

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 17x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	81-LBGA
Supplier Device Package	81-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk40dx256zvmb10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK40 and MK40.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K40
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	 N = Program flash only X = Program flash and FlexMemory

Table continues on the next page ...

3.8.1 Example 1

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown	10	70	130	μΑ
	current				

This is an example of an operating behavior that includes a typical value:

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	٥°C
V _{DD}	3.3 V supply voltage	3.3	V

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
I _{IND}	Input leakage current, digital pins					4, 5
	• V _{DD} < V _{IN} < 5.5 V	_	1	50	μA	
Z _{IND}	Input impedance examples, digital pins					4, 7
	• V _{DD} = 3.6 V	—	—	48	kΩ	
	• V _{DD} = 3.0 V	_	—	55	kΩ	
	• V _{DD} = 2.5 V	—	—	57	kΩ	
	• V _{DD} = 1.7 V	—	—	85	kΩ	
R _{PU}	Internal pullup resistors	20	35	50	kΩ	8
R _{PD}	Internal pulldown resistors	20	35	50	kΩ	9

Table 4. Voltage and current operating behaviors (continued)

- 1. Typical values characterized at 25° C and VDD = 3.6 V unless otherwise noted.
- 2. Open drain outputs must be pulled to $V_{\text{DD}}.$
- 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
- 4. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.
- 5. Internal pull-up/pull-down resistors disabled.
- 6. Characterized, not tested in production.
- 7. Examples calculated using V_{IL} relation, V_{DD} , and max I_{IND} : $Z_{IND}=V_{IL}/I_{IND}$. This is the impedance needed to pull a high signal to a level below V_{IL} due to leakage when $V_{IL} < V_{IN} < V_{DD}$. These examples assume signal source low = 0 V.
- 8. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 9. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode: FEI

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	_	N/A	_	mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	_	N/A	_	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	 @ -40 to 25°C 	_	0.59	1.4	mA	
	• @ 70°C	—	2.26	7.9	mA	
	• @ 105°C	_	5.94	19.2	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	 @ -40 to 25°C 	_	93	435	μA	
	• @ 70°C	_	520	2000	μA	
	• @ 105°C	_	1350	4000	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9
	 @ -40 to 25°C 	_	4.8	20	μA	
	• @ 70°C	—	28	68	μA	
	• @ 105°C	_	126	270	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					9
	 @ -40 to 25°C 	_	3.1	8.9	μA	
	• @ 70°C	_	17	35	μA	
	• @ 105°C	_	82	148	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	 @ -40 to 25°C 	_	2.2	5.4	μA	
	• @ 70°C	_	7.1	12.5	μA	
	• @ 105°C	_	41	125	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	 @ -40 to 25°C 	_	2.1	7.6	μA	
	• @ 70°C	_	6.2	13.5	μA	
	• @ 105°C	—	30	46	μA	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	• @ -40 to 25°C	_	0.33	0.39	υA	
	• @ 70°C	_	0.60	0.78	uA	
	• @ 105°C	_	1.97	2.9	μΑ	

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page...

General

5.4.1 Thermal operating requirements

 Table 11.
 Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	81 MAPBGA	80 LQFP	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	65	50	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	36	35	°C/W	1
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	52	39	°C/W	1
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	31	29	°C/W	1
	R _{0JB}	Thermal resistance, junction to board	17	19	°C/W	2
	R _{θJC}	Thermal resistance, junction to case	13	8	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	3	2	°C/W	4

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

Symbol	Description	Min.	Max.	Unit
J3	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	25	—	ns
	Serial Wire Debug	12.5	—	ns
J4	TCLK rise and fall times	—	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	0	_	ns
J7	TCLK low to boundary scan output data valid		25	ns
J8	TCLK low to boundary scan output high-Z		25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1.4	—	ns
J11	TCLK low to TDO data valid		22.1	ns
J12	TCLK low to TDO high-Z		22.1	ns
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8	—	ns

Table 14. JTAG full voltage range electricals (continued)

Figure 5. Test clock input timing

Peripheral operating requirements and behaviors

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	_	32.768	_	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed — over fixed voltage and temperature range of 0–70°C	31.25	_	38.2	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_	± 1.5	± 4.5	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	_	4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00	(3/5) x f _{ints_t}	—	—	kHz	
f _{loc_high}	Loss of external clock minimum frequency — RANGE = 01, 10, or 11	(16/5) x f _{ints_t}			kHz	
	FI	L				
f _{fll_ref}	FLL reference frequency range	31.25		39.0625	kHz	

Table 15. MCG specifications

Table continues on the next page...

Peripheral operating requirements and behaviors

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	—	4	—	mA	
C _x	EXTAL load capacitance	_	_			2, 3
Cy	XTAL load capacitance		—			2, 3

6.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications

Table continues on the next page...

6.6.1.1 16-bit ADC operating conditions Table 25. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} - V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} - V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	—	31/32 * VREFH	V	
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	
		 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input resistance		_	2	5	kΩ	
R _{AS}	Analog source resistance	13-bit / 12-bit modes f _{ADCK} < 4 MHz		_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0		12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	_	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
		No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037		461.467	Ksps	

1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

6.6.1.3 16-bit ADC with PGA operating conditions Table 27. 16-bit ADC with PGA operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	
V _{REFPGA}	PGA ref voltage		VREF_OU T	VREF_OU T	VREF_OU T	V	2, 3
V _{ADIN}	Input voltage		V _{SSA}	_	V _{DDA}	V	
V _{CM}	Input Common Mode range		V _{SSA}	—	V _{DDA}	V	
R _{PGAD}	Differential input	Gain = 1, 2, 4, 8	_	128	—	kΩ	IN+ to IN- ⁴
	impedance	Gain = 16, 32	_	64	—		
		Gain = 64	_	32	—		
R _{AS}	Analog source resistance			100	—	Ω	5
T _S	ADC sampling time		1.25	—	—	μs	6
C _{rate}	ADC conversion rate	 ≤ 13 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz 	18.484	_	450	Ksps	7
		16 bit modes No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50 MHz	37.037	_	250	Ksps	8

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. ADC must be configured to use the internal voltage reference (VREF_OUT)
- 3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other than the output of the VREF module, the VREF module must be disabled.
- 4. For single ended configurations the input impedance of the driven input is $R_{\text{PGAD}}/2$
- 5. The analog source resistance (R_{AS}), external to MCU, should be kept as minimum as possible. Increased R_{AS} causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
- The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for F_{in}=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock.
- 7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1
- 8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1

6.6.1.4	16-bit ADC with P	16-bit ADC with PGA characteristics							
	Table 28.	16-bit ADC with PGA characteristics							

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)	-	420	644	μA	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\text{PGAD}}} \left(\frac{1}{2}\right)$	$\frac{2}{R_{\rm PGAD}} \left(\frac{\left(V_{\rm REFPGA} \times 0.583 \right) - V_{\rm CM}}{({\rm Gain}+1)} \right)$		A	3
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	—	1.54	_	μA	
		Gain =64, V_{REFPGA} =1.2V, V_{CM} =0.1V	-	0.57		μA	
G	Gain ⁴	• PGAG=0	0.95	1	1.05		$R_{AS} < 100\Omega$
		• PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes	_	—	4	kHz	
	bandwidth	 < 16-bit modes 	_	—	40	kHz	
PSRR	Power supply rejection ratio	Gain=1	_	-84	_	dB	V _{DDA} = 3V ±100mV, f _{VDDA} = 50Hz, 60Hz
CMRR	Common mode	Gain=1	_	-84	_	dB	V _{CM} =
	rejection ratio	• Gain=64	-	-85	_	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage		-	0.2	_	mV	Output offset = V _{OFS} *(Gain+1)
T _{GSW}	Gain switching settling time		-	—	10	μs	5
E _{IL}	Input leakage error	All modes		$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
V _{PP,DIFF}	Maximum differential input signal swing		$\left(\frac{(\min(V_{x}V_{DDA}-V_{x})-0.2)\times 4}{Gain}\right)$			V	6
			where V	$x = V_{REFPG}$	_A × 0.583		
SNR	Signal-to-noise	Gain=1	80	90	-	dB	16-bit
		• Gain=64	52	66		dB	mode, Average=32

Table continues on the next page...

6.6.3.2 12-bit DAC operating behaviors Table 31. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	_	150	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	—	700	μΑ	
tDACLP	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	—	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high-speed mode, no load, DAC set to 0x000	—	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 \text{ V}$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance load = $3 \text{ k}\Omega$	_	—	250	Ω	
SR	Slew rate -80h \rightarrow F7Fh \rightarrow 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	Low power (SP _{LP})	0.05	0.12	—		
СТ	Channel to channel cross talk	_	—	-80	dB	
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550	_	—		
	Low power (SP _{LP})	40	_	—		

1. Settling within ±1 LSB

- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁵	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4		0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	_	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

 Table 42.
 I²C timing (continued)

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 3. Input signal Slew = 10ns and Output Load = 50pf
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode l²C bus device can be used in a Standard mode l2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{max} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode l²C bus specification) before the SCL line is released.
- 6. C_b = total capacitance of the one bus line in pF.

Figure 21. Timing definition for fast and standard mode devices on the I²C bus

6.8.8 UART switching specifications

See General switching specifications.

Peripheral operating requirements and behaviors

6.8.9 SDHC specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

Num	Symbol	Description	Min.	Max.	Unit
		Card input clock			
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	—	ns
SD4	t _{TLH}	Clock rise time	—	3	ns
SD5	t _{THL}	Clock fall time	—	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	8.3	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD7	t _{ISU}	SDHC input setup time	5	—	ns
SD8	t _{IH}	SDHC input hold time	0	_	ns

Table 43. SDHC switching specifications

Figure 22. SDHC timing

6.8.10 I²S switching specifications

This section provides the AC timings for the I²S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S1	I2S_MCLK cycle time	2 x t _{SYS}		ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	5 x t _{SYS}	_	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	—	15	ns
S6	I2S_BCLK to I2S_FS output invalid	-2.5	_	ns
S7	I2S_BCLK to I2S_TXD valid	_	15	ns
S8	I2S_BCLK to I2S_TXD invalid	-3	_	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	20	_	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	_	ns

 Table 44.
 I²S master mode timing (limited voltage range)

Figure 23. I²S timing — master mode

Pinout

8.1 K40 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

The 81-pin ballmap assignments are currently being developed. The • in the entries in this package column indicate which signals are present on the package.

81	80	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
MAP BGA	LQFP											
E4	1	PTE0	ADC1_SE4a	ADC1_SE4a	PTE0	SPI1_PCS1	UART1_TX	SDHC0_D1		I2C1_SDA		
E3	2	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX	SDHC0_D0		I2C1_SCL		
E2	3	PTE2/ LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_CTS_ b	SDHC0_DCLK				
F4	4	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPI1_SIN	UART1_RTS_ b	SDHC0_CMD				
E7	-	VDD	VDD	VDD								
F7	_	VSS	VSS	VSS								
H7	5	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	SPI1_PCS0	UART3_TX	SDHC0_D3				
G4	6	PTE5	DISABLED		PTE5	SPI1_PCS2	UART3_RX	SDHC0_D2				
E6	7	VDD	VDD	VDD								
G7	8	VSS	VSS	VSS								
L6	_	VSS	VSS	VSS								
F1	9	USB0_DP	USB0_DP	USB0_DP								
F2	10	USB0_DM	USB0_DM	USB0_DM								
G1	11	VOUT33	VOUT33	VOUT33								
G2	12	VREGIN	VREGIN	VREGIN								
K1	13	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
K2	14	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								
L1	15	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3								
L2	16	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3								
F5	17	VDDA	VDDA	VDDA								
G5	18	VREFH	VREFH	VREFH								
G6	19	VREFL	VREFL	VREFL								

Pinout

81 MAP	80 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
BGA	20	Veen	VSSV	VSSV								
L3	21	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
K5	22	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
L4	23	XTAL32	XTAL32	XTAL32								
L5	24	EXTAL32	EXTAL32	EXTAL32								
K6	25	VBAT	VBAT	VBAT								
J6	26	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UARTO_CTS_ b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
H8	27	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
J7	28	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UARTO_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
H9	29	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UART0_RTS_ b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
J8	30	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
K7	31	PTA5	DISABLED		PTA5		FTM0_CH2		CMP2_OUT	I2S0_RX_ BCLK	JTAG_TRST	
E5	—	VDD	VDD	VDD								
G3	_	VSS	VSS	VSS								
K8	32	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0			I2S0_TXD	FTM1_QD_ PHA	
L8	33	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1			I2S0_TX_FS	FTM1_QD_ PHB	
K9	34	PTA14	DISABLED		PTA14	SPI0_PCS0	UART0_TX			I2S0_TX_ BCLK		
L9	35	PTA15	DISABLED		PTA15	SPI0_SCK	UART0_RX			I2S0_RXD		
J10	36	PTA16	DISABLED		PTA16	SPI0_SOUT	UARTO_CTS_ b			I2S0_RX_FS		
H10	37	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPI0_SIN	UARTO_RTS_ b			I2S0_MCLK	I2S0_CLKIN	
L10	38	VDD	VDD	VDD								
K10	39	VSS	VSS	VSS								
L11	40	PTA18	EXTAL	EXTAL	PTA18		FTM0_FLT2	FTM_CLKIN0				
K11	41	PTA19	XTAL	XTAL	PTA19		FTM1_FLT0	FTM_CLKIN1		LPT0_ALT1		
J11	42	RESET_b	RESET_b	RESET_b								
G11	43	PTB0/ LLWU_P5	LCD_P0/ ADC0_SE8/	LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	12C0_SCL	FTM1_CH0			FTM1_QD_ PHA	LCD_P0	

81	80	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
MAP BGA	LQFP											
J9	_	NC	NC	NC								
J4	-	NC	NC	NC								
H11	-	NC	NC	NC								
F11	_	NC	NC	NC								
E11	_	NC	NC	NC								
F10	_	NC	NC	NC								
F9	_	NC	NC	NC								
F8	-	NC	NC	NC								
E8	-	NC	NC	NC								
B6	-	NC	NC	NC								
A6	_	NC	NC	NC								
A5	-	NC	NC	NC								
B5	—	NC	NC	NC								
D5	—	NC	NC	NC								
C4	—	NC	NC	NC								
B4	—	NC	NC	NC								
A4	—	NC	NC	NC								
B1	—	NC	NC	NC								
C1	—	NC	NC	NC								
D1	_	NC	NC	NC								
E1	-	NC	NC	NC								
C2	_	NC	NC	NC								
D2	-	NC	NC	NC								

8.2 K40 Pinouts

Pinout

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Rev. No.	Date	Substantial Changes
1	11/2010	Initial public revision
2	3/2011	Many updates throughout
		Corrected 81- and 104-pin package codes
3	3/2011	Added sections that were inadvertently removed in previous revision
4	3/2011	Reworded IIC footnote in "Voltage and Current Operating Requirements" table.
		Added paragraph to "Peripheral operating requirements and behaviors" section.
		Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.
5	6/2011	 Changed supported part numbers per new part number scheme Changed <i>DC injection current</i> specs in "Voltage and current operating requirements" table Changed <i>Input leakage current</i> and <i>internal pullup/pulldown resistor</i> specs in "Voltage and current operating behaviors" table Split <i>Low power stop mode current</i> specs by temperature range in "Power consumption operating behaviors" table Changed Ippical <i>IDD_VBAT</i> spec in "Power consumption operating behaviors" table Added LPTIMR clock specs to "Device clock specifications" table Changed <i>Minimum external reset pulse width</i> in "General switching specifications" table Changed <i>PLL operating current</i> in "MCG specifications" table Changed <i>Crystal startup time</i> in "Oscillator DC electrical specifications" table Changed <i>Operating voltage</i> in "EzPort switching specifications" table Changed <i>Ana Operating voltage</i> in "EzPort switching specifications" table Changed <i>Gain</i> spec in "16-bit ADC with PGA characteristics" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Code-to-code</i> settling time, <i>DAC output voltage range low</i>, and <i>Temperature coefficient offset voltage</i> in "12-bit DAC operating behaviors" table Changed <i>Analog comparator initialization delay</i> in "Voltage range low, and <i>Temperature coefficient offset voltage</i> in "12-bit DAC operating behaviors" table Changed <i>Temperature drift</i> and <i>Load regulation</i> in "VREF full-range operating behaviors" table Changed <i>DSPI_SCK cycle time</i> specs in "USB VREG electrical specificatio

Table 50. Revision History

Table continues on the next page...

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2011–2013 Freescale Semiconductor, Inc.

Document Number: K40P81M100SF2 Rev. 7, 02/2013