

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Obsolete                                                                      |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | F <sup>2</sup> MC-16FX                                                        |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 32MHz                                                                         |
| Connectivity               | I <sup>2</sup> C, LINbus, SCI, UART/USART                                     |
| Peripherals                | DMA, LCD, LVD, POR, PWM, WDT                                                  |
| Number of I/O              | 97                                                                            |
| Program Memory Size        | 160KB (160K × 8)                                                              |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 8K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                   |
| Data Converters            | A/D 32x8/10b                                                                  |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 120-LQFP                                                                      |
| Supplier Device Package    | 120-LQFP (16x16)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/mb96f6a5abpmc-gse2 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# CY966A0 Series

Programmable loop-back mode for self-test operation

# USART

- ■Full duplex USARTs (SCI/LIN)
- Wide range of baud rate settings using a dedicated reload timer
- Special synchronous options for adapting to different synchronous serial protocols
- LIN functionality working either as master or slave LIN device
- Extended support for LIN-Protocol to reduce interrupt load

# I<sup>2</sup>C

- ■Up to 400kbps
- ■Master and Slave functionality, 7-bit and 10-bit addressing

# A/D Converter

- ■SAR-type
- ■8/10-bit resolution
- Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- ■Range Comparator Function
- ■Scan Disable Function
- ■ADC Pulse Detection Function

# **Source Clock Timers**

Three independent clock timers (23-bit RC clock timer, 23-bit Main clock timer, 17-bit Sub clock timer)

#### Hardware Watchdog Timer

- ■Hardware watchdog timer is active after reset
- Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

#### **Reload Timers**

- ■16-bit wide
- Prescaler with 1/2<sup>1</sup>, 1/2<sup>2</sup>, 1/2<sup>3</sup>, 1/2<sup>4</sup>, 1/2<sup>5</sup>, 1/2<sup>6</sup> of peripheral clock frequency
- Event count function

#### **Free-Running Timers**

- Signals an interrupt on overflow, supports timer clear upon match with Output Compare (0, 4)
- Prescaler with 1, 1/2<sup>1</sup>, 1/2<sup>2</sup>, 1/2<sup>3</sup>, 1/2<sup>4</sup>, 1/2<sup>5</sup>, 1/2<sup>6</sup>, 1/2<sup>7</sup>, 1/2<sup>8</sup> of peripheral clock frequency

# **Input Capture Units**

■16-bit wide

- Signals an interrupt upon external event
- Rising edge, Falling edge or Both (rising & falling) edges sensitive

### **Output Compare Units**

- ■16-bit wide
- Signals an interrupt when a match with Free-running Timer occurs
- A pair of compare registers can be used to generate an output signal

#### **Programmable Pulse Generator**

- 16-bit down counter, cycle and duty setting registers
- ■Can be used as 2 × 8-bit PPG
- Interrupt at trigger, counter borrow and/or duty match
- PWM operation and one-shot operation
- Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- Can be triggered by software or reload timer
- Can trigger ADC conversion
- Timing point capture
- Start delay

#### **Stepping Motor Controller**

- Stepping Motor Controller with integrated high current output drivers
- Four high current outputs for each channel
- Two synchronized 8/10-bit PWMs per channel
- Internal prescaling for PWM clock: 1, 1/4, 1/5, 1/6, 1/8, 1/10, 1/12, 1/16 of peripheral clock
- Dedicated power supply for high current output drivers

#### LCD Controller

- ■LCD controller with up to 4COM × 44SEG
- Internal or external voltage generation
- Duty cycle: Selectable from options: 1/2, 1/3 and 1/4
- Fixed 1/3 bias
- Programmable frame period
- Clock source selectable from four options (main clock, peripheral clock, subclock or RC oscillator clock)
- Internal divider resistors or external divider resistors
- On-chip data memory for display
- LCD display can be operated in Timer Mode
- Blank display: selectable



# 4. Pin Description

| Pin Name  | Feature               | Description                                                      |
|-----------|-----------------------|------------------------------------------------------------------|
| ADTG      | ADC                   | A/D converter trigger input pin                                  |
| ANn       | ADC                   | A/D converter channel n input pin                                |
| AVcc      | Supply                | Analog circuits power supply pin                                 |
| AVRH      | ADC                   | A/D converter high reference voltage input pin                   |
| AVRL      | ADC                   | A/D converter low reference voltage input pin                    |
| AVss      | Supply                | Analog circuits power supply pin                                 |
| С         | Voltage regulator     | Internally regulated power supply stabilization capacitor pin    |
| CKOTn     | Clock Output function | Clock Output function n output pin                               |
| CKOTn_R   | Clock Output function | Relocated Clock Output function n output pin                     |
| CKOTXn    | Clock Output function | Clock Output function n inverted output pin                      |
| CKOTXn_R  | Clock Output function | Relocated Clock Output function n inverted output pin            |
| COMn      | LCD                   | LCD Common driver pin                                            |
| DEBUG I/F | OCD                   | On Chip Debugger input/output pin                                |
| DVcc      | Supply                | SMC pins power supply                                            |
| DVss      | Supply                | SMC pins power supply                                            |
| FRCKn     | Free-Running Timer    | Free-Running Timer n input pin                                   |
| FRCKn_R   | Free-Running Timer    | Relocated Free-Running Timer n input pin                         |
| INn       | ICU                   | Input Capture Unit n input pin                                   |
| INn_R     | ICU                   | Relocated Input Capture Unit n input pin                         |
| INTn      | External Interrupt    | External Interrupt n input pin                                   |
| INTn_R    | External Interrupt    | Relocated External Interrupt n input pin                         |
| MD        | Core                  | Input pin for specifying the operating mode                      |
| NMI       | External Interrupt    | Non-Maskable Interrupt input pin                                 |
| OUTn      | OCU                   | Output Compare Unit n waveform output pin                        |
| OUTn_R    | OCU                   | Relocated Output Compare Unit n waveform output pin              |
| Pnn_m     | GPIO                  | General purpose I/O pin                                          |
| PPGn      | PPG                   | Programmable Pulse Generator n output pin (16bit/8bit)           |
| PPGn_R    | PPG                   | Relocated Programmable Pulse Generator n output pin (16bit/8bit) |
| PPGn_B    | PPG                   | Programmable Pulse Generator n output pin (16bit/8bit)           |
| PWMn      | SMC                   | SMC PWM high current output pin                                  |
| RSTX      | Core                  | Reset input pin                                                  |
| RXn       | CAN                   | CAN interface n RX input pin                                     |
| SCKn      | USART                 | USART n serial clock input/output pin                            |
| SCKn_R    | USART                 | Relocated USART n serial clock input/output pin                  |
| SCLn      | l <sup>2</sup> C      | I <sup>2</sup> C interface n clock I/O input/output pin          |
| SDAn      | l <sup>2</sup> C      | I <sup>2</sup> C interface n serial data I/O input/output pin    |
| SEGn      | LCD                   | LCD Segment driver pin                                           |
| SGAn      | Sound Generator       | Sound Generator amplitude output pin                             |
| SGAn_R    | Sound Generator       | Relocated Sound Generator amplitude output pin                   |
| SGOn      | Sound Generator       | Sound Generator sound/tone output pin                            |





| Pin No. | I/O Circuit Type* | Pin Name                                |
|---------|-------------------|-----------------------------------------|
| 77      | J                 | P11_6 / SEG2 / FRCK0_R                  |
| 78      | J                 | P11_7 / SEG3 / IN0_R                    |
| 79      | J                 | P12_0 / SEG4 / IN1_R                    |
| 80      | н                 | P12_1 / TIN1_R / PPG0_B                 |
| 81      | н                 | P12_2 / TOT1_R / PPG1_B                 |
| 82      | J                 | P12_3 / SEG7 / OUT2_R                   |
| 83      | J                 | P12_4 / SEG8 / OUT3_R                   |
| 84      | J                 | P12_5 / SEG9 / TIN2_R / PPG2_B          |
| 85      | J                 | P12_6 / SEG10 / TOT2_R / PPG3_B         |
| 86      | J                 | P12_7 / SEG11 / INT1_R                  |
| 87      | J                 | P00_0 / SEG12 / INT3_R                  |
| 88      | J                 | P00_1 / SEG13 / INT4_R                  |
| 89      | J                 | P00_2 / SEG14 / INT5_R                  |
| 90      | Supply            | Vcc                                     |
| 91      | Supply            | Vss                                     |
| 92      | J                 | P00_3 / SEG15 / INT6_R                  |
| 93      | J                 | P00_4 / SEG16 / INT7_R                  |
| 94      | J                 | P00_5 / SEG17 / IN6 / TTG2 / TTG6       |
| 95      | J                 | P00_6 / SEG18 / IN7 / TTG3 / TTG7       |
| 96      | J                 | P00_7 / SEG19 / SGO0 / INT14            |
| 97      | J                 | P01_0 / SEG20 / SGA0                    |
| 98      | J                 | P01_1 / SEG21 / CKOT1 / OUT0            |
| 99      | J                 | P01_2 / SEG22 / CKOTX1 / OUT1 / INT15   |
| 100     | J                 | P01_3 / SEG23 / PPG5                    |
| 101     | Ρ                 | P01_4 / SEG24 / SIN4 / INT8             |
| 102     | J                 | P01_5 / SEG25 / SOT4                    |
| 103     | Р                 | P01_6 / SEG26 / SCK4 / TTG12            |
| 104     | J                 | P01_7 / SEG27 / CKOTX1_R / INT9 / TTG13 |
| 105     | J                 | P02_0 / SEG28 / CKOT1_R / INT10 / TTG14 |
| 106     | J                 | P02_1 / SEG29 / IN6_R / TTG15           |
| 107     | J                 | P02_2 / SEG30 / IN7_R / CKOT0_R / INT12 |
| 108     | J                 | P02_3 / SEG31 / SGO0_R / PPG12_B        |
| 109     | J                 | P02_4 / SEG32 / SGA0_R / PPG13_B        |
| 110     | Ρ                 | P02_5 / SEG33 / OUT0_R / INT13 / SIN5_R |
| 111     | J                 | P02_6 / SEG34 / OUT1_R                  |
| 112     | J                 | P02_7 / SEG35 / PPG5_R                  |
| 113     | L                 | P03_0 / V0 / SEG36 / PPG4_B             |
| 114     | L                 | P03_1 / V1 / SEG37 / PPG5_B             |
| 115     | L                 | P03_2 / V2 / SEG38 / PPG14_B / SOT5_R   |



| Туре | Circuit                                                                                                   | Remarks                                                                                                                                                                                                                    |
|------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ρ    | P-ch P-ch Pout<br>P-ch P-ch Pout<br>N-ch Nout<br>Hysteresis input<br>for input shutdown SEG or COM output | <ul> <li>CMOS level output<br/>(I<sub>OL</sub> = 4mA, I<sub>OH</sub> = -4mA)</li> <li>CMOS hysteresis inputs with<br/>input shutdown function</li> <li>Programmable pull-up resistor</li> <li>SEG or COM output</li> </ul> |
| Q    | Pull-up control                                                                                           | ■CMOS level output<br>(I <sub>OL</sub> = 4mA, I <sub>OH</sub> = -4mA)<br>■CMOS hysteresis inputs with                                                                                                                      |
|      | P-ch P-ch P-ch Pout                                                                                       | <ul> <li>Programmable pull-up resistor</li> <li>Vn input or SEG output</li> </ul>                                                                                                                                          |
|      | Standby control                                                                                           |                                                                                                                                                                                                                            |
|      | Vn input or SEG output                                                                                    |                                                                                                                                                                                                                            |
| R    | Pull-up control                                                                                           | CMOS level output<br>(programmable $I_{OL} = 4mA$ ,<br>$I_{OH} = -4mA$ and $I_{OL} = 30mA$ ,                                                                                                                               |
|      | P-ch P-ch Pout                                                                                            | I <sub>OH</sub> = -30mA)<br>■Automotive input with input<br>shutdown function                                                                                                                                              |
|      | N-ch Nout                                                                                                 | <ul> <li>Programmable pull-up /<br/>pull-down resistor</li> <li>Analog input</li> </ul>                                                                                                                                    |
|      | R                                                                                                         |                                                                                                                                                                                                                            |
|      | Standby control                                                                                           |                                                                                                                                                                                                                            |
|      | Analog input                                                                                              |                                                                                                                                                                                                                            |



# 11. Interrupt Vector Table

| Vector<br>Number | Offset in<br>Vector Table     | Vector Name | Cleared by<br>DMA | Index in<br>ICR to<br>Program | Description                     |
|------------------|-------------------------------|-------------|-------------------|-------------------------------|---------------------------------|
| 0                | 3FC <sub>H</sub>              | CALLV0      | No                | -                             | CALLV instruction               |
| 1                | 3F8 <sub>H</sub>              | CALLV1      | No                | -                             | CALLV instruction               |
| 2                | 3F4 <sub>H</sub>              | CALLV2      | No                | -                             | CALLV instruction               |
| 3                | 3F0 <sub>H</sub>              | CALLV3      | No                | -                             | CALLV instruction               |
| 4                | 3EC <sub>H</sub>              | CALLV4      | No                | -                             | CALLV instruction               |
| 5                | 3E8 <sub>H</sub>              | CALLV5      | No                | -                             | CALLV instruction               |
| 6                | 3E4 <sub>H</sub>              | CALLV6      | No                | -                             | CALLV instruction               |
| 7                | 3E0 <sub>Н</sub>              | CALLV7      | No                | -                             | CALLV instruction               |
| 8                | 3DC <sub>H</sub>              | RESET       | No                | -                             | Reset vector                    |
| 9                | 3D8 <sub>H</sub>              | INT9        | No                | -                             | INT9 instruction                |
| 10               | 3D4 <sub>H</sub>              | EXCEPTION   | No                | -                             | Undefined instruction execution |
| 11               | 3D0 <sub>H</sub>              | NMI         | No                | -                             | Non-Maskable Interrupt          |
| 12               | 3CC <sub>H</sub>              | DLY         | No                | 12                            | Delayed Interrupt               |
| 13               | 3C8 <sub>Н</sub>              | RC_TIMER    | No                | 13                            | RC Clock Timer                  |
| 14               | 3C4 <sub>H</sub>              | MC_TIMER    | No                | 14                            | Main Clock Timer                |
| 15               | 3C0 <sub>Н</sub>              | SC_TIMER    | No                | 15                            | Sub Clock Timer                 |
| 16               | 3BC <sub>H</sub>              | LVDI        | No                | 16                            | Low Voltage Detector            |
| 17               | 3B8 <sub>H</sub>              | EXTINT0     | Yes               | 17                            | External Interrupt 0            |
| 18               | 3B4 <sub>H</sub>              | EXTINT1     | Yes               | 18                            | External Interrupt 1            |
| 19               | 3B0 <sub>Н</sub>              | EXTINT2     | Yes               | 19                            | External Interrupt 2            |
| 20               | 3AC <sub>H</sub>              | EXTINT3     | Yes               | 20                            | External Interrupt 3            |
| 21               | 3А8 <sub>н</sub>              | EXTINT4     | Yes               | 21                            | External Interrupt 4            |
| 22               | 3A4 <sub>H</sub>              | EXTINT5     | Yes               | 22                            | External Interrupt 5            |
| 23               | 3A0 <sub>H</sub>              | EXTINT6     | Yes               | 23                            | External Interrupt 6            |
| 24               | 39C <sub>н</sub>              | EXTINT7     | Yes               | 24                            | External Interrupt 7            |
| 25               | 398 <sub>н</sub>              | EXTINT8     | Yes               | 25                            | External Interrupt 8            |
| 26               | 394 <sub>H</sub>              | EXTINT9     | Yes               | 26                            | External Interrupt 9            |
| 27               | 390 <sub>н</sub>              | EXTINT10    | Yes               | 27                            | External Interrupt 10           |
| 28               | 38C <sub>H</sub>              | EXTINT11    | Yes               | 28                            | External Interrupt 11           |
| 29               | 388 <sub>H</sub>              | EXTINT12    | Yes               | 29                            | External Interrupt 12           |
| 30               | 384 <sub>H</sub>              | EXTINT13    | Yes               | 30                            | External Interrupt 13           |
| 31               | 380 <sub>H</sub>              | EXTINT14    | Yes               | 31                            | External Interrupt 14           |
| 32               | 37C <sub>H</sub>              | EXTINT15    | Yes               | 32                            | External Interrupt 15           |
| 33               | 378 <sub>H</sub>              | CAN0        | No                | 33                            | CAN Controller 0                |
| 34               | 374 <sub>H</sub>              | -           | -                 | 34                            | Reserved                        |
| 35               | 370 <sub>H</sub>              | -           | -                 | 35                            | Reserved                        |
| 36               | 3 <mark>6С<sub>н</sub></mark> | -           | -                 | 36                            | Reserved                        |
| 37               | 368 <sub>H</sub>              | -           | -                 | 37                            | Reserved                        |
| 38               | 364 <sub>H</sub>              | PPG0        | Yes               | 38                            | Programmable Pulse Generator 0  |
| 39               | 360 <sub>н</sub>              | PPG1        | Yes               | 39                            | Programmable Pulse Generator 1  |



| Vector<br>Number | Offset in<br>Vector Table | Vector Name | Cleared by<br>DMA | Index in<br>ICR to<br>Program | Description                        |
|------------------|---------------------------|-------------|-------------------|-------------------------------|------------------------------------|
| 116              | 22C <sub>H</sub>          | -           | -                 | 116                           | Reserved                           |
| 117              | 228 <sub>H</sub>          | -           | -                 | 117                           | Reserved                           |
| 118              | 224 <sub>H</sub>          | -           | -                 | 118                           | Reserved                           |
| 119              | 220 <sub>H</sub>          | -           | -                 | 119                           | Reserved                           |
| 120              | 21C <sub>Н</sub>          | -           | -                 | 120                           | Reserved                           |
| 121              | 218 <sub>H</sub>          | SG1         | No                | 121                           | Sound Generator 1                  |
| 122              | 214 <sub>H</sub>          | -           | -                 | 122                           | Reserved                           |
| 123              | 210 <sub>H</sub>          | -           | -                 | 123                           | Reserved                           |
| 124              | 20C <sub>H</sub>          | -           | -                 | 124                           | Reserved                           |
| 125              | 208 <sub>H</sub>          | -           | -                 | 125                           | Reserved                           |
| 126              | 204 <sub>H</sub>          | -           | -                 | 126                           | Reserved                           |
| 127              | 200 <sub>H</sub>          | -           | -                 | 127                           | Reserved                           |
| 128              | 1FC <sub>H</sub>          | -           | -                 | 128                           | Reserved                           |
| 129              | 1F8 <sub>H</sub>          | -           | -                 | 129                           | Reserved                           |
| 130              | 1F4 <sub>H</sub>          | -           | -                 | 130                           | Reserved                           |
| 131              | 1F0 <sub>H</sub>          | -           | -                 | 131                           | Reserved                           |
| 132              | 1EC <sub>H</sub>          | -           | -                 | 132                           | Reserved                           |
| 133              | 1E8 <sub>H</sub>          | FLASHA      | Yes               | 133                           | Flash memory A interrupt           |
| 134              | 1E4 <sub>H</sub>          | -           | -                 | 134                           | Reserved                           |
| 135              | 1E0 <sub>H</sub>          | -           | -                 | 135                           | Reserved                           |
| 136              | 1DC <sub>H</sub>          | -           | -                 | 136                           | Reserved                           |
| 137              | 1D8 <sub>H</sub>          | -           | -                 | 137                           | Reserved                           |
| 138              | 1D4 <sub>H</sub>          | -           | -                 | 138                           | Reserved                           |
| 139              | 1D0 <sub>H</sub>          | ADCRC0      | No                | 139                           | A/D Converter 0 - Range Comparator |
| 140              | 1CC <sub>H</sub>          | ADCPD0      | No                | 140                           | A/D Converter 0 - Pulse detection  |
| 141              | 1C8 <sub>H</sub>          | -           | -                 | 141                           | Reserved                           |
| 142              | 1C4 <sub>H</sub>          | -           | -                 | 142                           | Reserved                           |
| 143              | 1C0 <sub>H</sub>          | -           | -                 | 143                           | Reserved                           |



#### ■Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 M $\Omega$ ).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

#### **12.3 Precautions for Use Environment**

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.



#### (2) Single Phase External Clock for Sub Oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and X0A/P04\_0 pin must be driven. X1A/P04\_1 pin can be configured as GPIO.

#### (3) Opposite Phase External Clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.



#### 4. Notes on PLL Clock Mode Operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

#### 5. Power Supply Pins (Vcc/Vss)

It is required that all  $V_{CC}$ -level as well as all  $V_{SS}$ -level power supply pins are at the same potential. If there is more than one  $V_{CC}$  or  $V_{SS}$  level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

Vcc and Vss pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at Vcc pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1  $\mu$ F between Vcc and Vss pins as close as possible to Vcc and Vss pins.

#### 6. Crystal Oscillator and ceramic resonator Circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

#### 7. Turn on Sequence of Power Supply to A/D Converter and Analog Inputs

It is required to turn the A/D converter power supply (AV<sub>CC</sub>, AVRH, AVRL) and analog inputs (ANn) on after turning the digital power supply (V<sub>CC</sub>) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed  $AV_{CC}$ . Input voltage for ports shared with analog input ports also must not exceed  $AV_{CC}$  (turning the analog and digital power supplies simultaneously on or off is acceptable).

#### 8. Pin Handling when not using the A/D Converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as  $AV_{CC} = V_{CC}$ ,  $AV_{SS} = AVRH = AVRL = V_{SS}$ .



# 14.2 Recommended Operating Conditions

|                              |                                        |       |            |     |      | $(V_{SS} = AV_{SS} = DV_{SS} = 0V)$                                                                                                                                                                                                                                                                    |
|------------------------------|----------------------------------------|-------|------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                    | Symbol                                 | Value |            |     | Unit | Remarks                                                                                                                                                                                                                                                                                                |
| i uluilotoi                  | Cymbol                                 | Min   | Тур        | Max |      | Romanio                                                                                                                                                                                                                                                                                                |
| Dowor oupply voltogo         | V <sub>CC</sub> ,                      | 2.7   | -          | 5.5 | V    |                                                                                                                                                                                                                                                                                                        |
| Power supply voltage         | AV <sub>CC</sub> ,<br>DV <sub>CC</sub> | 2.0   | -          | 5.5 | V    | Maintains RAM data in stop mode                                                                                                                                                                                                                                                                        |
| Smoothing capacitor at C pin | Cs                                     | 0.5   | 1.0 to 3.9 | 4.7 | μF   | $1.0\mu$ F (Allowance within ± 50%)<br>$3.9\mu$ F (Allowance within ± 20%)<br>Please use the ceramic capacitor or the capacitor<br>of the frequency response of this level.<br>The smoothing capacitor at V <sub>CC</sub> must use the one<br>of a capacity value that is larger than C <sub>S</sub> . |

# WARNING

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.



# 14.4.2 Sub Clock Input Characteristics

|                         |                   | (    | $V_{CC} = AV_{CC} = DV_{CC}$                                               | cc = 2.7V t | o 5.5V, V <sub>SS</sub> | = AVss = D | OVss = 0 | /, $T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$ |    |     |                                             |
|-------------------------|-------------------|------|----------------------------------------------------------------------------|-------------|-------------------------|------------|----------|-----------------------------------------------------|----|-----|---------------------------------------------|
| Parameter               | Symbol            | Pin  | Conditions                                                                 | Value       |                         |            | Unit     | Domorko                                             |    |     |                                             |
| Farameter               | Symbol            | Name | Conditions                                                                 | Min         | Тур                     | Max        | Onit     | itemarks                                            |    |     |                                             |
|                         | f <sub>CL</sub>   |      |                                                                            |             | X0A,                    | -          | -        | 32.768                                              | -  | kHz | When using an oscillation circuit           |
| Input frequency         |                   | X1A  | -                                                                          | -           | -                       | 100        | kHz      | When using an opposite<br>phase external clock      |    |     |                                             |
|                         |                   |      |                                                                            |             | X0A                     | -          | -        | -                                                   | 50 | kHz | When using a single<br>phase external clock |
| Input clock cycle       | t <sub>CYLL</sub> | -    | -                                                                          | 10          | -                       | -          | μs       |                                                     |    |     |                                             |
| Input clock pulse width | -                 | -    | P <sub>WH</sub> /t <sub>CYLL</sub> ,<br>P <sub>WL</sub> /t <sub>CYLL</sub> | 30          | -                       | 70         | %        |                                                     |    |     |                                             |







# 14.4.5 Operating Conditions of PLL

| (Vcc                                    | $= AV_{CC} = DV$    | cc = 2.7 | V to 5.5 | V, Vss = A | AVss = DVs | $r_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$ |  |
|-----------------------------------------|---------------------|----------|----------|------------|------------|---------------------------------------------------------------|--|
| Parameter                               | Symbol              | Value    |          |            | Unit       | Pomorko                                                       |  |
| Falameter                               | Symbol              | Min      | Тур      | Max        | Onic       | itemaiks                                                      |  |
| PLL oscillation stabilization wait time | t <sub>LOCK</sub>   | 1        | -        | 4          | ms         | For CLKMC = 4MHz                                              |  |
| PLL input clock frequency               | f <sub>PLLI</sub>   | 4        | -        | 8          | MHz        |                                                               |  |
| PLL oscillation clock frequency         | f <sub>CLKVCO</sub> | 56       | -        | 108        | MHz        | Permitted VCO output frequency<br>of PLL (CLKVCO)             |  |
| PLL phase jitter                        | t <sub>PSKEW</sub>  | -5       | -        | +5         | ns         | For CLKMC (PLL input clock) ≥<br>4MHz                         |  |



### 14.4.6 Reset Input

(V\_{CC} = AV\_{CC} = DV\_{CC} = 2.7V to 5.5V, V<sub>SS</sub> = AV<sub>SS</sub> = DV<sub>SS</sub> = 0V, T<sub>A</sub> = - 40°C to + 105°C)

| Parameter                     | Symbol | Pin Name | Va  | Unit |       |
|-------------------------------|--------|----------|-----|------|-------|
| i didileter                   | Cymbol |          | Min | Max  | Olint |
| Reset input time              |        | DOTY     | 10  | -    | μs    |
| Rejection of reset input time | IRSTL  | KOTA     | 1   | -    | μS    |











# 14.4.10 PC Timing

| -                                            | (Vcc :             | $= AV_{CC} = DV_{CC} = 2.7V$ | to 5.5V, Vss | = AVss = D            | $/ss = 0V, T_A$   | = - 40°C to +         | ⊦ 105°C) |
|----------------------------------------------|--------------------|------------------------------|--------------|-----------------------|-------------------|-----------------------|----------|
| Parameter                                    | Symbol             | Conditions                   | Typical Mode |                       | High-Speed Mode*4 |                       | Unit     |
| Falalletei                                   | Symbol             | Conditions                   | Min          | Max                   | Min               | Max                   | Onit     |
| SCL clock frequency                          | f <sub>SCL</sub>   |                              | 0            | 100                   | 0                 | 400                   | kHz      |
| (Repeated) START condition hold time         | t                  |                              | 4.0          | _                     | 0.6               | _                     |          |
| $SDA \downarrow \rightarrow SCL \downarrow$  | <b>H</b> DSTA      |                              | 4.0          | -                     | 0.0               | -                     | μδ       |
| SCL clock "L" width                          | t <sub>LOW</sub>   |                              | 4.7          | -                     | 1.3               | -                     | μS       |
| SCL clock "H" width                          | t <sub>HIGH</sub>  |                              | 4.0          | -                     | 0.6               | -                     | μS       |
| (Repeated) START condition setup time        | +                  |                              | 47           |                       | 0.6               |                       |          |
| $SCL \uparrow \to SDA \downarrow$            | SUSTA              |                              | 4.7          | -                     | 0.0               | -                     | μs       |
| Data hold time                               | +                  | $C_{L} = 50 pF,$             | 0            | 2 15*2                | 0                 | 0.0*3                 |          |
| $SCL \downarrow \to SDA \downarrow \uparrow$ | <sup>L</sup> HDDAT | $R = (Vp/I_{OL})^{*1}$       | 0            | 5.45                  | 0                 | 0.9                   | μs       |
| Data setup time                              | t                  |                              | 250          | _                     | 100               | _                     | ne       |
| $SDA\downarrow\uparrow\toSCL\uparrow$        | SUDAT              |                              | 230          | -                     | 100               | -                     | 115      |
| STOP condition setup time                    | touero             |                              | 4.0          | _                     | 0.6               | _                     |          |
| $SCL \uparrow \to SDA \uparrow$              | SUSTO              |                              | 4.0          | -                     | 0.0               | _                     | μο       |
| Bus free time between                        |                    |                              |              |                       |                   |                       |          |
| "STOP condition" and                         | t <sub>BUS</sub>   |                              | 4.7          | -                     | 1.3               | -                     | μS       |
| "START condition"                            |                    |                              |              |                       |                   |                       |          |
| <b>_</b>                                     |                    |                              |              | <i></i>               |                   | ( , , , _)            |          |
| Pulse width of spikes which will be          | tse                | -                            | 0            | (1-1.5) ×             | 0                 | (1-1.5) ×             | ns       |
| suppressed by input noise filter             |                    |                              |              | t <sub>CLKP1</sub> *° |                   | t <sub>CLKP1</sub> *3 | -        |
|                                              |                    |                              |              |                       |                   |                       |          |

\*1: R and C<sub>L</sub> represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I<sub>OL</sub> indicates V<sub>OL</sub> guaranteed current.

\*2: The maximum t<sub>HDDAT</sub> only has to be met if the device does not extend the "L" width (t<sub>LOW</sub>) of the SCL signal.

\*3: A high-speed mode I<sup>2</sup>C bus device can be used on a standard mode I<sup>2</sup>C bus system as long as the device satisfies the requirement of "t<sub>SUDAT</sub> ≥ 250ns".

\*4: For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.

\*5: t<sub>CLKP1</sub> indicates the peripheral clock1 (CLKP1) cycle time.





### 14.5.3 Definition of A/D Converter Terms

| Resolution           | : Analog variation that is recognized by an A/D converter.                                                                                                                                                                                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nonlinearity error   | : Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b000000000 $\leftarrow \rightarrow$ 0b000000001) to the full-scale transition point (0b111111110 $\leftarrow \rightarrow$ |
|                      | Ob111111111).                                                                                                                                                                                                                                 |
| Differential nonline | arity error : Deviation from the ideal value of the input voltage that is required to change the output code by                                                                                                                               |
|                      | 1LSB.                                                                                                                                                                                                                                         |
| Total error          | · Difference between the actual value and the theoretical value. The total error includes zero transition                                                                                                                                     |

Total error: Difference between the actual value and the theoretical value. The total error includes zero transition<br/>error, full-scale transition error and nonlinearity error.

Zero transition voltage: Input voltage which results in the minimum conversion value.

Full scale transition voltage: Input voltage which results in the maximum conversion value.





# 14.6 High Current Output Slew Rate

| Parameter             | Symbol                                 | Pin<br>Name               | Conditions                                      | Value |     |     | Unit | Pomarke  |  |
|-----------------------|----------------------------------------|---------------------------|-------------------------------------------------|-------|-----|-----|------|----------|--|
| Falametei             |                                        |                           |                                                 | Min   | Тур | Max | Unit | itemaiks |  |
| Output rise/fall time | t <sub>R30</sub> ,<br>t <sub>F30</sub> | P08_m,<br>P09_m,<br>P10_m | Outputs<br>driving<br>strength set to<br>"30mA" | 15    | -   | 75  | ns   | C∟=85pF  |  |

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$  to 5.5V,  $V_{SS} = AV_{SS} = DV_{SS} = 0V$ ,  $T_A = -40^{\circ}C$  to  $+105^{\circ}C$ )



 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V \text{ Vss} = AV_{SS} = DV_{SS} = 0V \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } + 105^{\circ}\text{C}$ 



# 14.7 Low Voltage Detection Function Characteristics

|                                                |                  |                               |         | Value |         |        |  |
|------------------------------------------------|------------------|-------------------------------|---------|-------|---------|--------|--|
| Parameter                                      | Symbol           | Conditions                    | Min     |       | Max     | x Unit |  |
|                                                | V <sub>DL0</sub> | $CILCR:LVL = 0000_B$          | 2.70    | 2.90  | 3.10    | V      |  |
|                                                | V <sub>DL1</sub> | $CILCR:LVL = 0001_B$          | 2.79    | 3.00  | 3.21    | V      |  |
|                                                | V <sub>DL2</sub> | $CILCR:LVL = 0010_B$          | 2.98    | 3.20  | 3.42    | V      |  |
| Detected voltage <sup>*1</sup>                 | V <sub>DL3</sub> | CILCR:LVL = 0011 <sub>B</sub> | 3.26    | 3.50  | 3.74    | V      |  |
| -                                              | V <sub>DL4</sub> | $CILCR:LVL = 0100_B$          | 3.45    | 3.70  | 3.95    | V      |  |
|                                                | V <sub>DL5</sub> | CILCR:LVL = 0111 <sub>B</sub> | 3.73    | 4.00  | 4.27    | V      |  |
|                                                | V <sub>DL6</sub> | CILCR:LVL = 1001 <sub>B</sub> | 3.91    | 4.20  | 4.49    | V      |  |
| Power supply voltage change rate <sup>*2</sup> | dV/dt            | -                             | - 0.004 | -     | + 0.004 | V/µs   |  |
| The standard state                             |                  | CILCR:LVHYS=0                 | -       | -     | 50      | mV     |  |
| Hysteresis width                               | V <sub>HYS</sub> | CILCR:LVHYS=1                 | 80      | 100   | 120     | mV     |  |
| Stabilization time T <sub>LVDSTAB</sub>        |                  | -                             | -       | -     | 75      | μs     |  |
| Detection delay time                           | t <sub>d</sub>   | -                             | -       | -     | 30      | μs     |  |

\*1: If the power supply voltage fluctuates within the time less than the detection delay time (td), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

\*2: In order to perform the low voltage detection at the detection voltage (V<sub>DLX</sub>), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.



# ■CY96F6A6









| Page     | Section                                                | Change Results                                                                                                                                           |
|----------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23       | User ROM Memory Map For Flash Devices                  | Changed the annotation<br>Others (from DF:0200 <sub>H</sub> to DF:1FFF <sub>H</sub> ) are all mirror area of SAS-512B.                                   |
| 25       |                                                        | $\rightarrow$<br>Others (from DE:0200, to DE:1EEE,) is mirror area of SAS-512B                                                                           |
|          | Interrupt Vector Table                                 | Changed the Description of CALLV0 to CALLV7<br>Reserved                                                                                                  |
|          |                                                        | →<br>CALLV instruction                                                                                                                                   |
|          |                                                        | Changed the Description of RESET<br>Reserved                                                                                                             |
|          |                                                        | →<br>Reset vector                                                                                                                                        |
| 25       |                                                        | Changed the Description of INT9<br>Reserved                                                                                                              |
|          |                                                        | →<br>INT9 instruction                                                                                                                                    |
|          |                                                        | Changed the Description of EXCEPTION<br>Reserved                                                                                                         |
|          |                                                        | $\rightarrow$ Undefined instruction execution                                                                                                            |
|          |                                                        | Changed the Vector name of Vector number 64<br>PPGRLT                                                                                                    |
|          |                                                        | →<br>RLT6                                                                                                                                                |
| 26       |                                                        | Changed the Description of Vector number 64<br>Reload Timer 6 can be used as PPG clock source                                                            |
|          |                                                        | →<br>Reload Timer 6                                                                                                                                      |
| 29 to 32 | Handling Precautions                                   | Added a section                                                                                                                                          |
|          | Handling Devices                                       | Added the description to "3. External clock usage"<br>(3) Opposite phase external clock                                                                  |
| 34       |                                                        | A/D converter and analog inputs"                                                                                                                         |
|          |                                                        | $\rightarrow$ In this case, AVRH must not exceed AVrcc. Input voltage for ports                                                                          |
|          |                                                        | shared with analog input ports also must not exceed ${\rm AV}_{\rm CC}$                                                                                  |
|          | Handling Devices                                       | Changed the description in "11. SMC power supply pins"<br>To avoid this, $V_{CC}$ must always be powered on before $DV_{CC}$ .                           |
| 35       |                                                        | To avoid this, $V_{CC}$ must always be powered on before $DV_{CC}$ .<br>DVcc/DVss must be applied when using SMC I/O pin as GPIO.                        |
|          |                                                        | Added the description "13. Mode Pin (MD)"                                                                                                                |
|          | Electrical Characteristics<br>Absolute Maximum Ratings | Changed the Symbol of ""L" level average overall output current" $\Sigma I_{OLSMCAV}$ $\rightarrow$                                                      |
| 36       |                                                        | Σl <sub>OLAVSMC</sub>                                                                                                                                    |
|          |                                                        | $\Sigma$ I <sub>OHSMCAV</sub>                                                                                                                            |
|          |                                                        | Σlohavsmc                                                                                                                                                |
|          |                                                        | Changed the annotation *2<br>It is required that $AV_{cc}$ does not exceed $V_{cc}$ and that the voltage at                                              |
|          |                                                        | the analog inputs does not exceed $AV_{CC}$ when the power is switched on.                                                                               |
| 37       |                                                        | It is required that $AV_{cc}$ does not exceed $V_{cc}$ , $DV_{cc}$ and that the voltage at the analog inputs does not exceed $AV_{cc}$ when the power is |
|          |                                                        | Changed the annotation *3                                                                                                                                |
|          |                                                        | Input/Output voltages of standard ports depend on $V_{\text{CC}}$                                                                                        |
|          |                                                        | $\rightarrow$<br>Input/Output voltages of high current ports depend on DV <sub>cc</sub> .                                                                |

\_\_\_\_\_





| Page            | Section                                                                                                             | Change Results                                                                                                                                                                                                                                                                                                                                 |
|-----------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                     | Added part number<br>MCU with CAN controller<br>MB96F6A5RBPMC-GSE1<br>MB96F6A5RBPMC-GSE2<br>MCU without CAN controller<br>MB96F6A5ABPMC-GSE1<br>MB96F6A5ABPMC-GSE2                                                                                                                                                                             |
| Revision 1.     | 1                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                |
| -               | -                                                                                                                   | Company name and layout design change                                                                                                                                                                                                                                                                                                          |
| Rev.*B          |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                |
| -               | Marketing Part Numbers changed from an MB pro                                                                       | efix to a CY prefix.                                                                                                                                                                                                                                                                                                                           |
| 5, 7,<br>66, 67 | <ol> <li>Product Lineup</li> <li>Pin Assignment</li> <li>Ordering Information</li> <li>Package Dimension</li> </ol> | Package description modified to JEDEC description.<br>FPT-120P-M21 → LQM120                                                                                                                                                                                                                                                                    |
| 66              | 16. Ordering Information                                                                                            | Revised Marketing Part Numbers as follows:<br>Before)<br>MCU with CAN controller<br>MB96F6A5RBPMC-GSE1<br>MB96F6A6RBPMC-GSE2<br>MB96F6A6RBPMC-GSE2<br>MCU without CAN controller<br>MB96F6A5ABPMC-GSE1<br>MB96F6A5ABPMC-GSE2<br>After)<br>MCU with CAN controller<br>CY96F6A6RBPMC-GS-UJE1<br>CY96F6A6RBPMC-GS-UJE2<br>CY96F6A6RBPMC-GS-UJERE2 |

NOTE: Please see "Document History" about later revised information.



# **Document History**

Document Title: CY96F6A5R/A, CY96F6A6R, F2MC-16FX CY966A0 Series 16-bit Proprietary Microcontroller Datasheet Document Number: 002-04715

| Revision | ECN     | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                 |
|----------|---------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **       | Ι       | TORS               | 01/31/2014         | Migrated to Cypress and assigned document number 002-4715.<br>No change to document contents or format.                                                                                                                                                                                               |
| *A       | 5166254 | TORS               | 05/25/2016         | Updated to Cypress template                                                                                                                                                                                                                                                                           |
| *В       | 6003420 | МІҮН               | 12/25/2017         | <ul> <li>Revised the following items:</li> <li>Marketing Part Numbers changed from an MB prefix to a CY prefix.</li> <li>1. Product Lineup</li> <li>3. Pin Assignment</li> <li>16. Ordering Information</li> <li>17. Package Dimension</li> <li>For details, please see 18. Major Changes.</li> </ul> |