

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XE

Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	6КВ (6К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs101-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

TABLE 1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CONTROLLER FAMILIES

		(si				Rer	napp	able I	Perip	herals						ADC			
Device	Pins	Program Flash Memory (Kbyte	RAM (Bytes)	Remappable Pins	16-Bit Timer	Input Capture	Output Compare	UART	SPI	PWM ⁽²⁾	Analog Comparator	External Interrupts ⁽³⁾	DAC Output	I ² C TM	SARs	Sample-and-Hold (S&H) Circuit	Analog-to-Digital Inputs	I/O Pins	Packages
dsPIC33FJ06GS101	18	6	256	8	2	0	1	1	1	2x2 ⁽¹⁾	0	3	0	1	1	3	6	13	SOIC
dsPIC33FJ06GS102	28	6	256	16	2	0	1	1	1	2x2	0	3	0	1	1	3	6	21	SPDIP, SOIC, QFN-S
dsPIC33FJ06GS202	28	6	1K	16	2	1	1	1	1	2x2	2	3	1	1	1	3	6	21	SPDIP, SOIC, QFN-S
dsPIC33FJ16GS402	28	16	2K	16	3	2	2	1	1	3x2	0	3	0	1	1	4	8	21	SPDIP, SOIC, QFN-S
dsPIC33FJ16GS404	44	16	2K	30	3	2	2	1	1	3x2	0	3	0	1	1	4	8	35	QFN, TQFP, VTLA
dsPIC33FJ16GS502	28	16	2K	16	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	8	21	SPDIP, SOIC, QFN-S, UQFN
dsPIC33FJ16GS504	44	16	2K	30	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	12	35	QFN, TQFP, VTLA

Note 1: The PWM4H:PWM4L pins are remappable.

2: The PWM Fault pins and PWM synchronization pins are remappable.

3: Only two out of three interrupts are remappable.

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF), including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS Register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

~ ^

or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

• SB: ACCB saturated (bit 31 overflow and saturation)

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0** "Interrupt Controller"). This allows the user application to take immediate action, for example, to correct system gain.

TABLE 4-37: PORTA REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	—	_		—		_	_	—					٦	RISA<4:0>			001F
PORTA	02C2	_	_	_	_	_	_	_	_	_	_	_			RA<4:0>			xxxx
LATA	02C4	_	_	_	_	_	_	_	_	_	_	_			LATA<4:0>			0000
ODCA	02C6	_	_	_	_	_	_	_	_	_	_	_	ODC	A<4:3>	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-38: PORTB REGISTER MAP FOR dsPIC33FJ06GS101

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	—	—	_	_		—	—	_				TRISE	3<7:0>				OOFF
PORTB	02CA	_	_	_	_	_	_	_	_				RB<	:7:0>				xxxx
LATB	02CC	_	_	_	_	_	_	_	_				LATB	<7:0>				0000
ODCB	02CE	—	_	_	_		-	_	_	ODC	B<7:6>	—	ODCB4			_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-39:PORTB REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402, dsPIC33FJ16GS404,
dsPIC33FJ16GS502 AND dsPIC33FJ16GS504

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8								TRISB	<15:0>								FFFF
PORTB	02CA								RB<1	5:0>								xxxx
LATB	02CC								LATB<	15:0>								0000
ODCB	02CE		(ODCB<15:11	>		-	-		ODCB<8:6	S>	_	ODCB4 ⁽¹⁾		-	_		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is not available on dsPIC33FJ06GS202/502 devices.

TABLE 4-40: PORTC REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	—	—							TRISC	<13:0>							3FFF
PORTC	02D2		_							RC<	13:0>							xxxx
LATC	02D4		_							LATC	<13:0>							0000
ODCC	02D6	_	_	0	DCC<13:11	>	_	_			ODC	C<8:3>			_	_	ODCC0	0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2008-2014 Microchip Technology Inc.

TABLE 4-41: SYSTEM CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR				_	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742		COSC2	COSC1	COSC0		NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK		CF		—	OSWEN	0300 (2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	3040
PLLFBD	0746		_		_	_	_	_				PLLI	OIV<8:0>					0030
REFOCON	074E	ROON	-	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	—	—	—				—	—	0000
OSCTUN	0748	_	—	_	_	—	_	_	_	_	—			TUN<	:5:0>			0000
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	_	_	APSTSCLR2	APSTSCLR1	APSTSCLR0	ASRCSEL	FRCSEL	_		_	-	_	_	2300

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The RCON register Reset values are dependent on the type of Reset.

2: The OSCCON register Reset values are dependent on the FOSCx Configuration bits and on type of Reset.

TABLE 4-42: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	—	—	—	—	—	ERASE	—	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1)
NVMKEY	0766	_	_		_		_	_					NVMK	EY<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-43: PMD REGISTER MAP FOR dsPIC33FJ06GS101 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	—		T2MD	T1MD	—	PWMMD	-	I2C1MD	_	U1MD		SPI1MD	—	_	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	-	_	—	_	-	—	OC2MD	OC1MD	0000
PMD3	0774	—	—	—	_	—	CMPMD	—	_	—	_	—	—	—	—	—	—	0000
PMD4	0776	—	—	_	_	—	—	—	_	—		—	-	REFOMD	—	—	—	0000
PMD6	077A	_	_	-	_	PWM4MD	_	_	PWM1MD	—		_		—	_	_	_	0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: PMD REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	—	—	T2MD	T1MD	—	PWMMD	—	I2C1MD	—	U1MD	_	SPI1MD	—	—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	—	_	_	_	_	_	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	-	_	CMPMD	_	_	—	_	_	_	_	_	_	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	—	_	_	_	REFOMD	_	_	_	0000
PMD6	077A	_	—	—	—	_	—	PWM2MD	PWM1MD	—	_	_	_	—	_	—	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000318G-page 71

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

TABLE 4-49: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

One row of program Flash memory can be programmed at a time. To achieve this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP<3:0> bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP<3:0> bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to the NVMKEY register.
 - c) Write 0xAA to the NVMKEY register.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in the TBLPAG register, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for the NVMKEY register must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase o	operation
MOV #0x4042, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASE	ED
MOV #tblpage(PROG_ADDR	R), WO ;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_AD	DDR), W0 ; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
PWM2IE	PWM1IE	—	_	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—		_	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is un			nown		
bit 15	PWM2IE: PW	/M2 Interrupt E	nable bit						
	1 = Interrupt	request is enab	led						
	0 = Interrupt	request is not e	nabled						
bit 14	PWM1IE: PW	/M1 Interrupt E	nable bit						
	1 = Interrupt	request is enab	led						
	0 = Interrupt	request is not e	nabled						
bit 13-0	Unimplemented: Read as '0'								

REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	
—	—	RP15R5 RP15R		RP15R3	RP15R2	RP15R1	RP15R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7⁽¹⁾

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP15R<5:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP14R<5:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits

(see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0				
bit 7 bit 0											
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13-8	RP17R<5:0> : (see Table 10	Peripheral Ou -2 for periphera	Itput Function	is Assigned to mbers)	RP17 Output F	Pin bits					
bit 7-6	Unimplemen	Unimplemented: Read as '0'									
bit 5-0	t 5-0 RP16R<5:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-2 for peripheral function numbers)										

REGISTER 10-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

The Timer2/3 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 12-1.

Mode	TCS	TGATE
Timer	0	0
Gated Timer	0	1
Synchronous Counter	1	x

TABLE 12-1: TIMER MODE SETTINGS

12.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

12.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Timer2 and Timer 3 that can be combined to form a 32-bit timer are listed in Table 12-2.

TABLE 12-2: 32-BIT TIMER

Type B Timer (Isw)	Type C Timer (msw)				
Timer2	Timer3				

A block diagram representation of the 32-bit timer module is shown in Figure 12-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

To configure the features of Timer2/3 for 32-bit operation:

- 1. Set the T32 control bit.
- Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, which always contains the most significant word of the count, while TMR2 contains the least significant word.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTEN		PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾		
bit 15							bit 8		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SYNCEN ⁽¹⁾	—	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾		
bit 7							bit 0		
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	re Settable bit				
R = Readabl	le bit	W = Writable b	it	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	own		
bit 15	PTEN: PW	M Module Enabl	e bit						
	1 = PWM n	nodule is enable	d						
hit 14		ented: Read as	ία '∩'						
bit 13	PTSIDL: P	WM Time Base	Stop in Idle Mod	e bit					
	1 = PWM ti	ime base halts ir	CPU Idle mode)					
	0 = PWM time base runs in CPU Idle mode								
bit 12	SESTAT: S	pecial Event Inte	errupt Status bit						
	1 = Special	l event interrupt i	s pending						
L:44		event interrupt	s not pending						
DIT	J = Special	ecial Event Inter	rupt Enable bit						
	0 = Special	l event interrupt i	is disabled						
bit 10	EIPU: Enal	ble Immediate P	eriod Updates bi	it(1)					
	1 = Active 0 = Active	Period register is Period register u	s updated immed pdates occur on	diately PWM cycle bo	oundaries				
bit 9	SYNCPOL	: Synchronizatio	n Input/Output P	olarity bit ⁽¹⁾					
	1 = SYNCI 0 = SYNCI	x and SYNCO po x and SYNCO a	olarity is inverted re active-high	d (active-low)					
bit 8	SYNCOEN	: Primary Time	Base Sync Enab	le bit ⁽¹⁾					
	1 = SYNCO 0 = SYNCO	D output is enabl D output is disab	ed led						
bit 7	SYNCEN:	External Time Ba	ase Synchroniza	tion Enable bit	(1)				
	1 = Externa 0 = Externa	al synchronizatio al synchronizatio	n of primary time	e base is enab e base is disab	led led				
bit 6	Unimplem	ented: Read as	·0'						
bit 5-4	SYNCSRC	<1:0>: Synchror	nous Source Sel	ection bits ⁽¹⁾					
	11 = Reser	rved							
	10 = Reser	rved							
	01 = SYNC 00 = SYNC	,,∠ C 1							
Note 1: T	hese bits sho	uld be changed o	only when PTEN	I = 0. In additio	n, when using	the SYNCIx fea	ature, the user		

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	-		DTRx<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			DTR	x<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, rea	id as '0'				
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—		ALTDTRx<13:8>								
bit 15	·						bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	ALTDTR <7:0>										
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown				

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters and so on. The SPI module is compatible with SPI and SIOP from Motorola[®].

The SPI module consists of a 16-bit shift register, SPIxSR (where x = 1), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of the following four pins:

- SDIx (Serial Data Input)
- SDOx (Serial Data Output)
- SCKx (Shift Clock Input Or Output)
- SSx (Active-Low Slave Select).

In Master mode operation, SCK is a clock output; in Slave mode, it is a clock input.

FIGURE 16-1: SPIX MODULE BLOCK DIAGRAM

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾ (CONTINUED)

```
bit 4-0
               TRGSRC4<4:0>: Trigger 4 Source Selection bits
               Selects trigger source for conversion of Analog Channels AN9 and AN8.
               11111 = Timer2 period match
               11011 = Reserved
               11010 = PWM Generator 4 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               10111 = PWM Generator 1 current-limit ADC trigger
               10110 = Reserved
               10010 = Reserved
               10001 = PWM Generator 4 secondary trigger is selected
               10000 = PWM Generator 3 secondary trigger is selected
               01111 = PWM Generator 2 secondary trigger is selected
               01110 = PWM Generator 1 secondary trigger is selected
               01101 = Reserved
               01100 = Timer1 period match
               01000 = Reserved
               00111 = PWM Generator 4 primary trigger is selected
               00110 = PWM Generator 3 primary trigger is selected
               00101 = PWM Generator 2 primary trigger is selected
               00100 = PWM Generator 1 primary trigger is selected
               00011 = PWM Special Event Trigger is selected
               00010 = Global software trigger is selected
               00001 = Individual software trigger is selected
               00000 = No conversion is enabled
```

- Note 1: This register is only implemented in the dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

23.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

23.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic		6	Min.	Тур.	Max.	Units	Conditions
TB10	ТтхН	T2CK High Time	Synchr	onous	Greater of: 20 ns or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB11	ΤτχL	T2CK Low Time	Synchr	onous	Greater of: 20 ns or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)
TB15	ТтхР	T2CK Input Period	Synchr	onous	Greater of: 40 ns or (2 TcY + 40)/N		_	ns	N = Prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from External T2CK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns		

TABLE 24-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

TABLE 24-25: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Chara	cteristic	Min	Тур	Max	Units	Conditions	
TC10	ТтхН	T3CK High Time	Synchronous	Tcy + 20		_	ns	Must also meet Parameter TC15	
TC11	ΤτxL	T3CK Low Time	Synchronous	Tcy + 20	—	—	ns	Must also meet Parameter TC15	
TC15	ΤτχΡ	T3CK Input Period	Synchronous with prescale	, 2 TCY + 40 r	—	—	ns		
TC20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal T3CK to Timer	0.75 Tcy + 40		1.75 Tcy + 40			

AC CH	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 3.0V and 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions				
Device Supply											
AD01	AVdd	Module VDD Supply	_	_		_	AVDD is internally connected to VDD; see Parameter DC10 in Table 24-4				
AD02	AVss	Module Vss Supply	—	—		-	AVss is internally connected to Vss				
	•	•	Analog	Input							
AD10	VINH-VINL	Full-Scale Input Span	Vss	_	Vdd	V					
AD11	Vin	Absolute Input Voltage	AVss	—	AVdd	V					
AD12	IAD	Operating Current	_	8	_	mA					
AD13	—	Leakage Current	—	±0.6		μA	VINL = AVSS = 0V, AVDD = 3.3V, Source Impedance = 100Ω				
AD17	Rin	Recommended Impedance Of Analog Voltage Source	—	—	100	Ω					
DC Accuracy @ 1.5 Msps											
AD20A	Nr	Resolution		10 Data	Bits						
AD21A	INL	Integral Nonlinearity	-0.5	-0.3/+0.5	+1.2	LSb					
AD22A	DNL	Differential Nonlinearity	-0.9	±0.6	+0.9	LSb					
AD23A	Gerr	Gain Error	13	15	22	LSb					
AD24A	EOFF	Offset Error	6	7	8	LSb					
AD25A	—	Monotonicity ⁽¹⁾			—	—	Guaranteed				
	r	DC Ac	curacy	@ 1.7 Msp	S						
AD20B	Nr	Resolution		10 Data	Bits	-					
AD21B	INL	Integral Nonlinearity	-0.5	-0.4/+1.1	+1.8	LSb					
AD22B	DNL	Differential Nonlinearity	-1.0	±1.0	+1.5	LSb					
AD23B	Gerr	Gain Error	13	15	22	LSb					
AD24B	EOFF	Offset Error	6	7	8	LSb					
AD25B	_	Monotonicity ⁽¹⁾				—	Guaranteed				
		DC Ac	curacy	@ 2.0 Msp	S						
AD20C	Nr	Resolution		10 Data	Bits						
AD21C	INL	Integral Nonlinearity	-0.8	-0.5/+1.8	+2.8	LSb					
AD22C	DNL	Differential Nonlinearity	-1.0	-1.0/+1.8	+2.8	LSb					
AD23C	Gerr	Gain Error	14	16	23	LSb					
AD24C	EOFF	Offset Error	6	7	8	LSb	-				
AD25C	—	Monotonicity		<u> </u>	—	—	Guaranteed				
	TUD	Dyna	amic Pe	rtormance							
AD30		Iotal Harmonic Distortion	—	-73		dB					
AD31	SINAD	Signal to Noise and Distortion		58	_	dB					
AD32	SFUK	Spurious Free Dynamic Range	—	-/3		dB					
AD33		Input Signal Bandwidth			1	IVIHZ					
AD34	ENOR	Enective number of Bits	—	9.4		DITS					

TABLE 24-40: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS

Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage, and has no missing codes.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
			Operating temperature			-40°C \leq TA \leq +150°C for High Temperature	
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	_	_	0.4	V	Io∟ ≤ 3.6 mA, VDD = 3.3V See Note 1
		Output Low Voltage I/O Pins: 8x Sink Driver Pins – RC0, RC3-RC8, RC11-RC13	_	_	0.4	V	IOL ≤ 6 mA, VDD = 3.3V See Note 1
		Output Low Voltage I/O Pins: 16x Sink Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	_	_	0.4	V	$IOL \le 12 \text{ mA}, \text{ VDD} = 3.3\text{V}$ See Note 1
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	2.4	_	_	V	Io∟≥ -4 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 8x Source Driver Pins – RC0, RC3-RC8, RC11-RC13	2.4	_	_	V	IoL ≥ -8 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.4	_	_	V	IOL ≥ -16 mA, VDD = 3.3V See Note 1
DO20A	Voн1	Output High Voltage I/O Pins: 4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	1.5	_	_	V	Юн ≥ -3.9 mA, VDD = 3.3V See Note 1
			2.0	_	_		IOH ≥ -3.7 mA, VDD = 3.3V See Note 1
			3.0	_	_		$IOH \ge -2 \text{ mA}, \text{ VDD} = 3.3\text{V}$ See Note 1
		Output High Voltage I/O Pins: 8x Source Driver Pins – RC0, RC3-RC8, RC11-RC13	1.5	_	_	V	IOH ≥ -7.5 mA, VDD = 3.3V See Note 1
			2.0		_		IOH ≥ -6.8 mA, VDD = 3.3V See Note 1
			3.0	_	—		$IOH \ge -3 \text{ mA}, \text{ VDD} = 3.3\text{V}$ See Note 1
		Output High Voltage I/O Pins: 16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	1.5	_	_		IOH ≥ -15 mA, VDD = 3.3V See Note 1
			2.0	_	—	V	IOH ≥ -14 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -7 mA, VDD = 3.3V See Note 1

TABLE 25-5: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

Section Name	Update Description
Section 24.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 24-3).
	Updated Min and Max values for Parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 24-4).
	Updated Characteristics for I/O Pin Input Specifications (see Table 24-9).
	Added ISOURCE to I/O Pin Output Specifications (see Table 24-10).
	Updated Program Memory values for Parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added Parameters 136b, 137b, and 138b, and added Note 2 (see Table 24-12).
	Added Parameter OS42 (GM) to the External Clock Timing Requirements (see Table 24-16).
	Updated Conditions for symbol TPDLY (Tap Delay) and added symbol ACLK (PWM Input Clock) to the High-Speed PWM Module Timing Requirements (see Table 24-29).
	Updated Parameters AD01 and AD02 in the 10-bit High-Speed Analog-to- Digital Module Specifications (see Table 24-36).
	Updated Parameters AD50b, AD55b, and AD56b, and removed Parameters AD57b and AD60b from the 10-bit High-Speed Analog-to-Digital Module Timing Requirements (see Table 24-37).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)