

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	8052
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/w78e365a40pl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.	TIMIN	G WAVEFORMS	. 30
	8.1	Program Fetch Cycle	. 30
	8.2	Data Read Cycle	. 31
	8.3	Data Write Cycle	. 32
	8.4	Port Access Cycle	. 33
9.	TYPIC	AL APPLICATION CIRCUIT	. 34
	9.1	External Program Memory and Crystal	. 34
	9.2	Expanded External Data Memory and Oscillator	. 35
10.	PACK	AGE DIMENSIONS	. 36
	10.1	40-pin DIP	. 36
	10.2	44-pin PLCC	. 36
	10.3	44-pin PQFP	. 37
	10.4	48-pin LQFP	. 38
11.	APPLI	CATION NOTE	. 39
	11.1	In-system Programming Software Examples	. 39
12.	REVIS	SION HISTORY	. 44

4. PIN DESCRIPTION

SYMBOL	TYPE	DESCRIPTIONS
ĒĀ	I	EXTERNAL ACCESS ENABLE: This pin forces the processor to execute the external ROM. The ROM address and data will not be presented on the bus if the \overline{EA} pin is high.
PSEN	ОН	PROGRAM STORE ENABLE: $\overrightarrow{\text{PSEN}}$ enables the external ROM data in the Port 0 address/data bus. When internal ROM access is performed, no $\overrightarrow{\text{PSEN}}$ strobe signal outputs originate from this pin.
ALE	ОН	ADDRESS LATCH ENABLE: ALE is used to enable the address latch that separates the address from the data on Port 0. ALE runs at 1/6th of the oscillator frequency.
RST	ΙL	RESET: A high on this pin for two machine cycles while the oscillator is running resets the device.
XTAL1	I	CRYSTAL 1: This is the crystal oscillator input. This pin may be driven by an external clock.
XTAL2	0	CRYSTAL 2: This is the crystal oscillator output. It is the inversion of XTAL1.
Vss	Ι	GROUND: ground potential.
Vdd	Ι	POWER SUPPLY: Supply voltage for operation.
		PORT 0: Function is the same as that of standard 8052.
P0.0 – P0.7 I/O D		This port also provides a multiplexed low order address/data bus during accesses to external memory. Port 0 has internal pull-up resisters enabled by software.
P1.0 – P1.7	I/O H	PORT 1: Function is the same as that of standard 8052.
P2 0 P2 7 UOH provides the upper address bits for accesses to external memory. The		PORT 2: Port 2 is a bi-directional I/O port with internal pull-ups. This port also provides the upper address bits for accesses to external memory. The P2.6 and P2.7 also provide the alternate function \overrightarrow{REBOOT} which is H/W reboot from LD flash.
P3.0 – P3.7	I/O H	PORT 3: Function is the same as that of the standard 8052.
P4.0 – P4.7	I/O H	$\frac{\text{PORT 4: A bi-directional I/O. The P4.3 also provides the alternate function}{\text{REBOOT}}$ which is H/W reboot from LD flash.

* Note: TYPE I: input, O: output, I/O: bi-directional, H: pull-high, L: pull-low, D: open drain

6. FUNCTIONAL DESCRIPTION

The W78E365 architecture consists of a core controller surrounded by various registers, four general purpose I/O ports, one special purpose programmable 4-bits I/O port, 256+1K bytes of RAM, three timer/counters, a serial port. The processor supports 111 different opcodes and references both a 64K program address space and a 64K data storage space.

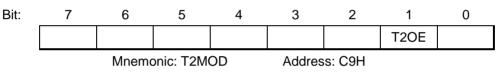
6.1 RAM

The internal data RAM in the W78E365 is 256+1K bytes. It is divided into two banks: 256 bytes of scratchpad RAM and 1K bytes of AUX-RAM. These RAMs are addressed by different ways.

- RAM 0H 7FH can be addressed directly and indirectly as the same as in 8051. Address pointers are R0 and R1 of the selected register bank.
- RAM 80H FFH can only be addressed indirectly as the same as in 8051. Address pointers are R0, R1 of the selected registers bank.
- AUX-RAM 0H 3FFH is addressed indirectly as the same way to access external data memory with the MOVX instruction. Address pointer are R0 and R1 of the selected register bank and DPTR register. An access to external data memory locations higher than 3FFH will be performed with the MOVX instruction in the same way as in the 8051. The AUX-RAM is **enabled** after a reset. Clearing the bit 4 in CHPCON register will disable the access to AUX-RAM. When executing from internal program memory, an access to AUX-RAM will not affect the Ports P0, P2, WR and RD.

Example:

CHPENF	R REG	F6H	
CHPCON	N REG	BFH	
XRAMA	H REG	A1H	
MOV	CHPENR,	#87H	
MOV	CHPENR,	#59H	
ORL	CHPCON,	#00010000B	; enable AUX-RAM
MOV	CHPENR,	#00H	
MOV	XRAMAH,	#01H	; internal high address
MOV	R0, #23H		
MOV	A, #55H		
MOVX	@R0, A		; Write 55h data to 0123h AUX-RAM address.
MOV	XRAMAH,	#02H	
MOV	R1, #FFH		; Read data from 02FFh AUX-RAM address.
MOVX	A, @R1		
MOV	DPTR, #0	134H	
MOV	A, #78H		
MOVX	@DPTR,	A	; Write 78h data to 0134h AUX-RAM address.
MOV	DPTR, #7	FFFH	
MOVX	A, @DPR	Т	; Read data from the external 7FFFh address SRAM


6.2 Timers 0, 1, and 2

Timers 0, 1, and 2 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0, TL1 and TH1 for Timer 1, and TL2 and TH2 for Timer 2. The TCON and TMOD registers provide control functions for timers 0, 1. The T2CON register provides control functions for Timer 2. RCAP2H and RCAP2L are used as reload/capture registers for Timer 2. The operations of Timer 0 and Timer 1 are the same as in the W78C51. Timer 2 is a 16-bit timer/counter that is configured and controlled by the T2CON register. Like Timers 0 and 1, Timer 2 can operate as either an external event counter or as an internal timer, depending on the setting of bit C/T2 in T2CON. Timer 2 has three operating modes: capture, auto-reload, and baud rate generator. The clock speed at capture or auto-reload mode is the same as that of Timers 0 and 1.

6.2.1 Timer 2 Output

If set T2OE (T2MOD.1) bit and clear C/T2 (T2CON.1) bit at auto-reload mode, P1.0 will be toggled once overflow.

TIMER 2 Mode

T2OE: Enable this bit to toggle P1.0 pin while Timer2 has been overflowed.

6.3 Clock

The W78E365 is designed with either a crystal oscillator or an external clock. Internally, the clock is divided by two before it is used by default. This makes the W78E365 relatively insensitive to duty cycle variations in the clock.

6.3.1 Crystal Oscillator

The W78E365 incorporates a built-in crystal oscillator. To make the oscillator work, a crystal must be connected across pins XTAL1 and XTAL2. In addition, a load capacitor must be connected from each pin to ground.

6.3.2 External Clock

An external clock should be connected to pin XTAL1. Pin XTAL2 should be left unconnected. The XTAL1 input is a CMOS-type input, as required by the crystal oscillator.

6.4 Power Management

6.4.1 Idle Mode

Setting the IDL bit in the PCON register enters the idle mode. In the idle mode, the internal clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The processor will exit idle mode when either an interrupt or a reset occurs.

6.4.2 Power-down Mode

When the PD bit in the PCON register is set, the processor enters the power-down mode. In this mode all of the clocks are stopped, including the oscillator. To exit from power-down mode is by a hardware reset or external interrupts $\overline{INT0}$ to $\overline{INT1}$ when enabled and set to level triggered.

6.4.3 Reduce EMI Emission

The W78E365 allows user to diminish the gain of on-chip oscillator amplifier by using programmer to clear the B7 bit of security register. Once B7 is set to 0, a half of gain will be decreased. Care must be taken if user attempts to diminish the gain of oscillator amplifier, reducing a half of gain may affect the external crystal operating improperly at high frequency. The value of C1 and C2 may need some adjustment while running at lower gain.

ALE Off Function

Auxiliary Register

ALEOFF: Set this bit to disable ALE output.

6.5 Reset

The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two machine cycles while the oscillator is running. An internal trigger circuit in the reset line is used to deglitch the reset line when the W78E365 is used with an external RC network. The reset logic also has a special glitch removal circuit that ignores glitches on the reset line. During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of bit 4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.

6.5.1 W78E365 Special Function Registers (SFRs) and Reset Values

F8								
F0	+B 00000000						CHPENR 00000000	
E8								
E0	+ACC 00000000							
D8	+P4 11111111	PWMP 00000000	PWM0 00000000	PWM1 00000000	PWMCON1 00000000	PWM2 00000000	PWM3 00000000	
D0	+PSW 00000000							
C8	+T2CON 00000000	T2MOD 00000000	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000	PWMCON2 00000000	PWM4 00000000
C0	+XICON 00000000		P4CONA 00000000	P4CONB 00000000	SFRAL 00000000	SFRAH 00000000	SFRFD 00000000	SFRCN 00000000

B8	+IP 00000000							CHPCON 00x11000
B0	+P3 11111111				P43AL 00000000	P43AH 00000000		
A8	+IE 00000000				P42AL 00000000	P42AH 00000000	P4CSIN 00000000	
A0	+P2 11111111	XRAMAH 00000000						
98	+SCON 00000000	SBUF xxxxxxxx						
90	+P1 11111111				P41AL 00000000	P41AH 00000000		
88	+TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR 00000000	WDTC 00000000
80	+P0 11111111	SP 00000111	DPL 00000000	DPH 00000000	P40AL 00000000	P40AH 00000000	POR 00000000	PCON 00110000

W78E365 Special Function Registers (SFRs) and Reset Values, continued

Notes:

1. The SFRs marked with a plus sign(+) are both byte- and bit-addressable.

2. The text of SFR with bold type characters are extension function registers.

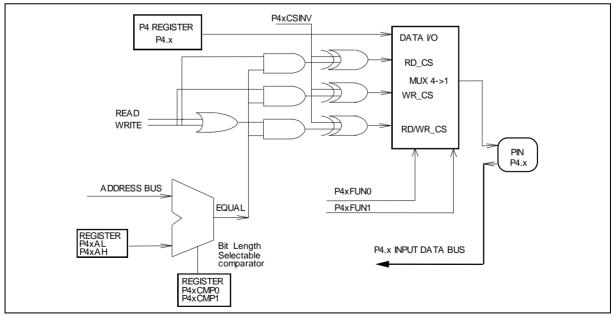
6.6 Port 4

Port 4, address D8H, is a 8-bit multipurpose programmable I/O port. Each bit can be configured individually by software. The Port 4 has four different operation modes.

- Mode 0: P4.0–P4.3 is a bi-directional I/O port which is same as port 1. P4.2 and P4.3 also serve as external interrupt $\overrightarrow{\text{PSEN}}$ and $\overrightarrow{\text{INT2}}$ if enabled.
- Mode 1: P4.0–P4.3 are read strobe signals that are synchronized with RD signal at specified addresses. These signals can be used as chip-select signals for external peripherals.
- Mode 2: P4.0–P4.3 are write strobe signals that are synchronized with WR signal at specified addresses. These signals can be used as chip-select signals for external peripherals.
- Mode 3: P4.0–P4.3 are read/write strobe signals that are synchronized with RD or WR signal at specified addresses. These signals can be used as chip-select signals for external peripherals.

When Port 4 is configured with the feature of chip-select signals, the chip-select signal address range depends on the contents of the SFR P4xAH, P4xAL, P4CONA and P4CONB. The registers P4xAH and P4xAL contain the 16-bit base address of P4.x. The registers P4CONA and P4CONB contain the control bits to configure the Port 4 operation mode.

P4 (D8H)

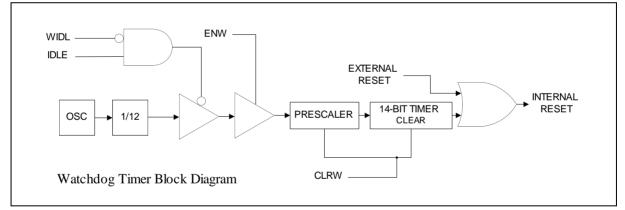

BIT	NAME	FUNCTION			
7	P47	I/O pin			
6	P46	I/O pin.			
5	P45	I/O pin.			
4	P44	I/O pin.			
3	P43	ort 4 Data bit which outputs to pin P4.3 at mode 0.			
2	P42	Port 4 Data bit. which outputs to pin P4.2 at mode 0.			
1	P41	Port 4 Data bit. which outputs to pin P4.1at mode 0.			
0	P40	Port 4 Data bit which outputs to pin P4.0 at mode 0.			

Here is an example to program the P4.0 as a write strobe signal at the I/O port address 1234H - 1237H and positive polarity, and P4.1 - P4.3 are used as general I/O ports.

MOV P40AH, #12H MOV P40AL, #34H MOV P4CONA, #00001010B MOV P4CONB, #00H MOV P2ECON, #10H

; Base I/O address 1234H for P4.0 ; P4.0 a write strobe signal and address line A0 and A1 are masked. ; P4.1 – P4.3 as general I/O port which are the same as PORT1 ; Write the P40SINV = 1 to inverse the P4.0 write strobe polarity ; default is negative.

Then any instruction MOVX @DPTR, A (with DPTR = 1234H - 1237H) will generate the positive polarity write strobe signal at pin P4.0. And the instruction MOV P4, #XX will output the bit3 to bit1 of data #XX to pin P4.3 – P4.1.


PS2, PS1, PS0: Watch-dog prescaler timer select. Prescaler is selected when set PS2-0 as follows:

PS2 PS1 PS0	PRESCALER SELECT
0 0 0	2
0 0 1	4
0 1 0	8
0 1 1	16
1 0 0	32
1 0 1	64
1 1 0	128
1 1 1	256

The time-out period is obtained using the following equation:

 $\frac{1}{OSC} \times 2^{14} \times PRESCALER \times 1000 \times 12 \text{ mS}$

Before Watchdog time-out occurs, the program must clear the 14-bit timer by writing 1 to WDTC.6 (CLRW). After 1 is written to this bit, the 14-bit timer, prescaler and this bit will be reset on the next instruction cycle. The Watchdog timer is cleared on reset.

Typical Watch-Dog time-out period when OSC = 20 MHz

PS2 PS1 PS0	WATCHDOG TIME-OUT PERIOD
0 0 0	19.66 mS
0 0 1	39.32 mS
0 1 0	78.64 mS
0 1 1	157.28 mS
1 0 0	314.57 mS
1 0 1	629.14 mS
1 1 0	1.25 S
1 1 1	2.50 S

MODE	WFWIN	CTRL<3:0>	OEN	CEN	SFRAH, SFRAL	SFRFD
Erase 64KB APROM	0	0010	1	0	Х	Х
Program 64KB APROM	0	0001	1	0	Address in	Data in
Read 64KB APROM	0	0000	0	0	Address in	Data out
Erase 4KB LDROM	1	0010	1	0	Х	Х
Program 4KB LDROM	1	0001	1	0	Address in	Data in
Read 4KB LDROM	1	0000	0	0	Address in	Data out

6.9.1 In-System Programming Control Register (CHPCON)

CHPCON (BFH)

BIT	NAME	FUNCTION
7	SWRESET	When this bit is set to 1, and both FBOOTSL and FPROGEN are set to 1. It will enforce microcontroller reset to initial condition just like power on reset.
6	-	Reserve.
5	LD/AP	This bit is read only. 1: CPU is running LDROM program. 0: CPU is running APROM program.
4	ENAUXRAM	1: Enable on-chip AUX-RAM.
4		0: Disable the on-chip AUX-RAM
3	1	Must be 1
2	-	Reserve.
1	FBOOTSL	When this bit is set to 1, and both SWRESET and FPROGEN are set to 1. It will enforce microcontroller reset to initial condition just like power on reset.
0	FPROGEN	When this bit is set to 1, and both SWRESET and FBOOTSL are set to 1. It will enforce microcontroller reset to initial condition just like power on reset.

This register is protected by CHPENR register. Please write as below procedures while you would like to write CHPCON register.

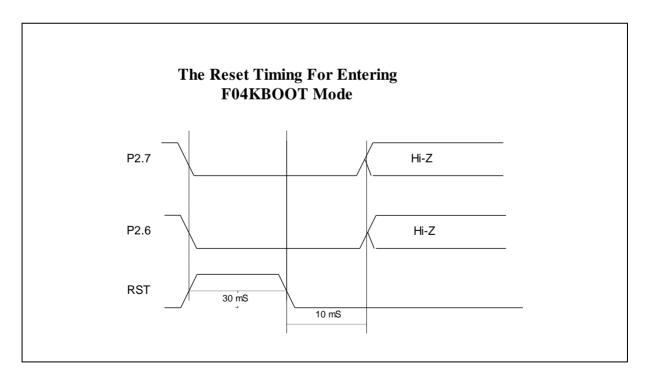
Mov CHPENR, #87h

Mov CHPENR, #59h

Anl CHPCON, #EFh ; Disable AUX-RAM

Mov CHPENR, #0h

6.10 Software Reset


Set CHPCON = 0X83, timer and enter IDLE mode. CPU will reset and restart from APFLASH after time out.

6.11 H/W Reboot Mode (Boot from LDROM)

By default, the W78E365 boots from APROM program after a power on reset. On some occasions, user can force the W78E365 to boot from the LDROM program via following settings. The possible situation that you need to enter H/W REBOOT mode when the APROM program can not run properly and device can not jump back to LDROM to execute in-system programming function. Then you can use this H/W REBOOT mode to force the W78E365 jumps to LDROM and executes in-system programming procedure. When you design your system, you may reserve the pins P2.6, P2.7 to switches or jumpers. For example in a CD-ROM system, you can connect the P2.6 and P2.7 to PLAY and EJECT buttons on the panel. When the APROM program fails to execute the normal application program. User can press both two buttons at the same time and then turn on the power of the personal computer, you can release both buttons and finish the in-system programming procedure to update the APROM code. In application system design, user must take care of the P2, P3, ALE, EA and PSEN pin value at reset to prevent from accidentally activating the programming mode or H/W REBOOT mode. It is necessary to add 10K resistor on these P2.6, P2.7 and P4.3 pins.

H/W Reboot Mode

P4.3	P2.7	P2.6	MODE
Х	L	L	REBOOT
L	Х	Х	REBOOT

W78E365/W78E365A

nuvoTon

Encryption

This bit is used to enable/disable the encryption logic for code protection. Once encryption feature is enabled, the data presented on port 0 will be encoded via encryption logic. Only whole chip erase will reset this bit.

Oscillator Control

W78E365/E516 allow user to diminish the gain of on-chip oscillator amplifier by using programmer to set the bit B7 of security register. Once B7 is set to 0, a half of gain will be decreased. Care must be taken if user attempts to diminish the gain of oscillator amplifier, reducing a half of gain may improperly affect the external crystal operation at high frequency above 24 MHz. The value of R and C1, C2 may need some adjustment while running at lower gain.

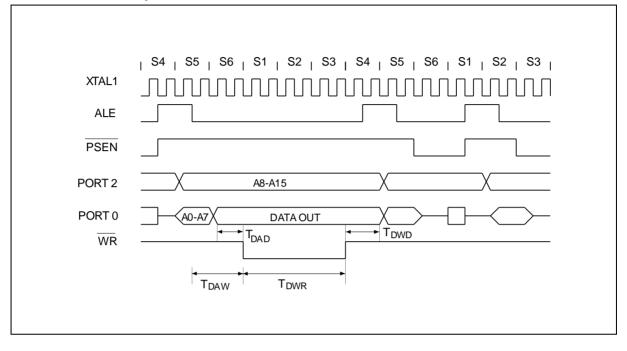
7. ELECTRICAL CHARACTERISTICS

7.1 Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN.	MAX.	UNIT
DC Power Supply	VDD-VSS	-0.3	+6.0	V
Input Voltage	Vin	Vss -0.3	Vdd +0.3	V
Operating Temperature	ТА	0	70	°C
Storage Temperature	Тѕт	-55	+150	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

7.2 D.C. Characteristics


(V_DD_- V_SS= 5V $\pm 10\%,\,T_A$ = 25°C, Fosc = 20 MHz, unless otherwise specified.)

SYMBOL	PARAMETER	SPECIFICATION			TEST CONDITIONS	
STWIDOL		MIN.	MAX.	UNIT	TEST CONDITIONS	
V _{DD}	Operating Voltage	4.5	5.5	V	$RST = 1, P0 = V_{DD}$	
I _{DD}	Operating Current	-	20	mA	No load V _{DD} = 5.5V	
I _{IDLE}	Idle Current	-	6	mA	Idle mode $V_{DD} = 5.5V$	
I _{PWDN}	Power Down Current	-	10	μA	Power-down mode $V_{DD} = 5.5V$	
I _{IN1}	Input Current P1, P2, P3, P4	-50	+10	μΑ	$V_{DD} = 5.5V$ $V_{IN} = 0V \text{ or } V_{DD}$	
I _{IN2}	Input Current RST	-10	+300	μΑ	$V_{DD} = 5.5V$ $0 < V_{IN} < V_{DD}$	
Ι _{LK}	Input Leakage Current P0, EA	-10	+10	μA	$V_{DD} = 5.5V$ $0V < V_{IN} < V_{DD}$	
I _{TL} ^[*4]	Logic 1 to 0 Transition Current P1, P2, P3, P4	-500	-200	μA	$V_{DD} = 5.5V$ $V_{IN} = 2.0V$	
VIL1	Input Low Voltage P0, P1, P2, P3, P4, EA	0	0.8	V	VDD = 4.5V	
V IL2	Input Low Voltage RST	0	0.8	V	VDD = 4.5V	

W78E365/W78E365A

nuvoTon

8.3 Data Write Cycle

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
ALE Low to WR Low	TDAW	3 Тср- Δ	-	З Тср+ Δ	nS
Data Valid to WR Low	Tdad	1 Тср-∆	-	-	nS
Data Hold from WR High	Towd	1 Тср-∆	-	-	nS
WR Pulse Width	TDWR	6 Тср-∆	6 Тср	-	nS

Note: " Δ " (due to buffer driving delay and wire loading) is 20 nS.

9. TYPICAL APPLICATION CIRCUIT

9.1 External Program Memory and Crystal

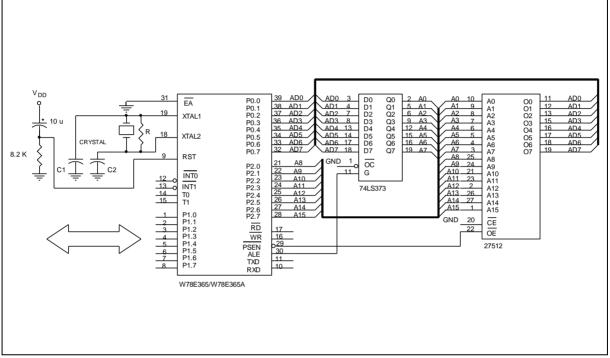
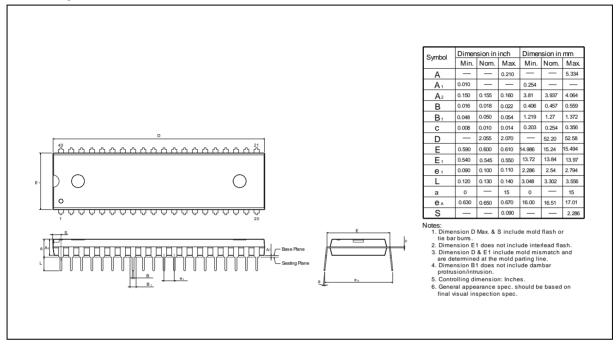


Figure A

CRYSTAL	C1	C2	R
6 MHz	47P	47P	-
16 MHz	30P	30P	-
24 MHz	15P	15P	-
32 MHz	10P	10P	6.8K
40 MHz	5P	5P	4.7K

Above table shows the reference values for crystal applications.

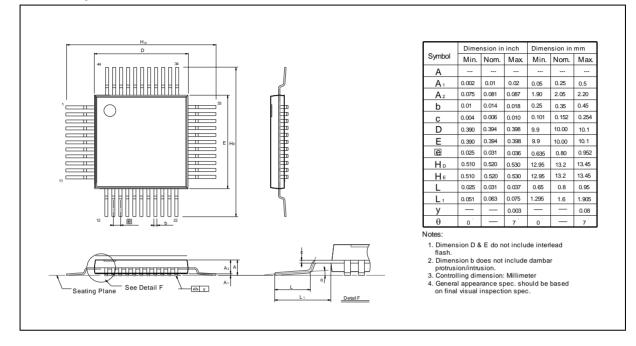

Notes:

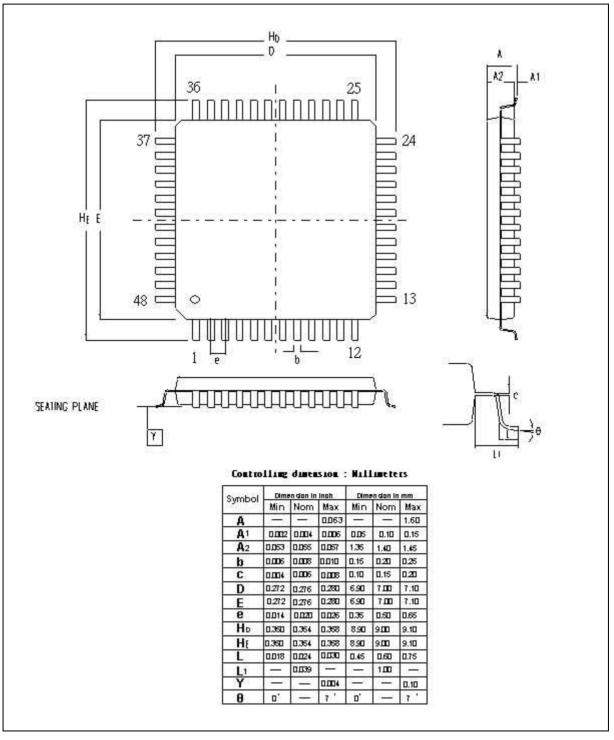
1. C1, C2, R components refer to Figure A


2. Crystal layout must get close to XTAL1 and XTAL2 pins on user's application board. Typical Application Circuit, continued

10. PACKAGE DIMENSIONS

10.1 40-pin DIP


10.2 44-pin PLCC


W78E365/W78E365A

nuvoTon

10.3 44-pin PQFP

10.4 48-pin LQFP

11. APPLICATION NOTE

11.1 In-system Programming Software Examples

This application note illustrates the in-system programmability of the Nuvoton W78E365 ROM microcontroller. In this example, microcontroller will boot from 64KB APROM bank and waiting for a key to enter in-system programming mode for re-programming the contents of 64KB APROM. While entering in-system programming mode, microcontroller executes the loader program in 4KB LDROM bank. The loader program erases the 64KB APROM then reads the new code data from external SRAM buffer (or through other interfaces) to update the 64KB APROM.

Example 1:

	am: Program will scan the P1.0. if $P1.0 = 0$, enters in-system of the content of APROM code else executes the current ROM code.
, .chip 8052 .RAMCHK OFF .symbols	
CHPCON EQU BFH CHPENR EQU F6H SFRAL EQU C4H SFRAH EQU C5H SFRFD EQU C6H SFRCN EQU C7H	
ORG 0H LJMP 100H	; JUMP TO MAIN PROGRAM
;* TIMER0 SERVICE VECTOR O	RG = 000BH
; ORG 00BH CLR TR0 MOV TL0, R6 MOV TH0, R7 RETI	; TR0 = 0, STOP TIMER0
;*************************************	***************************************
,*************************************	***********************
MAIN_64K: MOV A,P1	: SCAN P1.0
ANL A, #01H	K ; IF P1.0 = 0, ENTER IN-SYSTEM PROGRAMMING MODE
PROGRAM_64K:	
MOV CHPENR, #87H MOV CHPENR, #59H MOV CHPCON, #03H MOV TCON, #00H	; CHPENR = 87H, CHPCON REGISTER WRTE ENABLE ; CHPENR = 59H, CHPCON REGISTER WRITE ENABLE ; CHPCON = 03H, ENTER IN-SYSTEM PROGRAMMING MODE ; TR = 0 TIMER0 STOP

W78E365/W78E365A

nuvoTon

MOV IP, #00H MOV IE, #82H MOV R6, #F0H MOV R7, #FFH MOV TL0, R6 MOV TH0, R7 MOV TMOD, #01H MOV TCON, #10H MOV PCON, #01H	; IP = 00H ; TIMER0 INTERRUPT ENABLE FOR WAKE-UP FROM IDLE MODE ; TL0 = F0H ; TH0 = FFH ; TMOD = 01H, SET TIMER0 A 16-BIT TIMER ; TCON = 10H, TR0 = 1,GO ; ENTER IDLE MODE FOR LAUNCHING THE IN-SYSTEM ; PROGRAMMING		
. * * * * * * * * * * * * * * * * * * *	*********************************		
;* Normal mode 64KB APROM prog	gram: depending user's application		
NORMAL_MODE:			
	; User's application program		
Example 2:			
;*************************************			
;*************************************	***************************************		

LJMP 100H ; JUMP TO MAIN PROGRAM

;* 1. TIMER0 SERVICE VECTOR ORG = 0BH

ORG 000BH CLR TR0 MOV TL0, R6 MOV TH0, R7 RETI

; TR0 = 0, STOP TIMER0

;*************************************			
, ORG 100H MAIN_4K:			
MOV SP, #C0H MOV CHPENR, #87H	; CHPENR = 87H, CHPCON WRITE ENABLE. ; CHPENR = 59H, CHPCON WRITE ENABLE. ; CHPCON = 03H, ENABLE IN-SYSTEM PROGRAMMING. ; DISABLE CHPCON WRITE ATTRIBUTE		
MOV TCON, #00H MOV TMOD, #01H MOV IP, #00H MOV IE, #82H MOV R6, #F0H MOV R7, #FFH MOV TL0, R6	; TCON = 00H, TR = 0 TIMER0 STOP ; TMOD = 01H, SET TIMER0 A 16BIT TIMER ; IP = 00H ; IE = 82H, TIMER0 INTERRUPT ENABLED		
MOV TH0, R7 MOV TCON, #10H MOV PCON, #01H	; TCON = 10H, TR0 = 1, GO ; ENTER IDLE MODE		
UPDATE_64K: MOV TCON, #00H MOV IP, #00H MOV IE, #82H MOV TMOD, #01H MOV R6, #E0H MOV R7, #B1H	; TCON = 00H, TR = 0 TIM0 STOP ; IP = 00H ; IE = 82H, TIMER0 INTERRUPT ENABLED ; TMOD = 01H, MODE1 ; SET WAKE-UP TIME FOR ERASE OPERATION, ABOUT 15 mS. DEPENDING ; ON USER'S SYSTEM CLOCK RATE.		
MOV R7, #BITT MOV TL0, R6 MOV TH0, R7			
ERASE_P_4K:			
MOV TCON, #10H ;	SFRCN(C7H) = 22H ERASE 64K TCON = 10H, TR0 = 1,GO ENTER IDLE MODE (FOR ERASE OPERATION)		
.*****	***********************		
;* BLANK CHECK	*****		
, , ,	READ 64KB APROM MODE START ADDRESS = 0H		
	SET TIMER FOR READ OPERATION, ABOUT 1.5 $\mu S.$		
BLANK_CHECK_LOOP:			
MOV PCON, #01H ; MOV A, SFRFD ; CJNE A, #FFH, BLANK	ENABLE TIMER 0 ENTER IDLE MODE READ ONE BYTE _CHECK_ERROR NEXT ADDRESS		