Each edge

Value Name Description TIOB Direction

0 TIOB TIOB(1) input

1 XC0 XC0 output

2 XC1 XC1 output

3 XC2 XC2 output

Value Name Description

0 UP UP mode without automatic trigger on RC Compare

1 UPDOWN UPDOWN mode without automatic trigger on RC Compare

2 UP_RC UP mode with automatic trigger on RC Compare

3 UPDOWN_RC UPDOWN mode with automatic trigger on RC Compare
 927SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



40.7.8 PWM Interrupt Status Register 1

Name: PWM_ISR1

Address: 0x4000001C

Access: Read-only 

• CHIDx: Counter Event on Channel x

0 = No new counter event has occurred since the last read of the PWM_ISR1 register.

1 = At least one counter event has occurred since the last read of the PWM_ISR1 register.

• FCHIDx: Fault Protection Trigger on Channel x

0 = No new trigger of the fault protection since the last read of the PWM_ISR1 register.

1 = At least one trigger of the fault protection since the last read of the PWM_ISR1 register.

Note: Reading PWM_ISR1 automatically clears CHIDx and FCHIDx flags.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – FCHID3 FCHID2 FCHID1 FCHID0

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – CHID3 CHID2 CHID1 CHID0
 1043SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13



44.7.81 1588 Timer Sync Strobe Seconds Register

Name: GMAC_TSSS

Address: 0x400341C8

Access: Read-write

• VTS: Value of Timer Seconds Register Capture

The value of the Timer Seconds Register is captured.

44.7.82 1588 Timer Sync Strobe Nanoseconds Register

Name: GMAC_TSSN

Address: 0x400341CC

Access: Read-write

• VTN: Value Timer Nanoseconds Register Capture

The value of the Timer Nanoseconds Register is captured.

31 30 29 28 27 26 25 24
VTS

23 22 21 20 19 18 17 16
VTS

15 14 13 12 11 10 9 8
VTS

7 6 5 4 3 2 1 0
VTS

31 30 29 28 27 26 25 24
– – VTN

23 22 21 20 19 18 17 16
VTN

15 14 13 12 11 10 9 8
VTN

7 6 5 4 3 2 1 0
VTN
 1279SAM4E [DATASHEET]
11157C–ATARM–25-Jul-13


