

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG register.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3, or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

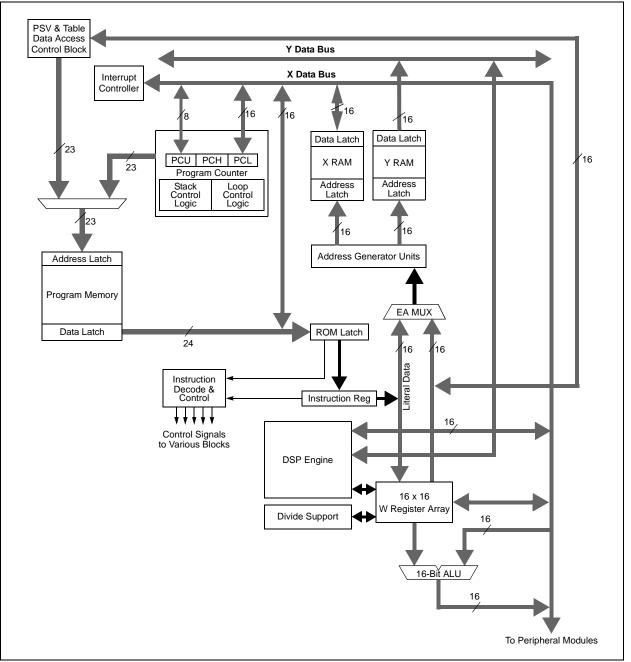
2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.


3.3 Special MCU Features

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices feature a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (1.0).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CPU CORE BLOCK DIAGRAM

TABLE 4-22: I2C1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_		_	_	—	—	_				2C1 Receiv	e Register				0000
I2C1TRN	0202	_		_	_		_	_				I	2C1 Transn	nit Register				OOFF
I2C1BRG	0204	_		_	_		_	_				Baud Rate	e Generator	Register				0000
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_		BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_		_	—		I2C1 Address Register						0000			
I2C1MSK	020C	—	_		_	_	_					AMSK	<9:0>					0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: UART1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	—	_				UART1	Transmit Re	egister				xxxx
U1RXREG	0226	_	_	_	_	_	—	_	UART1 Receive Register							0000		
U1BRG	0228							E	Baud Rate C	Generator Pr	escaler							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: SPI1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN		SPISIDL	—		_		_	_	SPIROV	_	_			SPITBF	SPIRBF	0000
SPI1CON1	0242	—	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	—	_	_	_	_	_	_	_	_	_	_	FRMDLY	—	0000
SPI1BUF	0248							SPI1 Tran	smit and Re	ceive Buffe	r Register							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

- bit 2 STKERR: Stack Error Trap Status bit
 - 1 = Stack error trap has occurred
 - 0 = Stack error trap has not occurred
- bit 1 OSCFAIL: Oscillator Failure Trap Status bit
 - 1 = Oscillator failure trap has occurred
 - 0 = Oscillator failure trap has not occurred
- bit 0 Unimplemented: Read as '0'

11.0	11.0	11.0	11.0				DAVO
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—		PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12 bit 11	PWM4MD : P 1 = PWM Gei	ted: Read as '0 WM Generator 4 nerator 4 modul nerator 4 modul	4 Module Disa e is disabled	able bit			
bit 10	1 = PWM Gei	WM Generator 3 nerator 3 modul nerator 3 modul	e is disabled	ıble bit			
bit 9	1 = PWM Gei	WM Generator 2 nerator 2 modul nerator 2 modul	e is disabled	able bit			
			1 Module Disa	bla bit			
bit 8	1 = PWM Ger	nerator 1 modul nerator 1 modul	e is disabled				

REGISTER 9-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—		CMP4MD	CMP3MD	CMP2MD	CMP1MD
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '0)'				
bit 11	CMP4MD: An	alog Comparat	or 4 Module D	isable bit			
	0	omparator 4 mo					
	•	omparator 4 mo					
bit 10		alog Comparat					
	Ų	omparator 3 mo omparator 3 mo					
bit 9	•	alog Comparat					
	1 = Analog Co	omparator 2 mo	dule is disable	ed			
	0 = Analog Co	omparator 2 mo	dule is enable	ed			
bit 8	CMP1MD: An	alog Comparat	or 1 Module D	isable bit			
	•	omparator 1 mo					
	C C	omparator 1 mo		ed			
bit 7-0	Unimplemen						

REGISTER 9-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

10.6.2.3 Virtual Pins

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices support four virtual RPn pins (RP32, RP33, RP34 and RP35), which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See the MPLAB C30 Help files for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent many write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14 bit 13-8	IC2R<5:0>: /	÷ .		to the Correspo	onding RPn Pi	n bits	
	100011 = Inp 100010 = Inp 100001 = Inp	but tied to Vss but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3	4 3				
	100011 = Inp 100010 = Inp 100001 = Inp	out tied to RP3 out tied to RP3 out tied to RP3	4 3				
	100011 = Inp 100010 = Inp 100001 = Inp	but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3	4 3				
bit 7-6	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • •	but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3	4 3 2				
bit 7-6 bit 5-0	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 ut tied to RP0 hted: Read as f	4 3 2 0'	to the Correspo	onding RPn Pi	n bits	
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 ut tied to RP0 hted: Read as f	4 3 2 0' apture 1 (IC1) 5 4 3	to the Correspo	onding RPn Pi	n bits	
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	but tied to RP3 but tied to RP0 Ited: Read as ' Assign Input Ca but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3;	4 3 2 0' apture 1 (IC1) 5 4 3	to the Correspo	onding RPn Pi	n bits	

REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0						
bit 15							bit 8						
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
0-0	0-0	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0						
bit 7		UTIXIL	01101104	0110010	OTIVITZ	UIIXI	bit (
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15-14	Unimplement	ted. Dood oo '	<u>,</u>										
	-	ted: Read as '											
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits												
			111111 = Input tied to Vss										
	111111 = I np												
	111111 = Inp 100011 = Inp	ut tied to RP35											
	111111 = Inp 100011 = Inp 100010 = Inp	ut tied to RP35 ut tied to RP34	ŀ										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32	L 3										
bit 7-6	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp • • • • 00000 = Inpu	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0	4 3 2										
bit 7-6 bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplemen	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '(L 3 2	IRX) to the Co	rresponding RF	Pn Pin bits							
bit 7-6 bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART	L 3 2	IRX) to the Co	rresponding RF	n Pin bits							
	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplement U1RXR<5:0> 111111 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART)) 1 Receive (U ⁷	IRX) to the Co	rresponding RF	n Pin bits							
	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplement U1RXR<5:0> 111111 = Inp 100011 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss	1 2 1 Receive (U ⁷	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	Pn Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	'n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	Pn Pin bits							

REGISTER 10-6: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

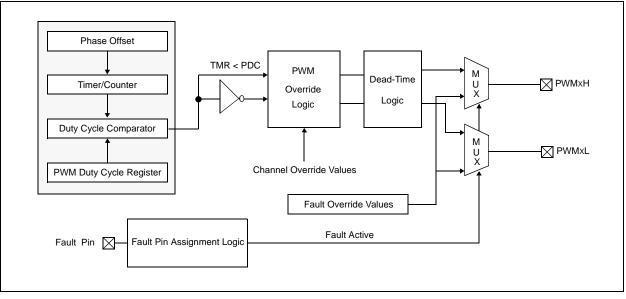
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	—	TSIDL ⁽¹⁾		_	_	—	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾			TCS ⁽²⁾	
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	TON: Timery						
	1 = Starts 16-						
	0 = Stops 16-	-					
bit 14	-	ted: Read as '					
bit 13		ry Stop in Idle N					
		ues timer operation s timer operation		vice enters Idle	mode		
bit 12-7		ited: Read as '					
bit 6	TGATE: Time	ery Gated Time	Accumulation	n Enable bit ⁽²⁾			
	When TCS =						
	This bit is ign						
	When TCS =						
		ne accumulation ne accumulation					
bit 5-4		: Timery Input		e Select bits ⁽²⁾			
	11 = 1:256 pr						
	10 = 1:64 pre						
	01 = 1:8 pres						
	00 = 1:1 pres						
bit 3-2	-	ted: Read as '					
bit 1		Clock Source S					
	1 = External o 0 = Internal c	clock from TxC lock (Fosc/2)	K pin				

REGISTER 12-2: TyCON: TIMERY CONTROL REGISTER (y = 3)

bit must be cleared to operate the 32-bit timer in Idle mode.
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control (TxCON<3>) register, these

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control (TxCON<3>) register, these bits have no effect.

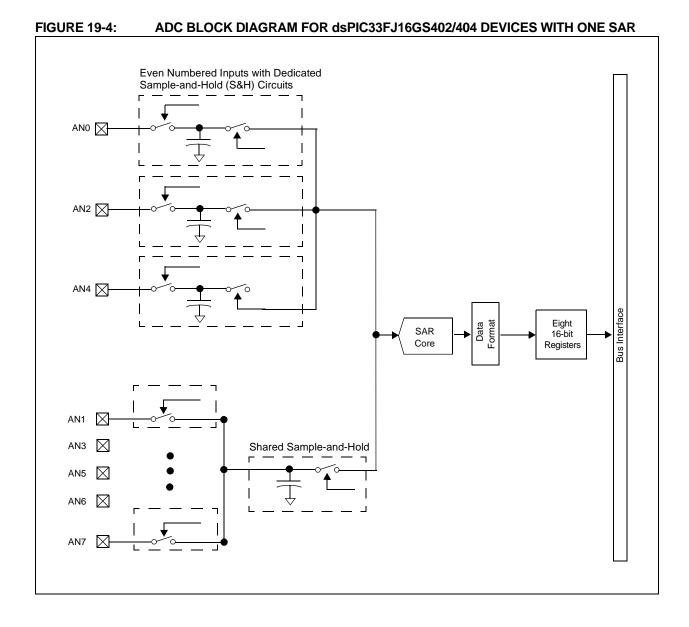
REGISTER 14-1:	OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)


U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	_	—	—
bit 15							bit 8

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Output Compare x
	0 = Timer2 is the clock source for Output Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin is enabled
	110 = PWM mode on OCx, Fault pin is disabled
	101 = Initializes OCx pin low, generates continuous output pulses on OCx pin
	100 = Initializes OCx pin low, generates single output pulse on OCx pin
	 011 = Compare event toggles OCx pin 010 = Initializes OCx pin high, compare event forces OCx pin low
	001 = Initializes OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled



15.3 Control Registers

The following registers control the operation of the high-speed PWM module.

- PTCON: PWM Time Base Control Register
- PTCON2: PWM Clock Divider Select Register
- PTPER: PWM Master Time Base Register(1)
- SEVTCMP: PWM Special Event Compare Register
- MDC: PWM Master Duty Cycle Register(1,2)
- PWMCONx: PWMx Control Register
- PDCx: PWMx Generator Duty Cycle Register(1,2)
- PHASEx: PWMx Primary Phase-Shift Register(1,2) (provides the local time base period for PWMxH)
- DTRx: PWMx Dead-Time Register
- ALTDTRx: PWMx Alternate Dead-Time Register

- SDCx: PWMx Secondary Duty Cycle Register(1,2)
- SPHASEx: PWMx Secondary Phase-Shift Register(1,2) (provides the local time base period for PWMxL)
- TRGCONx: PWMx Trigger Control Register
- IOCONx: PWMx I/O Control Register
- FCLCONx: PWMx Fault Current-Limit Control Register
- TRIGx: PWMx Primary Trigger Compare Value Register
- STRIGx: PWMx Secondary Trigger Compare Value Register
- LEBCONx: Leading-Edge Blanking Control Register(1)
- PWMCAPx: Primary PWMx Time Base Capture Register

© 2008-2014 Microchip Technology Inc.

REGISTE	R 19-1: ADO	CON: ANALOO	G-TO-DIGITAL (CONTROL	REGISTER				
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0		
ADON		ADSIDL	SLOWCLK ⁽¹⁾		GSWTRG		FORM ⁽¹⁾		
bit 15						·	bit		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1		
EIE ⁽¹⁾	ORDER ^(1,2)	SEQSAMP ^(1,2)			ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾		
bit 7	ORDER		//011100/////		AB002	7,0001	bit		
Legend:									
R = Reada	able bit	W = Writable bi	it	U = Unimple	emented bit, rea	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is c		x = Bit is unk	nown		
bit 15	ADON: Anal	og-to-Digital Ope	arating Mode bit						
bit 15		o-Digital Convert	er (ADC) module	is operating					
bit 14	Unimpleme	nted: Read as '0	,						
bit 13	ADSIDL: AD	C Stop in Idle M	ode bit						
			eration when devid	ce enters Idle	mode				
bit 12	SLOWCLK:	SLOWCLK: Enable The Slow Clock Divider bit ⁽¹⁾							
		clocked by the au clock by the prim	uxiliary PLL (ACLI ary PLL (Fvco)	<)					
bit 11	Unimplemented: Read as '0'								
bit 10	GSWTRG: G	Blobal Software	Trigger bit						
		isters. This bit m	ser, it will trigger o oust be cleared by						
bit 9		nted: Read as '0	,						
bit 8	-	Output Format I							
	1 = Fractiona	al (Dout = dddd	l dddd dd00 00 Odd dddd dddd						
bit 7		terrupt Enable bi		,					
	1 = Interrupt	is generated after	er first conversion er second convers						
bit 6		nversion Order b		•					
	1 = Odd num	nbered analog in	put is converted fingut is converted						
bit 5		-	ple Enable bit ^(1,2)		5				
	ORDER 0 = Shared currently	= 0. If ORDER = S&H is sampled / busy with an e	Id (S&H) circuit = 1, then the shar at the same time existing conversion ed, then the shared	ed S&H is sa the dedicate on process. I	impled at the sta ed S&H is sampl If the shared Sa	art of the first co led if the share &H is busy at	onversion. ed S&H is no the time th		
		-	hanged while AD devices with one		(ADON = 0).				

REGISTER 19-1: ADCON: ANALOG-TO-DIGITAL CONTROL REGISTER

2: These bits are only available on devices with one SAR.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

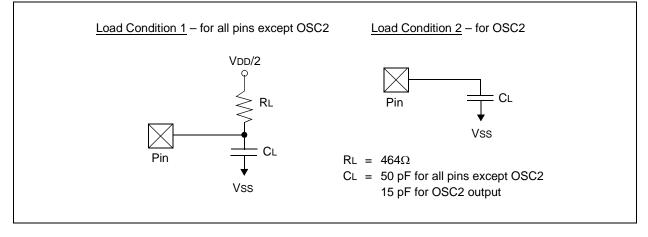
The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal $\in \{0255\}$ for Byte mode, $\{0:1023\}$ for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS


24.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 AC characteristics and timing parameters.

TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V
	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	-40°C \leq TA \leq +125°C for Extended
	Operating voltage VDD range as described in Table 24-1.

FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2 Pin		_	15	-	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

TABLE 24-22:	RESET, WATCHDOG TIMER,	OSCILLATOR START-UP TIMER,	POWER-UP TIMER
	TIMING REQUIREMENTS		

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SY10	ТмсL	MCLR Pulse Width (low)	2	_	—	μS	-40°C to +85°C
SY11	TPWRT	Power-up Timer Period		2 4 8 16 32 64 128	_	ms	-40°C to +85°C, User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	
SY20	Twdt1	Watchdog Timer Time-out Period				ms	See Section 21.4 "Watch- dog Timer (WDT)" and LPRC Parameter F21a (Table 24-20)
SY30	Tost	Oscillator Start-up Time		1024 Tosc	—	—	Tosc = OSC1 period

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

AC CHARACTERISTICS				Standard Operatin (unless otherwise Operating tempera	e stated) iture -40)°C ≤ TA ≤	DV to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	25 TSU:DAT	T Data Input Setup Time	100 kHz mode	250	—	ns	
			400 kHz mode	100	—	ns	
			1 MHz mode ⁽²⁾	40	—	ns	
IM26 THD:DAT	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μS	
			400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0.2	—	μS	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	After this period the
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns	
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	
		From Clock	400 kHz mode	_	1000	ns	
			1 MHz mode ⁽²⁾	_	400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	—	μs	free before a new
			1 MHz mode ⁽²⁾	0.5	_	μS	transmission can star
IM50	Св	Bus Capacitive L	oading	_	400	pF	İ.
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3

TABLE 24-38: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (I²C[™])" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
Doze Mode	148
DSP Engine	
Multiplier	

Е

Electrical Characteristics	287
50 MIPS	-
AC	
AC Characteristics and	
Timing Parameters	300, 345
BOR	
Equations	
Device Operating Frequency	
Fosc Calculation	
Maximum Row Write Time	
Minimum Row Write Time	
Programming Time	
XT with PLL Mode Example	
Errata	
External Reset (EXTR)	

F

Fail-Safe Clock Monitor (FSCM)	146
Flash Program Memory	
Control Registers	
Operations	
Programming Algorithm	
RTSP Operation	
Table Instructions	
Flexible Configuration	

G

Guidelines for Getting Started with 16	δ-Bit DSCs21
--	--------------

Н

High-Speed 10-Bit Analog-to-Digital	
Converter (ADC)	239
High-Speed Analog Comparator	
Digital Logic	
Input Range	
Interaction with I/O Buffers	
High-Speed PWM	
Control Registers	
High-Temperature Electrical Characteristics	
I	
I/O Ports	155
Parallel I/O (PIO)	155
Write/Read Timing	
l ² C	
Control Registers	
Operating Modes	
In-Circuit Debugger	

In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	267, 272
Input Capture	
Control Register	
Input Change Notification	156

Instruction Addressing Modes	73
File Register Instructions	73
Fundamental Modes Supported	74
MAC Instructions	74
MCU Instructions	
Move and Accumulator Instructions	74
Other Instructions	74
Instruction Set	
Overview	278
Summary	275
Instruction-Based Power-Saving Modes	147
Idle	148
Sleep	147
Interfacing Program and Data Memory Spaces	
Internal RC Oscillator	
Use with WDT	
Internet Address	392
Interrupts	
Alternate Interrupt Vector Table (AIVT)	
Control and Status Registers	
IECx	
IFSx	100
INTCON1	
INTCON2	
INTTREG	
IPCx	
Interrupt Vector Table (IVT)	
Reset Sequence	
Setup Procedures	
Initialization	
Interrupt Disable	
Interrupt Service Routine	
Trap Service Routine	
Interrupts Coincident with Power Save Instructions	148

J

JTAG Boundary Scan Interface	. 267
JTAG Interface	. 272

Μ

Memory Organization	43
Microchip Internet Web Site	392
Modulo Addressing	
Applicability	
Operation Example	
Start and End Address	
W Address Register Selection	75
MPLAB Assembler, Linker, Librarian	
MPLAB ICD 3 In-Circuit Debugger	285
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	285
MPLAB X Integrated Development	
Environment Software	
MPLAB X SIM Software Simulator	285
MPLIB Object Librarian	
MPLINK Object Linker	

0

Open-Drain Configuration	156
Oscillator Configuration	
Control Registers	
Output Compare	193
Modes	
Operation Diagram	

NOTES: