E·XFL

Welcome to E-XFL.COM

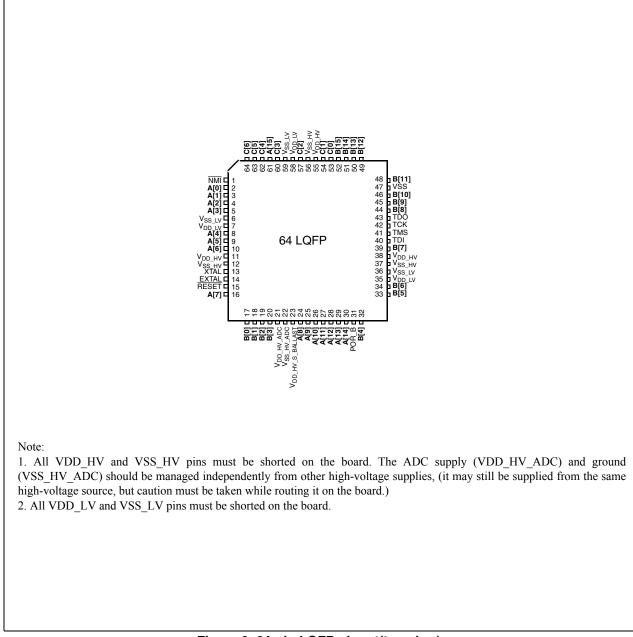
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore Processor62002hCone Size32-Bit Single-CoreSpeed64MHzConnectivityCANbus, Ethernet, PC, LINbus, SCI, SPIPripheralsDMA, POR, WDTNumber of I/O39Program Memory SizeFLSK S12K x 8)Program Memory Type64K x 8ERROM Size96K x 8Voltage - Supply (Vcc/Vdd)30- 3.6VData ConvertersAD 4.10bOrding Type1.6tralOperating Type4.0°C ~ 125°C (TA)Munting Type64L (PF) (DAID)Prokase / Case64L (PF) (DAID)Prokase / Case64L (PF) (DAID)Suppler Percebarge64L (PF) (DAID)Suppler Percebarge64L (PF) (DAID)Prokase / DRL64L (PF) (PR) (PR) (PR) (PR) (PR) (PR) (PR) (PR		
Core Size32-Bit Single-CoreSpeed64MHzConnectivityCANbus, Ethernet, IPC, LINbus, SCI, SPIPeripheralsDMA, POR, WDTNumber of I/O39Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size96K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64LQFP (10x10)	Product Status	Active
Speed64MHzConnectivityCANbus, Ethernet, PC, LINbus, SCI, SPIPeripheralsDMA, POR, WDTNumber of I/O39Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size96K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPOperating Tewperature64-LQFP (10x10)	Core Processor	e200z0h
ConnectivityCANbus, Ethernet, I²C, LINbus, SCI, SPIPeripheralsDMA, POR, WDTNumber of I/O39Program Memory Size512KB (512K × 8)Program Memory TypeFLASHEEPROM Size64K × 8RAM Size96K × 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPAupper Device Package64-LQFP (10x10)	Core Size	32-Bit Single-Core
PeripheralsDMA, POR, WDTNumber of I/O39Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size96K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature4.0°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Speed	64MHz
Number of I/O39Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size64K x 8RAM Size96K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Connectivity	CANbus, Ethernet, I ² C, LINbus, SCI, SPI
Program Memory Size512KB (512K x 8)Program Memory TypeFLASHFLASH64K x 8RAM Size96K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting Type64-LQFPSuppler Device Package64-LQFP (10x10)	Peripherals	DMA, POR, WDT
Program Memory TypeFLASHEEPROM Size64K x 8RAM Size96K x 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Number of I/O	39
EEPROM Size64K × 8RAM Size96K × 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Program Memory Size	512KB (512K x 8)
RAM Size96K × 8Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)3V ~ 3.6VData ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	EEPROM Size	64K x 8
Data ConvertersA/D 4x10bOscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	RAM Size	96K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Operating Temperature-40°C ~ 125°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Data Converters	A/D 4x10b
Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Oscillator Type	Internal
Package / Case 64-LQFP Supplier Device Package 64-LQFP (10x10)	Operating Temperature	-40°C ~ 125°C (TA)
Supplier Device Package64-LQFP (10x10)	Mounting Type	Surface Mount
	Package / Case	64-LQFP
Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=spc5604eef1mlh	Supplier Device Package	64-LQFP (10x10)
	Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=spc5604eef1mlh


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Package pinouts and signal descriptions

2.1 Package pinouts

The LQFP pinouts are shown in the following figures.

Figure 2. 64-pin LQFP pinout(top view)

Port	PCR	Alternate	Functions	Devia hevel ³	I/O	Pad s	speed ⁵	Pin ⁶		
pin	register	function ^{1,2,8}	Functions	Peripheral ³	direction ⁴	SRC = 0	SRC = 1	64-pin	100-pin ⁷	
			I	Port A (16	i-bit)		1	1	1	
A[0]	PCR[0]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[0] D[0] — D[11] SIN EIRQ[0]	SIUL SAI0 — VID DSPI 1 SIUL	/O /O 	Slow	Medium	2	2	
A[1]	PCR[1]	ALT0 ALT1 ALT2 ALT3 —	GPIO[1] D[1] SOUT — D[10] EIRQ[1]	SIUL SAI0 DSPI1 — VID SIUL	I/O I/O O I I	Slow	Medium	3	4	
A[2]	PCR[2]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[2] D[2] SCK D[0] D[9] ETC[5] EIRQ[2]	SIUL SAI0 DSPI1 SAI1 VID ETIMER0 SIUL	I/O I/O I/O I/O I I I	Slow	Medium	4	6	
A[3]	PCR[3]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[3] D[3] — D[0] D[8] SIN EIRQ[3]	SIUL SAI0 — SAI2 VID DSPI2 SIUL	I/O I/O — I/O I I I	Slow	Medium	5	8	
A[4]	PCR[4]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[4] SYNC SOUT — D[7] ETC[3] EIRQ[4]	SIUL SAI0 DSPI2 — VID ETIMER0 SIUL	I/O I/O O 	Slow	Medium	8	15	
A[5]	PCR[5]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[5] SYNC SCK D[0] CLK ETC[4] EIRQ[5]	SIUL SAI1 DSPI2 SAI1 VID ETIMER0 SIUL	I/O I/O I/O I/O I I I I	Medium	Fast	9	16	

Table 4. Pin muxing

Port	PCR	Alternate	E	Deviate and 3	I/O	Pad s	speed ⁵	Pin ⁶		
pin	register	function ^{1,2,8}	Functions	Peripheral ³	direction ⁴	SRC = 0	SRC = 1	64-pin	100-pin ⁷	
A[6]	PCR[6]	ALT0 ALT1 ALT2 ALT3 	GPIO[6] SYNC CS0 VSYNC D[0] ETC[1] EIRQ[6]	SIUL SAI2 DSPI2 — VID VID ETIMER0 SIUL	I/O I/O I/O I I I I I	Slow	Medium	10	17	
A[7]	PCR[7]	ALT0 ALT1 ALT2 ALT3 — — — —	GPIO[7] BCLK CS1 — HREF D[1] ETC[2] EIRQ[7]	SIUL SAI0 DSPI2 — VID ETIMER0 SIUL	I/O I/O I/O I I I I I I	Slow	Medium	16	23	
A[8]	PCR[8]	ALT0 ALT1 ALT2 ALT3 	GPIO[8] BCLK CS0 D[0] D[6] RX EIRQ[8]	SIUL SAI1 DSPI1 SAI2 VID LIN1 SIUL	I/O I/O I/O I/O I I I I	Slow	Medium	24	37	
A[9]	PCR[9]	ALT0 ALT1 ALT2 ALT3 —	GPIO[9] BCLK CS1 TX D[5] EIRQ[9]	SIUL SAI2 DSPI1 LIN1 VID SIUL	I/O I/O I/O O I I	Slow	Medium	25	38	
A[10]	PCR[10]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[10] MCLK ETC[5] — D[4] SIN EIRQ[10]	SIUL SAI2 ETIMER0 — VID DSPI0 SIUL	I/O I/O I/O — I I I I	Slow	Medium	26	39	
A[11]	PCR[11]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[11] TX CS1 CS0 D[3] RX RX	SIUL CAN0 DSPI0 DSPI1 VID LIN0 LIN1	I/O O I/O I I I	Slow	Medium	27	40	

Table 4. Pin muxing (continued)

Port	PCR	Alternate	Functions	Peripheral ³	I/O	Pad s	speed ⁵	Pin ⁶		
pin	register	function ^{1,2,8}	Functions	Peripheral	direction ⁴	SRC = 0	SRC = 1	64-pin	100-pin ⁷	
B[3]	PCR[19]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[19] ETC[2] SOUT PPS1 AN[3] RX EIRQ[14]	SIUL ETIMER0 DSPI0 CE_RTC ADC0 ⁸ LIN0 SIUL	I/O I/O I/O O I I I	Slow	Medium	20	29	
B[4]	PCR[20]	ALT0 ALT1 ALT2 ALT3 —	GPIO[20] RX_DV	SIUL — — — FEC	I/O I	Slow	Medium	32	50	
B[5]	PCR[21]	ALTO ALT1 ALT2 ALT3	GPIO[21] TX_D0 DEBUG[0] —	SIUL FEC SSCM —	I/O O I/O —	Slow	Medium	33	55	
B[6]	PCR[22]	ALT0 ALT1 ALT2 ALT3	GPIO[22] TX_D1 DEBUG[1] —	SIUL FEC SSCM —	I/O O I/O —	Slow	Medium	34	56	
B[7]	PCR[23]	ALT0 ALT1 ALT2 ALT3	GPIO[23] TX_D2 DEBUG[2] —	SIUL FEC SSCM —	I/O O I/O —	Slow	Medium	39	62	
B[8]	PCR[24]	ALTO ALT1 ALT2 ALT3	GPIO[24] TX_D3 DEBUG[3] —	SIUL FEC SSCM —	I/O O I/O —	Slow	Medium	44	67	
B[9]	PCR[25]	ALT0 ALT1 ALT2 ALT3	GPIO[25] TX_EN DEBUG[4] —	SIUL FEC SSCM —	I/O O I/O —	Slow	Medium	45	70	
B[10]	PCR[26]	ALTO ALT1 ALT2 ALT3	GPIO[26] MDC DEBUG[5] —	SIUL FEC SSCM —	I/O O I/O —	Slow	Medium	46	73	
B[11]	PCR[27]	ALT0 ALT1 ALT2 ALT3	GPIO[27] MDIO DEBUG[6] —	SIUL FEC SSCM —	I/O I/O I/O —	Slow	Medium	48	75	
B[12]	PCR[28]	ALT0 ALT1 ALT2 ALT3 —	GPIO[28] — DEBUG[7] — TX_CLK	SIUL SSCM FEC	I/O I/O I	Slow	Medium	49	76	

 Table 4. Pin muxing (continued)

Port	PCR	Alternate	Functions	Peripheral ³	I/O	Pad s	speed ⁵	P	in ⁶
pin	register	function ^{1,2,8}	Functions	Peripheral	direction ⁴	SRC = 0	SRC = 1	64-pin	100-pin ⁷
C[4]	PCR[36]	ALT0 ALT1 ALT2 ALT3 	GPIO[36] CLK_OUT ETC[4] MCLK TRIGGER1 ABS[0] EIRQ[19]	SIUL MC_CGL ETIMER0 SAI0 CE_RTC MC_RGM SIUL	I/O O I/O I/O I I I I	Medium	Fast	62	96
C[5]	PCR[37]	ALT0 ALT1 ALT2 ALT3 —	GPIO[37] CLK ETC[3] CS2 ABS[2] EIRQ[20]	SIUL IICO ETIMERO DSPI2 MC_RGM SIUL	I/O 	Slow	Medium	63	99
C[6]	PCR[38]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[38] DATA CS0 CS3 FAB EIRQ[21]	SIUL IIC0 DSPI1 DSPI2 MC_RGM SIUL	I/O 	Slow	Medium	64	100
C[7]	PCR[39]	ALT0 ALT1 ALT2 ALT3 —	GPIO[39] TXD — — RXD	SIUL LINO — LIN1	I/O O — I	Slow	Medium	_	3
C[8]	PCR[40]	ALT0 ALT1 ALT2 ALT3 —	GPIO[40] TXD — RXD EIRQ[22]	SIUL LIN1 — LIN0 SIUL	I/O O — I I	Slow	Medium	-	5
C[9]	PCR[41]	ALT0 ALT1 ALT2 ALT3 —	GPIO[41] — — SIN EIRQ[23]	SIUL — — DSPI0 SIUL	I/O — — I I	Slow	Medium	-	7
C[10]	PCR[42]	ALT0 ALT1 ALT2 ALT3 —	GPIO[42] ETC[5] ETC[4] — SIN EIRQ[24]	SIUL ETIMER0 ETIMER0 — DSPI1 SIUL	I/O I/O I/O 	Slow	Medium	_	24
C[11]	PCR[43]	ALTO ALT1 ALT2 ALT3	GPIO[43] ETC[2] ETC[1] ETC[3]	SIUL ETIMER0 ETIMER0 ETIMER0	I/O I/O I/O I/O	Slow	Medium		25

Table 4. Pin muxing (continued)

Port	PCR	Alternate	Functions	Peripheral ³	I/O	Pad s	peed ⁵	Р	in ⁶
pin	register	function ^{1,2,8}	Functions	Peripheral	direction ⁴	SRC = 0	SRC = 1	64-pin	100-pin ⁷
C[12]	PCR[44]	ALT0 ALT1 ALT2 ALT3 	GPIO[44] PPS1 PPS2 ALARM1 TRIGGER1 TRIGGER2 EIRQ[25]	SIUL CE_RTC CE_RTC CE_RTC CE_RTC CE_RTC SIUL	I/O O O I I I	Slow	Medium	_	44
C[13]	PCR[45]	ALT0 ALT1 ALT2 ALT3 —	GPIO[45] D[1] EIRQ[26]	SIUL — — VID SIUL	I/O I I	Slow	Medium		46
C[14]	PCR[46]	ALT0 ALT1 ALT2 ALT3 —	GPIO[46] D[0] EIRQ[27]	SIUL — — VID SIUL	I/O — — I I	Slow	Medium	-	47
C[15]	PCR[47]	ALT0 ALT1 ALT2 ALT3 —	GPIO[47] COL	SIUL FEC	I/O — — I	Slow	Medium	_	48
			Por	t D (100-pin pao	ckage: 16-bit)				
D[0]	PCR[48]	ALTO ALT1 ALT2 ALT3	GPIO[48] MDO0 — —	SIUL NEXUS — —	I/O O —	Slow	Medium	_	9
D[1]	PCR[49]	ALT0 ALT1 ALT2 ALT3	GPIO[49] MCK0 —	SIUL NEXUS —	I/O O —	Slow	Medium	-	14
D[2]	PCR[50]	ALT0 ALT1 ALT2 ALT3	GPIO[50] EVTO —	SIUL NEXUS — —	I/O O —	Slow	Medium	_	13
D[3]	PCR[51]	ALT0 ALT1 ALT2 ALT3	GPIO[51] MSEO1 —	SIUL NEXUS — —	I/O O —	Slow	Medium	-	72
D[4]	PCR[52]	ALTO ALT1 ALT2 ALT3	GPIO[52] MSEO0 — —	SIUL NEXUS — —	I/O O —	Slow	Medium	_	78

Table 4. Pin muxing (continued)

Port	PCR	Alternate	Functions	Peripheral ³	I/O	Pad s	speed ⁵	Р	in ⁶
pin	register	function ^{1,2,8}	Functions	Peripheral	direction ⁴	SRC = 0	SRC = 1	64-pin	100-pin ⁷
D[5]	PCR[53]	ALTO ALT1 ALT2 ALT3	GPIO[53] MDO3 — —	SIUL NEXUS — —	I/O O —	Slow	Medium		80
D[6]	PCR[54]	ALTO ALT1 ALT2 ALT3	GPIO[54] MDO2 — —	SIUL NEXUS — —	I/O O — —	Slow	Medium	-	84
D[7]	PCR[55]	ALTO ALT1 ALT2 ALT3	GPIO[55] MDO1 —	SIUL NEXUS — —	I/O — — —	Slow	Medium	_	98
D[8]	PCR[56]	ALT0 ALT1 ALT2 ALT3 —	GPIO[56] — — EVTI	SIUL — — — NEXUS	I/O — — — I	Slow	Medium	_	10
D[9]	PCR[57]	ALT0 ALT1 ALT2 ALT3 —	GPIO[57] ETC[3] ETC[2] — RXD EIRQ[28]	SIUL ETIMER0 ETIMER0 — CAN0 SIUL	I/O I/O I/O I I I	Slow	Medium	-	49
D[10]	PCR[58]	ALTO ALT1 ALT2 ALT3	GPIO[58] TXD —	SIUL CAN0 —	I/O O —	Slow	Medium	-	51
D[11]	PCR[59]	ALT0 ALT1 ALT2 ALT3	GPIO[59] ETC[0] ETC[5] ETC[4]	SIUL ETIMER0 ETIMER0 ETIMER0	I/O I/O I/O I/O	Slow	Medium	_	52
D[12]	PCR[60]	ALT0 ALT1 ALT2 ALT3 —	GPIO[60] ETC[1] ETC[0] — SIN	SIUL ETIMER0 ETIMER0 — DSPI0	I/O I/O I/O — I	Slow	Medium	_	53
D[13]	PCR[61]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[61] CRS EIRQ[29]	SIUL FEC SIUL	I/O I I	Slow	Medium	—	54

Table 4. Pin muxing (continued)

- ² Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 → ALT0; PCR.PA = 01 → ALT1; PCR.PA = 10 → ALT2; PCR.PA = 11 → ALT3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ³ Module included on the MCU.
- ⁴ Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ⁵ Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.
- ⁶ Additional board pull resistors are recommended when JTAG pins are not being used on the board or application.
- ⁷ The 100-pin package is not a production package. It is used for software development only.
- ⁸ Do not use ALT multiplexing when ADC channels are used.

3.3 Absolute maximum ratings

Table 6. Absolute Maximum Ratings¹

Symbol		Parameter	Conditions	Min	Max ²	Unit
V _{SS}	SR	Device ground		V _{SS}	V _{SS}	V
V _{DD_HV_IO}	SR	3.3 V Input/Output Supply Voltage (supply). Code Flash supply with $V_{DD_HV_IO3}$ and Data Flash with $V_{DD_HV_IO2}$	_	V _{SS} _0.3	V _{SS} + 6.0	V
V _{SS_HV_IO}	SR	3.3 VInput/Output Supply Voltage (ground). Code Flash ground with $V_{SS_HV_IO3}$ and Data Flash with $V_{SS_HV_IO2}$	_	V _{SS -} 0.1	V _{SS} + 0.1	V
V _{DD_HV_OSC}	SR	3.3 V Crystal Oscillator Amplifier Supply voltage (supply)	double-bounde		V_IO segments. See	_
V _{SS_HV_OSC}	SR	3.3 V Crystal Oscillator Amplifier Supply voltage (ground)	V _{DD_HV_IO} and	V _{SS_HV_IO} speci	fications.	
V _{DD_HV_ADC0} ³	SR	3.3 V ADC_0 Supply and High Reference voltage	_	V _{SS} _0.3	V _{SS} + 6.0	V
$V_{SS_HV_ADC0}$	SR	3.3 V ADC_0 Ground and Low Reference voltage		V _{SS -} 0.1	V _{SS} + 0.1	V
$V_{DD_HV_REG}$	SR	3.3 V Voltage Regulator Supply voltage	_	V _{SS} _0.3	V _{SS} + 6.0	V
TV_DD	SR	Slope characteristics on all VDD during power up ⁴	_	—	0.1	V/us
V _{DD_LV_COR}	SR	1.2 V supply pins for core logic (supply)	_	V _{SS} _0.3	V _{SS} + 1.4	V
$V_{SS_LV_COR}$	SR	1.2 V supply pins for core logic (ground)	_	V _{SS –} 0.1	V _{SS} + 0.1	V
V _{IN}	SR	Voltage on any pin with respect to ground (V _{SS_HV_IO})	-	$V_{SS_HV_IO_}0.3$	$V_{DD_HV_IO}$ +0.5	V
I _{INJPAD}	SR	Input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all input currents during overload condition	_	-50	50	mA
T _{STORAGE}	SR	Storage temperature		-55	150	°C
TJ	SR	Junction temperature under bias	_	-40	150	°C
T _A	SR	Ambient temperature under bias	f _{CPU} <64 MHz	-40	125	°C
			f _{CPU} <64 MHz Video use case with internal supply	-40	105	°C

¹ Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

Electrical characteristics

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

References:

Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 U.S.A. (408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the WEB at http://www.jedec.org.

- 1. C.E. Triplett and B. Joiner, *An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module*, Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
- 2. G. Kromann, S. Shidore, and S. Addison, *Thermal Modeling of a PBGA for Air-Cooled Applications*, Electronic Packaging and Production, pp. 53-58, March 1998.
- 3. B. Joiner and V. Adams, *Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling*, Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

3.6 Electromagnetic Interference (EMI) characteristics

Symbol	Parameter	Conditions	Clocks	Frequency Range	Level (Typ)	Unit
Radiated	V _{EME}	V _{DD} = 3.3 V	Oscillator Frequency = 8	150 kHz–50 MHz	2	dBμV
emissions		T _A = +25 °C	MHz; System Bus Frequency =	50–150 MHz	14	
		Device	64 MHz;	150–500 MHz	11	
		Configuration, test conditions and EM	CPU Freq = 64MHZ No PLL Frequency	500–1000 MHz	7	
		testing per standard IEC61967-2.	Modulation	IEC Level	М	
			External Oscillator Freq =	150 kHz–50 MHz	1	dBμV
			8 MHz System Bus Freq = 64	50–150 MHz	11	
			MHz	150–500 MHz	7	
			CPU Freq = 64MHZ	500–1000 MHz	1	
			2% PLL Freq Modulation	IEC Level	Ν	

Table 10. EMI Testing Specifications¹

¹ EMI testing and I/O port waveforms per standard IEC61967-2.

Electrical characteristics

be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times C_S)$, where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S) and the sum of $R_S + R_F + R_L + R_{SW} + R_{AD}$, the external circuit must be designed to respect the Equation 4:

$$V_A \bullet \frac{\mathbf{R}_{\mathrm{S}} + \mathbf{R}_{\mathrm{F}} + \mathbf{R}_{\mathrm{L}} + \mathbf{R}_{\mathrm{SW}} + \mathbf{R}_{\mathrm{AD}}}{\mathbf{R}_{\mathrm{EQ}}} < \frac{1}{2} \mathrm{LSB}$$

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW} and R_{AD}) can be neglected with respect to external resistances.

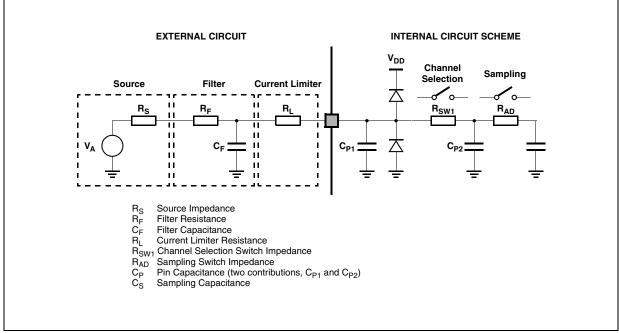


Figure 10. Input equivalent circuit

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit reported in Figure 10): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

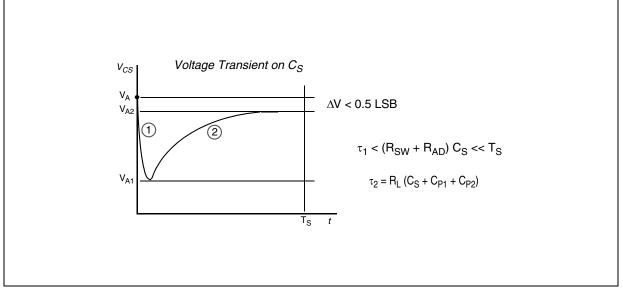


Figure 11. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

• A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

 $\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$
 Eqn. 7

A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

 $\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$

MPC5604E Microcontroller Data Sheet, Rev. 4

Egn. 8

Eqn. 5

Eqn. 6

- ¹ V_{DD} = 3.3 V to 3.6 V, T_A = -40 to +125 °C, unless otherwise specified and analog input voltage from V_{AGND} to V_{AREF}
- ² ADCClk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.
- ³ During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC_S} . After the end of the sample time t_{ADC_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC_S} depend on programming.
- ⁴ This parameter does not include the sample time t_{ADC_S}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- ⁵ 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC.
- ⁶ See Figure 10.
- ⁷ Does not include packaging and bonding capacitances

3.15 Temperature sensor electrical characteristics

Symbo		с	Parameter	meter Conditions		Value			
Symbo	/	U	Farameter	Conditions	min	typical	max	Unit	
_	CC	С	Temperature monitoring range	_	-40	_	150	°C	
—	CC	С	Sensitivity	—	_	5.14		mV/°C	
_	CC	С	Accuracy	$T_J = -40$ to 25 °C	-10	—	10	°C	
—	CC	С		T _J = –25 to 125 °C	-10	—	10	°C	

Table 22. Temperature sensor electrical characteristics

3.16 Flash memory electrical characteristics

Table 23. Code flash program and erase specifications¹

Symbol	Parameter	Min Value	Typical Value ² (0 Cycles)	Initial Max ³ (100 Cycles)	Max ⁴ (100000 Cycles)	Unit
T _{DWPRG}	Double Word Program ⁵	—	22	50	500	μs
T _{BKPRG}	Bank Program (512 KB) ^{5, 6}	—	1.45	1.65	33	S
T _{ER8K}	Sector Erase (8KB)	—	0.2	0.4	5.0	S
T _{ER16K}	Sector Erase (16KB)	—	0.3	0.5	5.0	S
T _{ER32K}	Sector Erase (32KB)	—	0.3	0.6	5.0	S
T _{ER64K}	Sector Erase (64KB)	—	0.6	0.9	5.0	S
T _{ER128K}	Sector Erase (128KB)	—	0.8	1.3	7.5	S
T _{ER512K}	Bank Erase (512KB)	—	4.8	7.6	55	S
T _{PABT}	Program Abort Latency	—	_	10	10	μs
T _{EABT}	Erase Abort Latency	—	—	30	30	μs

3.18 AC timing characteristics

3.18.1 Generic timing diagrams

The generic timing diagrams in Figure 14 and Figure 15 apply to all I/O pins with pad types fast, slow and medium. See Section 2.2, "Signal descriptions for the pad type for each pin.

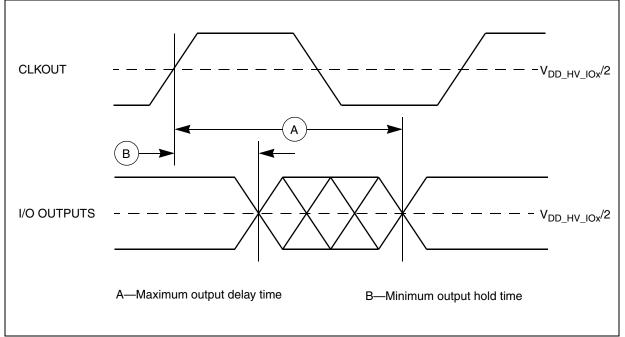
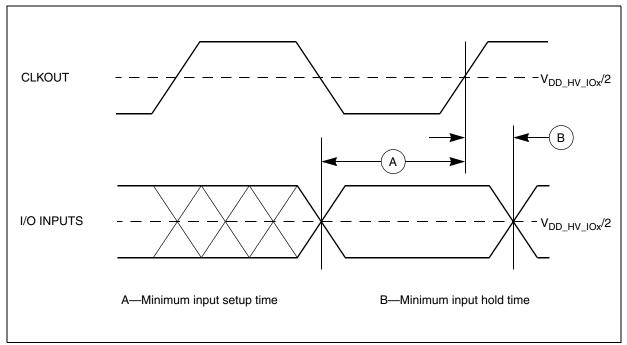



Figure 14. Generic output delay/hold timing

Electrical characteristics

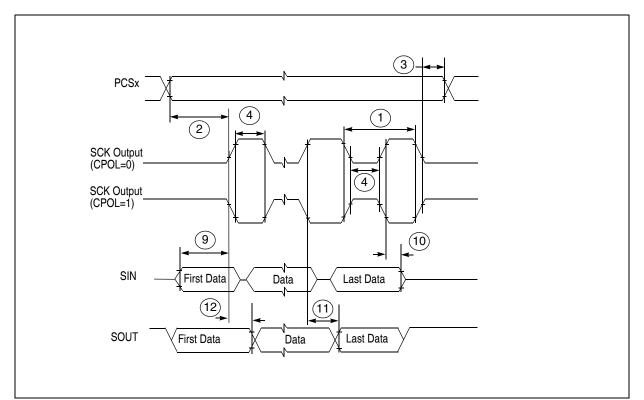


Figure 26. DSPI modified transfer format timing — Master, CPHA = 0

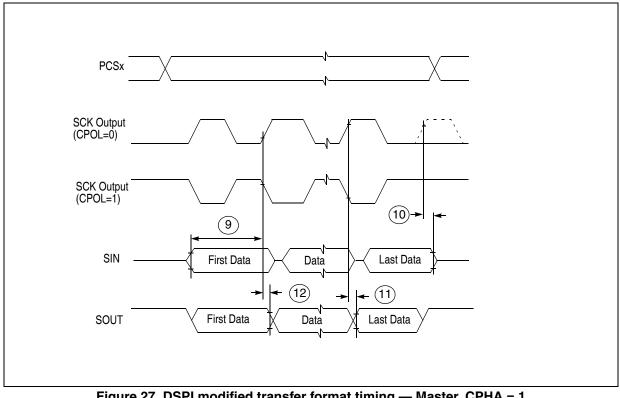
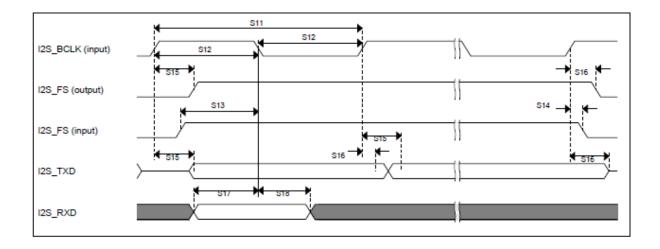



Figure 27. DSPI modified transfer format timing — Master, CPHA = 1

Electrical characteristics

Package mechanical data

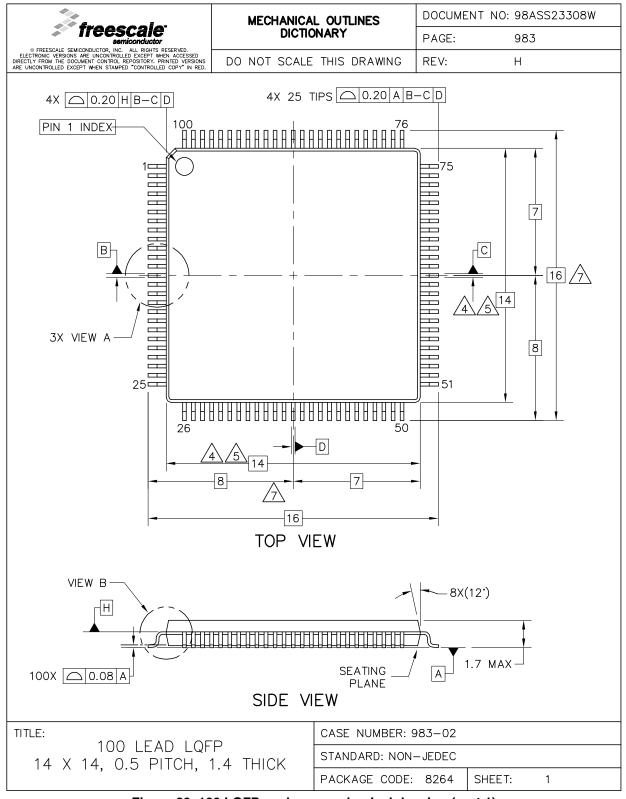


Figure 39. 100 LQFP package mechanical drawing (part 1)

Package mechanical data

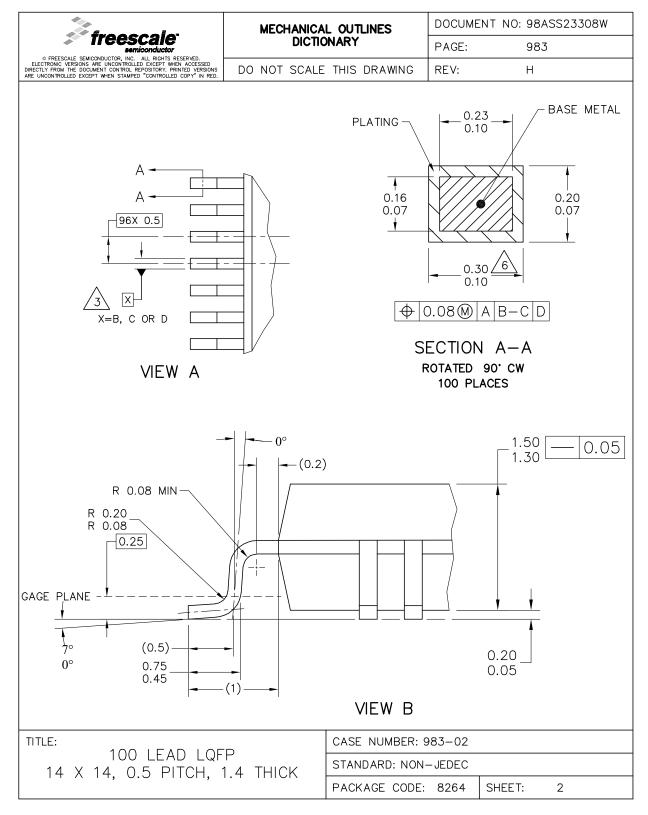


Figure 40. 100 LQFP package mechanical drawing (part 2)

		OUTLINES	DOCUME	NT NO: 98ASS23234W
Treescale semiconductor FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	DICTI	ONARY	PAGE:	840F
© FREESOLE SENICONDUCTOR, BORNLOCADEDTER RESERVED. ELECTRONIC VERSIONS ARE UNCONTINGLE REVERT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED 'CONTROLLED COPY' IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E
NOTES:				
1. DIMENSIONS ARE IN M	ILLIMETERS.			
2. DIMENSIONING AND TO	_ERANCING PER	ASME Y14.5M-19	994.	
3. DATUMS A, B AND D T	D BE DETERMINE	D AT DATUM PL	NE H.	
A DIMENSIONS TO BE DE	TERMINED AT SE	ATING PLANE C.		
THIS DIMENSION DOES PROTRUSION SHALL NO BY MORE THAN 0.08 mi LOCATED ON THE LOWE PROTRUSION AND ADJA	T CAUSE THE LE m AT MAXIMUM M R RADIUS OR TH	AD WIDTH TO EX ATERIAL CONDITE FOOT. MINIMU	KCEED TH FION. DA JM SPACE	HE UPPER LIMIT AMBAR CANNOT BE E BETWEEN
A THIS DIMENSION DOES IS 0.25 mm PER SIDE DIMENSION INCLUDING	THIS DIMENSI	ON IS MAXIMUM		
\triangle exact shape of each	CORNER IS OPT	IONAL.		
A THESE DIMENSIONS AP	PLY TO THE FLA	T SECTION OF	THE LEAD	BETWEEN
^{title:} 64LD LQFP, 10 X 10 X 1.4 0.5 PITCH, CASE	PKG,	CASE NUMBER: 8 STANDARD: JEDE	EC MS-02	
$0.0 + 1 + 0 + 1, 0 + 3 \perp$		PACKAGE CODE:	8426	SHEET: 3

Figure 44. 64LQFP package mechanical drawing (part 3)

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5604E Rev. 4 Jan 2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2012. All rights reserved.

