

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 28x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c21534-24pvxat

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The Analog System

The Analog System is composed of four configurable blocks, allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the common PSoC analog functions for this device (most available as user modules) are listed.

- ADCs (single or dual, with up to 10-bit resolution)
- Pin-to-pin comparator
- Single-ended comparators (up to two) with absolute (1.3 V) reference or 8-bit DAC reference
- 1.3 V reference (as a system resource)

In most PSoC devices, analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks. The CY8C21x34 devices provide limited functionality Type E analog blocks. Each column contains one CT Type E block and one SC Type E block. Refer to the *PSoC Programmable System-on-Chip Technical Reference Manual* for detailed information on the CY8C21x34's Type E analog blocks.

Figure 2. Analog System Block Diagram

The Analog Multiplexer System

The Analog Mux Bus can connect to every GPIO pin. Pins can be connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with comparators and ADCs. An additional 8:1 analog input multiplexer provides a second path to bring Port 0 pins to the analog array.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Track pad, finger sensing.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combination.

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful for complete systems. Brief statements describing the merits of each system resource are presented.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- The I²C module provides communication up to 400 kHz over two wires. Slave, master, and multi-master modes are all supported.
- LVD interrupts can signal the application of falling voltage levels, while the advanced power-on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3 V voltage reference provides an absolute reference for the analog system, including ADCs and DACs.
- Versatile analog multiplexer system.

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are ADCs, DACs, amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this allows you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and are linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an online support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Pinouts

The CY8C21x34 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

20-Pin Part Pinout

Table 2. 20-Pin Part Pinout (shrink small-outline package (SSOP))

Pin	Ту	ре	Name	Description			
No.	Digital	Analog	Name	Description			
1	I/O	I, M	P0[7]	Analog column mux input			
2	I/O	I, M	P0[5]	Analog column mux input			
3	I/O	I, M	P0[3]	Analog column mux input, C _{MOD} capacitor pin			
4	I/O	I, M	P0[1]	Analog column mux input, C _{MOD} capacitor pin			
5	Po	wer	V _{SS}	Ground connection			
6	I/O	М	P1[7]	I ² C serial clock (SCL)			
7	I/O	М	P1[5]	I ² C serial data (SDA)			
8	I/O	М	P1[3]				
9	I/O	М	P1[1]	I ² C SCL, ISSP-SCLK ^[4]			
10	Power \		V _{SS}	Ground connection			
11	I/O	М	P1[0]	I ² C SDA, ISSP-SDATA ^[4]			
12	I/O	М	P1[2]				
13	I/O	М	P1[4]	Optional external clock input (EXTCLK)			
14	I/O	М	P1[6]				
15	Inj	out	XRES	Active high external reset with internal pull-down			
16	I/O	I, M	P0[0]	Analog column mux input			
17	I/O	I, M	P0[2]	Analog column mux input			
18	I/O	I, M	P0[4]	Analog column mux input			
19	I/O	I, M	P0[6]	Analog column mux input			
20	Po	wer	V_{DD}	Supply voltage			

LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.

Figure 3. CY8C21334 20-Pin PSoC Device

4. These are the ISSP pins, which are not high Z when coming out of POR. See the PSoC Technical Reference Manual for details.

Table 4. Register Map 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRTOIE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	00 0A	RW		4A			8A			CA	
PRT2DM2	0A 0B	RW		4B			8B			CB	
FRIZDIVIZ	0D 0C	INVV		4D 4C			8C			CC	
	0C 0D			40 4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50			90		CUR_PP	D0	RW
	11			51			91		STK_PP	D1	RW
	12			52			92			D2	
	13			53			93		IDX_PP	D3	RW
	14			54	İ		94		MVR_PP	D4	RW
	15			55	İ		95		MVW_PP	D5	RW
	16			56			96		I2C_CFG	D6	RW
	17			57			97		I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1D 1C			5C			9C			DC	1
	10 1D			5D			9D		INT_CLR3	DD	RW
	1D 1E			5E			9D 9E		INT_MSK3	DD	RW
	1E			5E 5F			9E 9F			DE	RVV
					DW						DIA
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W	AMUX_CFG	61	RW		A1		INT_MSK1	E1	RW
DBB00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#		63			A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4			E4	
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0_CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1_CR	69	#		A9			E9	
DCB02DR2	2A	RW		6A			AA			EA	
DCB02CR0	2B	#		6B			AB			EB	
DCB03DR0	2C	#	TMP_DR0	6C	RW	1	AC			EC	
DCB03DR1	2D	W	TMP_DR1	6D	RW		AD			ED	
DCB03DR2	2E	RW	TMP_DR2	6E	RW		AE			EE	
DCB03CR0	2E 2F	#	TMP_DR3	6F	RW		AF			EF	
DODOGOTIO	30	TT TT		70	1	RDIORI	B0	RW		F0	
	31			70		RDIOSYN	B1	RW		F1	
					D\//						
	32 33		ACE00CR1	72 73	RW	RDI0IS RDI0LT0	B2	RW		F2	
			ACE00CR2		RW		B3	RW		F3	
	34			74	L	RDI0LT1	B4	RW		F4	
	35			75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38			78			B8			F8	
	39			79			B9			F9	
	3A			7A			BA			FA	
	3B			7B	1		BB	1		FB	1
	3C		t	7C	İ	1	BC			FC	
	3D		1	7D	1	1	BD		DAC_D	FD	RW
				7E		I	BE		CPU_SCR1	FE	#
	3E			/ L			DL			1 -	

Blank fields are Reserved and must not be accessed.

Table 5. Register Map 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45			85			C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		47			87			C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			CB	
	00			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0E 0F			4F			8F			CF	
	10			50			90		GDI_O_IN	D0	RW
	10			51			90		GDI_C_IN GDI_E_IN	D0	RW
	11			52			91			D1 D2	RW
	12		}	52		8	92		GDI_O_OU GDI_E_OU	D2 D3	RW
	13			53		8	93		GDI_E_00	D3 D4	RVV
	15			55			95			D5 D6	
	16			56			96			-	
	17			57			97			D7	DW
	18			58			98		MUX_CR0	D8	RW
	19			59			99		MUX_CR1	D9	RW
	1A			5A			9A		MUX_CR2	DA	RW
	1B			5B			9B		MUX_CR3	DB	RW
	1C			5C			9C			DC	5.11
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP_GO_EN	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5		ADC0_TR	E5	RW
DBB01OU	26	RW	AMD_CR1	66	RW		A6		ADC1_TR	E6	RW
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B		CLK_CR3	6B	RW		AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCB03IN	2D		TMP_DR1	6D	RW	I	AD			ED	
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
	30			70		RDIORI	B0	RW		F0	1
	31			71		RDI0SYN	B1	RW		F1	1
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33	İ	ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	İ
	34	t		74	t	RDI0LT1	B4	RW		F4	t
	35	t		75	t	RDI0RO0	B5	RW		F5	t
	36	1	ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	1
	37		ACE01CR2	77	RW	l	B7		CPU_F	F7	RL
	38			78		1	B8			F8	
	39		ľ	79		Ì	B9			F9	
	3A	1		7A	1	1	BA			FA	1
	3B			7B		1	BB			FB	
	3C			70		1	BC			FC	
	3D	<u> </u>		7D	<u> </u>	1	BD		DAC_CR	FD	RW
	3E	+	ł	7E	+	ł	BE		CPU_SCR1	FE	#
		L		7E 7F	ł	8	BF		CPU_SCR0	FF	#
	3F						RE				

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C21x34 PSoC device. For the most up-to-date electrical specifications, visit the Cypress website at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C as specified, except where noted. Refer to Table 12 on page 18 for the electrical specifications for the IMO using slow IMO (SLIMO) mode.

DC Operational Amplifier Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 8.	DC Operational	Amplifier S	pecifications
----------	----------------	-------------	---------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	-	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA} ^[6]	Input leakage current (Port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (Port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.0	-	$V_{DD} - 1$	V	
G _{OLOA}	Open loop gain	-	80	-	dB	
I _{SOA}	Supply current					
	$3.0 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V}$	-	30	-	μA	
	$4.75~V \leq V_{DD} \leq 5.25~V$	-	35	-	μA	

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 9. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch resistance to common analog bus	-	-	400	Ω	
R _{VDD}	Resistance of initialization switch to V_{DD}	-	-	800	Ω	

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0}	V _{DD} value for precision POR (PPOR) trip PORLEV[1:0] = 00b	-	2.36	2.40	V	V _{DD} must be greater than or equal to 2.5 V during startup,
V _{PPOR1} V _{PPOR2}	PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.82 4.55	2.95 4.70	V V	reset from the XRES pin, or reset from watchdog.
VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.99 ^[7] 3.09 3.20 4.55 4.75 4.83 4.95	V V V V V V V	

Table 10. DC POR and LVD Specifications

Notes

6. Atypical behavior: I_{EBOA} of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 pA.

^{7.} Always greater than 50 mV above V_{PPOR1} (PORLEV[1:0] = 01b) for falling supply.

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 11.	DC Programming Specifications
-----------	--------------------------------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	3.0	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	3.0	-	5.25	V	This specification applies to this device when it is executing internal flash writes
IDDP	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	_	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	-	_	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	-	_	0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} -1.0	_	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block) ^[8, 9]	1,000	_	-	-	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[9, 10]	128,000	_	-	-	Erase/write cycles
Flash _{DR}	Flash data retention	15	_	_	Years	

Notes

9. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.
 10. The maximum total number of allowed erase/write cycles is the minimum Flash_{ENPB} value multiplied by the number of flash blocks in the device.

^{8.} The erase/write cycle limit per block (Flash_{ENPB}) is only guaranteed if the device operates within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Table 18. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
t _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash block erase time	-	10	40 ^[16]	ms	
t _{WRITE}	Flash block write time	-	40	160 ^[16]	ms	
t _{DSCLK}	Data out delay from falling edge of SCLK	-	38	45	ns	$3.6 < V_{DD}$
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	44	50	ns	$3.0 \leq V_{DD} \leq 3.6$
t _{PRGH}	Total flash block program time (t _{ERASEB} + t _{WRITE}), hot	-	-	100 ^[16]		$T_{J} \ge 0 \ ^{\circ}C$
t _{PRGC}	Total flash block program time (t _{ERASEB} + t _{WRITE}), cold	_	_	200 ^[16]	ms	T _J < 0 °C

Note

16. For the full temperature range, the user must employ a temperature sensor user module (FlashTemp) or other temperature sensor, and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 for more information.

AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V or 3.3 V at 25 °C and are for design guidance only.

Symbol	Description	Standa	rd Mode	Fast	Fast Mode		Notes	
Symbol	Description	Min	Max	Min	Max	Units	Notes	
F _{SCLI2C}	SCL clock frequency	0	100 ^[17]	0	400 ^[17]	kHz		
^t HDSTAI2C	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	_	μS		
t _{LOWI2C}	LOW period of the SCL clock	4.7	-	1.3	-	μS		
t _{HIGHI2C}	HIGH period of the SCL clock	4.0	-	0.6	-	μS		
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	-	0.6	-	μS		
t _{HDDATI2C}	Data hold time	0	-	0	_	μS		
t _{SUDATI2C}	Data setup time	250	-	100 ^[18]	_	ns		
t _{SUSTOI2C}	Setup time for STOP condition	4.0	-	0.6	-	μS		
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	_	1.3	_	μS		
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	_	-	0	50	ns		

Table 19. AC Characteristics of the I²C SDA and SCL Pins

Notes

 ^{17.} F_{SCLI2C} is derived from SysClk of the PSoC. This specification assumes that SysClk is operating at 24 MHz, nominal. If SysClk is at a lower frequency, then the F_{SCLI2C} specification adjusts accordingly
 18. A Fast-Mode I²C-bus device can be used in a Standard-Mode I²C-bus system, but the requirement t_{SUDATI2C} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} +t_{SUDATI2C} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Figure 10. 28-pin SSOP (210 Mils) O28.21 Package Outline, 51-85079

51-85079 *F

Thermal Impedances

Table 20. Thermal Impedances per Package

Package	Typical θ _{JA} ^[19]	Typical θ _{JC}
20-Pin SSOP	117 °C/W	41 °C/W
28-Pin SSOP	96 °C/W	39 °C/W

Solder Reflow Specifications

Table 21 shows the solder reflow temperature limits that must not be exceeded.

Table 21. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
20-Pin SSOP	260 °C	30 seconds
28-Pin SSOP	260 °C	30 seconds

Tape and Reel Information

Figure 11. 20-pin SSOP (209 Mils) Advantek Carrier Tape Drawing, 51-51101

NOTES: 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2 2. CAMBER IN COMPLIANCE WITH EIA 481 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

51-51101 *C

Figure 12. 28-pin SSOP (209 Mils) C-PAK Carrier Tape Drawing, 51-51100

6 Supplier P/N: SSOP28-3 CL3 22B3 Lxx W16

51-51100 *D

Table 22. Tape and Reel Specifications

Package	Cover Tape Width (mm)	Hub Size (inches)	Minimum Leading Empty Pockets	Minimum Trailing Empty Pockets	Standard Full Reel Quantity
20-Pin SSOP	13.3	4	42	25	2000
28-Pin SSOP	13.3	7	42	25	1000

Development Tool Selection

This section presents the development tools available for the CY8C21x34 family.

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for years. PSoC Designer is available free of charge at http://www.cypress.com. PSoC Designer comes with a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube in-circuit emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store. The online store also has the most up-to-date information on kit contents, descriptions, and availability.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation, and the software interface allows you to run, halt, and single step the processor, and view the contents of specific memory locations. Advanced emulation features are also supported through PSoC Designer. The kit includes:

- ICE-Cube unit
- 28-Pin PDIP emulation pod for CY8C29466-24PXI
- Two 28-Pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC designer software CD
- ISSP cable
- MiniEval socket programming and evaluation board
- Backward compatibility cable (for connecting to legacy pods)
- Universal 110/220 power supply (12 V)
- European plug adapter
- USB 2.0 cable
- Getting Started guide
- Development kit registration form

CY3280-BK1

The CY3280-BK1 Universal CapSense Control Kit is designed for easy prototyping and debug of CapSense designs with

pre-defined control circuitry and plug-in hardware. The kit comes with a control boards for CY8C20x34 and CY8C21x34 devices as well as a breadboard module and a button(5)/slider module.

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, an RS-232 port, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- Two 28-Pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3235-ProxDet

The CY3235 CapSense Proximity Detection Demonstration Kit allows quick and easy demonstration of a PSoC CapSense-enabled device (CY8C21x34) to accurately sense the proximity of a hand or finger along the length of a wire antenna. The kit includes:

- Proximity detection demo board w/antenna
- I2C to USB debugging/communication bridge
- USB cable (6 feet)
- Supporting software CD
- CY3235-ProxDet Quick Start guide
- One CY8C24894 PSoC device on I2C-USB bridge
- One CY8C21434 PSoC device on proximity detection demo board

CY3210-21X34 Evaluation Pod (EvalPod)

The CY3210-21X34 PSoC EvalPods are pods that connect to the ICE in-circuit emulator (CY3215-DK kit) to allow debugging capability. They can also function as a standalone device without debugging capability. The EvalPod has a 28-pin DIP footprint on the bottom for easy connection to development kits or other hardware. The top of the EvalPod has prototyping headers for easy connection to the device's pins. CY3210-21X34 provides evaluation of the CY8C21x34 PSoC device family.

Ordering Information

The following table lists the CY8C21x34 PSoC device's key package features and ordering codes.

Table 24. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Temperature Range	Digital Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
20-Pin (210-Mil) SSOP	CY8C21334-24PVXA	8 K	512	–40 °C to +85 °C	4	4	16	16	0	Yes
20-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21334-24PVXAT	8 K	512	–40 °C to +85 °C	4	4	16	16	0	Yes
28-Pin (210-Mil) SSOP	CY8C21534-24PVXA	8 K	512	–40 °C to +85 °C	4	4	24	24	0	Yes
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C21534-24PVXAT	8 K	512	–40 °C to +85 °C	4	4	24	24	0	Yes

Ordering Code Definitions

CY 8 C 21 xxx-24xx

Acronyms

Table 25 lists the acronyms that are used in this document.

Table 25. Acronyms Used in this Datasheet

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
AEC	Automotive Electronics Council	PCB	printed circuit board
ADC	analog-to-digital converter	PDIP	plastic dual in-line package
API	application programming interface	PLL	phase-locked loop
CPU	central processing unit	POR	power-on reset
CRC	cyclic redundancy check	PPOR	precision power-on reset
CSD	capsense sigma delta	PRS	pseudo-random sequence
СТ	continuous time	PSoC [®]	Programmable System-on-Chip
DAC	digital-to-analog converter	PWM	pulse width modulator
DC	direct current or duty cycle	SC	switched capacitor
EEPROM	electrically erasable programmable read-only memory	SCL / SCLK	serial clock
EXTCLK	external clock	SDA	serial data
GPIO	general-purpose I/O	SLIMO	slow internal main oscillator
l ² C	Inter-Integrated Circuit	SMP	switch mode pump
ICE	in-circuit emulator	SOIC	small-outline integrated circuit
IDE	integrated development environment	SPI	serial peripheral interface
ILO	internal low-speed oscillator	SRAM	static random access memory
IMO	internal main oscillator	SROM	supervisory read-only memory
I/O	input/output	SSOP	shrink small-outline package
IrDA	Infrared Data Association	TQFP	thin quad flat pack
ISSP	in-system serial programming	UART	universal asynchronous reciever / transmitter
LCD	liquid crystal display	USB	universal serial bus
LED	light-emitting diode	WDT	watchdog timer
LVD	low voltage detect	XRES	external reset
MCU	microcontroller unit		1

Reference Documents

CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34, CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC[®] Programmable System-on-Chip Technical Reference Manual (TRM) (001-14463)

Design Aids – Reading and Writing PSoC[®] Flash – AN2015 (001-40459)

Glossary (continued)

bias	1. A systematic deviation of a value from a reference value.
	2. The amount by which the average of a set of values departs from a reference value.
	3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.
block	1. A functional unit that performs a single function, such as an oscillator.
	 A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for I/O operations, into which data is read, or from which data is written.
	2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.
digital-to-analog converter (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital converter (ADC) performs the reverse operation.

Glossary (continued)

duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides you the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.
flash block	The smallest amount of flash ROM space that may be programmed at one time and the smallest amount of flash space that may be protected.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at the V_{DD} suppy voltage and pulled high with resistors. The bus operates up to100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the CPU receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls below a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .

Document History Page

	1		.	
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	646436	HMT	See ECN	New silicon and document (Revision **)
*A	2526170	PYRS	07/03/08	Converted from Preliminary to Final. Corrected ordering information.
*В	2618175	OGNE / PYRS	12/09/08	Added Note in Ordering Information section. Changed Title from PSoC® Mixed-Signal Array to PSoC® Programmable System-on-Chip™ Updated 'Development Tools' and 'Designing with PSoC Designer' sections or pages 5 and 6
*C	2714723	BTK / AESA	06/04/09	Updated Getting Started section. Replaced Designing with User Modules section with Designing with PSoC Designer section. Updated Features list and PSoC Functional Overview section. Updated some AC Specification values to conform to a \pm 5% accurate IMO (no order of magnitude changes). Added a note to I2C specifications section to clarify the I2C SysClk dependency. Added the Development Tool Selection section. Deleted some inapplicable or redundant information. Changed the title. Updated the PDF Bookmarks. Fixed F _{IMO6} , T _{RSCLK} , and T _{FSCLK} specifications to be correct.
*D	2822792	BTK / AESA	12/07/2009	Added T _{PRGH} , T _{PRGC} , I _{OL} , I _{OH} , F _{32KU} , DC _{ILO} , and T _{POWERUP} electrical spec fications. Updated the footnotes for Table 11, "DC Programming Specifications," on page 17. Added maximum values and updated typical values for T _{ERASEB} and T _{WRITE} electrical specifications. Replaced T _{RAMP} electrical specification with SR _{POWERUP} electrical specification. Added "Sales, Solutions, and Legal Information" on page 39. This revision fixes CDT 63984
*E	2888007	NJF	03/30/2010	Updated Cypress website links. Updated Designing with PSoC Designer. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings Removed the following sections: DC Low Power Comparator Specifications, AC Analog Mux Bus Specifications AC Low Power Comparator Specifications, Third Party Tools, and Build a PSoC Emulator into your Board. Updated links in Sales, Solutions, and Legal Information.
*F	3023789	BTK / AESA	09/06/2010	Conversion to new datasheet editing system. Merged the 5 V and 3.3 V opera tional amplifier electrical specifications into the Table 8 (with no changes to data). Updated datasheet as per Cypress Style guide and new datasheet template.
*G	3094401	BTK	11/23/2010	Added tape and reel packaging information. Refer to CDT 88767.
*H	3157921	BTK / NJF	01/31/2011	Updated I ² C timing diagram to improve clarity (CDT 92817). Updated wording, formatting, and notes of the AC Digital Block Specifications table to improve clarify (CDT 92819). Added V_{DDP} , V_{DDLV} , and V_{DDHV} electrical specifications to give more infor- mation for programming the device (CDT 92822). Updated solder reflow temperature specifications to give more clarity (CDT 92828). Updated the jitter specifications (CDT 92831). Updated PSoC Device Characteristics table (CDT 92832). Updated the F _{32KU} electrical specification (CDT 92994). Updated DC POR and LVD Specifications to add specs for all POR levels (CDT 86716). Updated note for R _{PD} electrical specification. Package diagram spec 51-51100 revised from *A to *B.
	1	1		

Document History Page (continued)

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*J	4200952	JICG	11/29/2013	Updated Electrical Specifications: Updated Figure 5. Updated Packaging Information: Updated Packaging Dimensions: spec 51-85077 – Changed revision from *D to *E. spec 51-85079 – Changed revision from *D to *E. Updated Tape and Reel Information: spec 51-51101 – Changed revision from *A to *C. spec 51-51100 – Changed revision from *B to *C. Updated Development Tool Selection: Updated Device Programmers: Renamed the heading "CY3210-MiniProg1" as CY3217-MiniProg1 and updated the same section. Removed the section "CY3207ISSP In-System Serial Programmer (ISSP)" Updated to new template. Completing Sunset Review.
*K	5655057	SNPR	03/09/2017	Updated Packaging Information: Updated Packaging Dimensions: spec 51-85077 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F. Updated Tape and Reel Information: spec 51-51100 – Changed revision from *C to *D. Updated Reference Documents: Removed spec 001-14503 from the list as the same spec is obsolete. Updated to new template. Completing Sunset Review.