

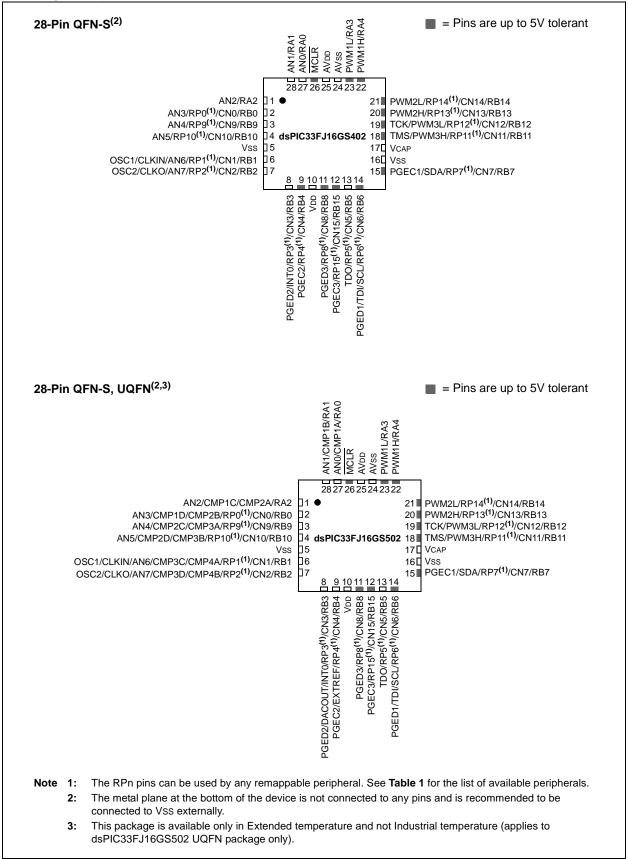
Welcome to E-XFL.COM

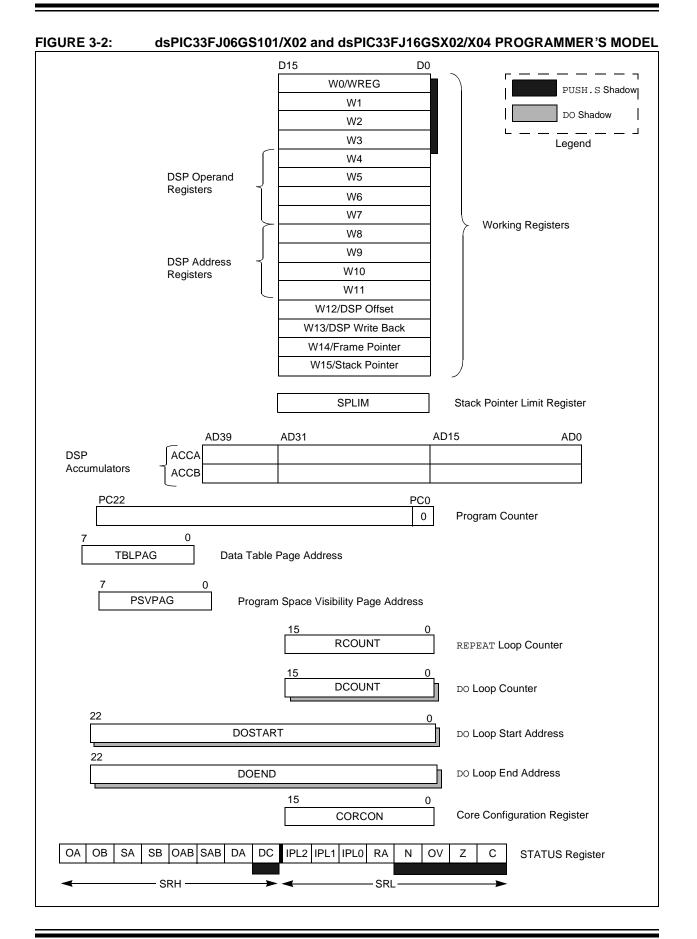
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


⊡XFI


2 010	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-27: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	—	GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	—	_	_		_	—	_	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	-	—	_	_		_	—	_	P6RDY	_	_	_	P2RDY	P1RDY	PORDY	0000
ADBASE	0308								ADBASE<1	5:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	_	-	—	_	_		_	—	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC3	0310	_		—	_	_	_	—	—	IRQEN6	PEND6	SWTRG6	TRGSRC64	TRGSRC63	TRGSRC62	TRGSRC61	TRGSRC60	0000
ADCBUF0	0320								ADC E	Data Buffer	0							xxxx
ADCBUF1	0322								ADC E	Data Buffer	[.] 1							xxxx
ADCBUF2	0324								ADC E	Data Buffer	2							xxxx
ADCBUF3	0326								ADC E	Data Buffer	3							xxxx
ADCBUF4	0328								ADC E	Data Buffer	4							xxxx
ADCBUF5	032A								ADC E	Data Buffer	5							xxxx
ADCBUF12	0338								ADC D	ata Buffer	12							xxxx
ADCBUF13	033A								ADC D	Data Buffer	13							xxxx

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-28: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS402/404 DEVICES ONLY

	-				-							-						
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	_	GSWTRG	_	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	-	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	_	_	—	_	_	_	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	_	_	_	—	_	_	_	_	_	_	_	P3RDY	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308								ADBASE<15	:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCBUF0	0320								ADC D	ata Buffer	0							xxxx
ADCBUF1	0322								ADC D	ata Buffer	1							xxxx
ADCBUF2	0324								ADC D	ata Buffer	2							xxxx
ADCBUF3	0326								ADC D	ata Buffer	3							xxxx
ADCBUF4	0328								ADC D	ata Buffer	4							xxxx
ADCBUF5	032A								ADC D	ata Buffer	5							xxxx
ADCBUF6	032C								ADC D	ata Buffer	6							xxxx
ADCBUF7	032E								ADC D	ata Buffer	7							xxxx
Legend:	x =	unknown	value on	Reset, — =	unimplement	ed, read as '0'	. Reset value	s are shown i	n hexadecima	al.								

TABLE 4-33: PERIPHERAL PIN SELECT INPUT REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	-	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_		-	_	_	—	_	_	3F00
RPINR1	0682			_	_	_	_	_	_	_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	003F
RPINR2	0684			T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0	_	_	_	_	_	_	_	_	0000
RPINR3	0686			T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	3F3F
RPINR7	068E	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR11	0696	_	_	_	_	—	_	_	_	_	_	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR18	06A4			U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	003F
RPINR20	06A8	-		SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	_	_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	06AA			_	_	_	_	_	_	_	_	SS1R5	SS1R54	SS1R3	SS1R2	SS1R1	SS1R0	0000
RPINR29	06BA			FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	_	_	_	_	_	_	_	_	3F00
RPINR30	06BC			FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0	_	_	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	3F3F
RPINR31	06BE			FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0	_	_	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0	3F3F
RPINR32	06C0			FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0	_	_	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0	3F3F
RPINR33	06C2	_	_	SYNCI1R5	SYNCI1R4	SYNCI1R3	SYNCI1R2	SYNCI1R1	SYNCI1R0	_	_	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0	3F3F
RPINR34	06C4	_	_	_	_	-		_	—	—		SYNCI2R5	SYNCI2R4	SYNCI2R3	SYNCI2R2	SYNCI2R1	SYNCI2R0	3F3F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS101

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	_		RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_		RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06D2		_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0		_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06D4		_	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0		_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06D6		_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0		_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR16	06F0		_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0		_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR17	06F2		_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	-	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: SYSTEM CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR			_		CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{xxxx} (1)
OSCCON	0742	—	COSC2	COSC1	COSC0		NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF			OSWEN	0300 (2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	3040
PLLFBD	0746	_	—	_	_	_	—	_				PLLI	OIV<8:0>					0030
REFOCON	074E	ROON	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_		_	_	_			—	0000
OSCTUN	0748		—		_	-		-	-	_	-			TUN<	:5:0>			0000
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	-	_	APSTSCLR2	APSTSCLR1	APSTSCLR0	ASRCSEL	FRCSEL	_	_	_	_	_	—	2300

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The RCON register Reset values are dependent on the type of Reset.

2: The OSCCON register Reset values are dependent on the FOSCx Configuration bits and on type of Reset.

TABLE 4-42: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_		—	_	_	ERASE	_		NVMOP3	NVMOP2	NVMOP1	NVMOP0	₀₀₀₀ (1)
NVMKEY	0766	_	_	_	_	_		-	_				NVMKE	EY<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-43: PMD REGISTER MAP FOR dsPIC33FJ06GS101 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	_	T2MD	T1MD	_	PWMMD	_	I2C1MD	_	U1MD	—	SPI1MD	—	—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	_		_	_	-	_	OC2MD	OC1MD	0000
PMD3	0774	_			I	-	CMPMD		I	_	-	_	_	_	_	_	_	0000
PMD4	0776	_	—	_	-	_	_	_	_	—	_	—	—	REFOMD	—	—	_	0000
PMD6	077A	_	-	-		PWM4MD	-	-	PWM1MD	_	-	_	_	-	-	_	—	0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: PMD REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	_	T2MD	T1MD	—	PWMMD	_	I2C1MD	_	U1MD	_	SPI1MD		—	ADCMD	0000
PMD2	0772	Ι	_	_	_	_	_	IC2MD	IC1MD	_	_	_	_	_	_	OC2MD	OC1MD	0000
PMD3	0774	Ι	—	—	—	—	CMPMD			-		_	—	—	_	—	-	0000
PMD4	0776	-	—	—	—	_	—	—	_	_	—	—	_	REFOMD	—	—	_	0000
PMD6	077A	_	—	_	—	—	—	PWM2MD	PWM1MD	_		_	_	—	_	-	_	0000

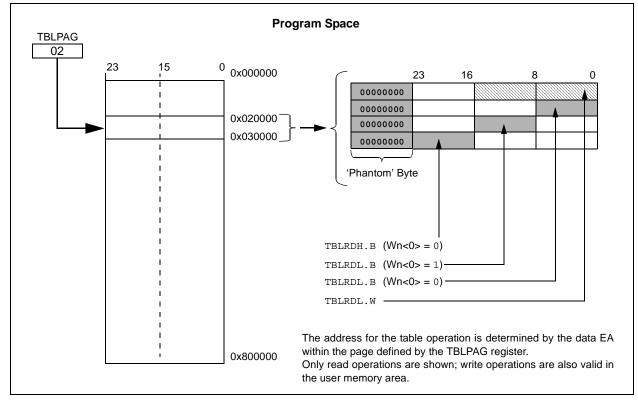
Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000318G-page 71

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70192) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), which is set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: **RESET SYSTEM BLOCK DIAGRAM RESET** Instruction Glitch Filter MCLR WDT Module Sleep or Idle BOR Internal SYSRST Regulator Vdd POR VDD Rise Detect Trap Conflict Illegal Opcode Uninitialized W Register Configuration Mismatch

6.1 System Reset

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 families of devices have two types of Reset:

- Cold Reset
- Warm Reset

A Cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a Cold Reset, the FNOSCx Configuration bits in the FOSC Configuration register select the device clock source. A Warm Reset is the result of all the other Reset sources, including the RESET instruction. On Warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	_	_	Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	_	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
HS	Toscd(1)	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLОСК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
HSPLL	Toscd(1)	Tost ⁽²⁾	ТLOCК ⁽³⁾	TOSCD + TOST + TLOCK ^(1,2,3)
ECPLL	—	—	ТLОСК ⁽³⁾	TLOCK ⁽³⁾
LPRC	Toscd ⁽¹⁾	_	—	Toscd ⁽¹⁾

TABLE 6-1:OSCILLATOR DELAY

Note 1: TOSCD = Oscillator start-up delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

FIGURE 7-1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 INTERRUPT VECTOR TABLE

		-	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
rity	Interrupt Vector 54	0x000080	
Jric	~		
ж Н	~		
rde	~		
0	Interrupt Vector 116	0x0000FC	
nra	Interrupt Vector 117	0x0000FE	
Decreasing Natural Order Priority	Reserved	0x000100	
l b	Reserved	0x000102	
asir	Reserved	_	
rea	Oscillator Fail Trap Vector	_	
Dec	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Error Trap Vector	-	
	Reserved		1
	Reserved	_	
	Reserved	00001111	
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	-	
	~	-	
	~	-	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
		0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x00017L	
		0,000,100	
	~	-	
		-	
	Interrupt Vector 116		1
	Interrupt Vector 117	0x0001FE	
*	Start of Code	0x000200	

REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

- FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits^(2,3) bit 7-3 11111 = Reserved01000 = Reserved 00111 = Fault 8 00110 = Fault 7 00101 = Fault 6 00100 = Fault 5 00011 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1 FLTPOL: Fault Polarity for PWM Generator # bit⁽¹⁾ bit 2 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high bit 1-0 FLTMOD<1:0>: Fault Mode for PWM Generator # bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH and PWMxL pins to FLTDAT values (cycle) 00 = The selected Fault source forces the PWMxH and PWMxL pins to FLTDAT values (latched condition) Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
 - 3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_		—	_	_		AMSk	<9:8>
bit 15	·				-		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			AMS	K<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address bit x Select bits

1 = Enables masking for bit x of incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: UARTx Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to "**UART**" (DS70188) in the "*dsPIC33F/PIC24H Family Reference Manual*" for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1	
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0	
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	
bit 7	UKAISELU	ADDEN	RIDLE	FERR	FERR	UERK	bit (
							Dir v	
Legend:		HC = Hardware	Clearable bit	C = Clearable	e bit			
R = Readable	e bit	W = Writable bit		U = Unimpler	mented bit, rea	ad as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	known	
bit 15,13	11 = Reserve 10 = Interrupt the trans 01 = Interrupt operatio 00 = Interrupt	Contraction of the second state of the seco	er is transferren nes empty character is s t er is transferre	d to the Transn hifted out of th d to the Transn	nit Shift Regist ne Transmit S	Shift Register;	all transm	
bit 14	If IREN = 0: 1 = UxTX Idle 0 = UxTX Idle If IREN = 1:			bit				
	0 = IrDA enco	oded UxTX Idle s						
bit 12	-	ted: Read as '0'						
bit 11	1 = Sends Sy bit; cleare	RTx Transmit Br vnc Break on nev ed by hardware u ak transmission i	t transmission pon completior	า	owed by twelve	e '0' bits, follo	wed by Sto	
bit 10	UTXEN: UAR	Tx Transmit Ena	ble bit ⁽¹⁾					
		is enabled, UxT> is disabled, any by port	•	•	orted and but	ffer is reset;	UxTX pin i	
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full; at least one more character can be written							
bit 8	 TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued 							
bit 7-6	 URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters 							
Note 1: Re	fer to " UART " (DS70188) in the	"dsPIC33F/PIC	C24H Family Re	eference Manu	<i>al"</i> for information	ation on	

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

19.0 HIGH-SPEED 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed 10-Bit Analog-to-Digital Converter (ADC)" (DS70000321) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices provide high-speed, successive approximation Analog-to-Digital conversions to support applications, such as AC/DC and DC/DC power converters.

19.1 Features Overview

The ADC module comprises the following features:

- 10-bit resolution
- Unipolar inputs
- Up to two Successive Approximation Registers (SARs)
- · Up to 12 external input channels
- Up to two internal analog inputs
- · Dedicated result register for each analog input
- ±1 LSB accuracy at 3.3V
- Single supply operation
- 4 Msps conversion rate at 3.3V (devices with two SARs)
- 2 Msps conversion rate at 3.3V (devices with one SAR)
- Low-power CMOS technology

19.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- AC/DC power supplies
- DC/DC Converters
- Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This module can sample and convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated Sample-and-Hold circuits and one from the shared Sample-and-Hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1, AN0), (AN3, AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on Independent Time Bases (ITBs).

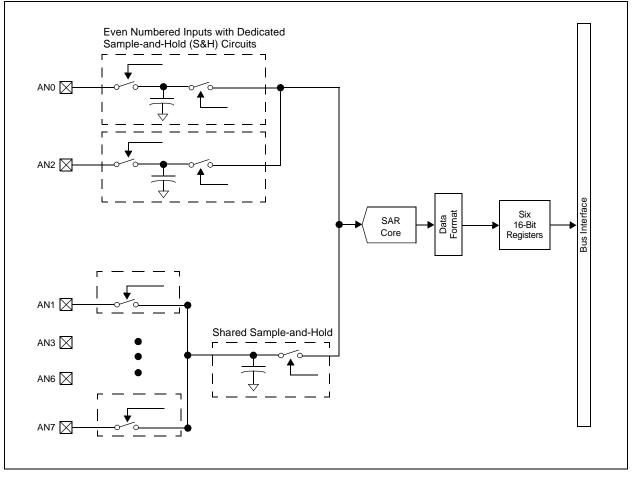
The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application.

- · Result alignment options
- Automated sampling
- External conversion start control
- Two internal inputs to monitor the INTREF internal reference and the EXTREF input signal

19.3 Module Functionality

The high-speed, 10-bit ADC module is designed to support power conversion applications when used with the high-speed PWM module. The ADC may have one or two SAR modules, depending on the device variant. If two SARs are present on a device, two conversions can be processed at a time, yielding 4 Msps conversion rate. If only one SAR is present on a device, only one conversion can be processed at a time, yielding 2 Msps conversion rate. The high-speed 10-bit ADC produces two 10-bit conversion results in a 0.5 microsecond.


The ADC module supports up to 12 external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN12 and AN13, are connected to the EXTREF and INTREF voltages, respectively.

The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).

Block diagrams of the ADC module are shown in Figure 19-1 through Figure 19-6.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

REGISTER 19-5: ADCPC0: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

```
bit 4-0
               TRGSRC0<4:0>: Trigger 0 Source Selection bits
               Selects trigger source for conversion of Analog Channels AN1 and AN0.
               11111 = Timer2 period match
               11011 = Reserved
               11010 = PWM Generator 4 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               10111 = PWM Generator 1 current-limit ADC trigger
               10110 = \text{Reserved}
               10010 = Reserved
               10001 = PWM Generator 4 secondary trigger is selected
               10000 = PWM Generator 3 secondary trigger is selected
               01111 = PWM Generator 2 secondary trigger is selected
               01110 = PWM Generator 1 secondary trigger is selected
               01101 = Reserved
               01100 = Timer1 period match
               01000 = Reserved
               00111 = PWM Generator 4 primary trigger is selected
               00110 = PWM Generator 3 primary trigger is selected
               00101 = PWM Generator 2 primary trigger is selected
               00100 = PWM Generator 1 primary trigger is selected
               00011 = PWM Special Event Trigger is selected
               00010 = Global software trigger is selected
               00001 = Individual software trigger is selected
               00000 = No conversion is enabled
```

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	_			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IRQEN6	PEND6	SWTRG6	N/W-0	K/W-0	TRGSRC6<4:0		N/ VV-U	
bit 7	FENDO	3011130			11031004.0	>	bit C	
							Dit U	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
bit 15-8	Unimplemented: Read as '0'							
bit 7	IRQEN6: Interrupt Request Enable 6 bit 1 = Enables IRQ generation when requested conversion of Channels AN13 and AN12 is completed 0 = IRQ is not generated							
bit 6	PEND6: Pend	ding Conversior	n Status 6 bit					
	1 = Conversion of Channels AN13 and AN 12 is pending; set when selected trigger is asserted 0 = Conversion is complete							
bit 5	SWTRG6: So	oftware Trigger	6 bit					
	 1 = Starts conversion of AN13 (INTREF) and AN12 (EXTREF) (if selected by the TRGSRCx bits)⁽²⁾ This bit is automatically cleared by hardware when the PEND6 bit is set. 0 = Conversion has not started 							
Note 1: This	s register is onl	y implemented	on the dsPIC	33FJ16GS502	and dsPIC33F	J16GS504 devi	ces.	

REGISTER 19-8: ADCPC3: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 3⁽¹⁾

2: The trigger source must be set as global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

21.5 JTAG Interface

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface will be provided in future revisions of the document.

21.6 In-Circuit Serial Programming

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of Digital Signal Controllers can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the Digital Signal Controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

21.7 In-Circuit Debugger

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices provide simple debugging functionality through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

24.1 DC Characteristics

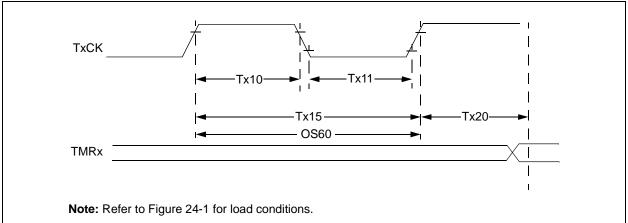
	Voo Bongo	Tomp Bongo	Max MIPS		
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04		
_	3.0-3.6∨ ⁽¹⁾	-40°C to +85°C	40		
	3.0-3.6∨ ⁽¹⁾	-40°C to +125°C	40		

TABLE 24-1: OPERATING MIPS VS. VOLTAGE

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 24-11 for BOR values.

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	Pint + Pi/o			W
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	Pdmax	(TJ — TA)/θJ	IA	W


TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 44-Pin QFN	θJA	28	_	°C/W	1
Package Thermal Resistance, 44-Pin TFQP	θJA	39	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	42	—	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	47	—	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	34	—	°C/W	1
Package Thermal Resistance, 18-Pin SOIC	θJA	57	—	°C/W	1
Package Thermal Resistance, 44-Pin VTLA	θJA	25	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

FIGURE 24-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CH	ARACTERI	STICS	(unl	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Charao	cteristic	Min.	Тур.	Max.	Units	Conditions		
TA10	Т⊤хН	T1CK High Time	Synchronous no prescaler	Tcy + 20	—	_	ns	Must also meet Parameter TA15,		
			Synchronous with prescale		—	—	ns	N = Prescale value (1, 8, 64, 256)		
			Asynchronou	s 20		—	ns			
ΤΑ11 ΤτΧ	T⊤xL	Time n S V	Synchronous no prescaler	Tcy + 20	—	—	ns	Must also meet Parameter TA15,		
			Synchronous with prescale		—	—	ns	N = Prescale value (1, 8, 64, 256)		
			Asynchronou	s 20	—	—	ns			
TA15	ΤτχΡ	- 1	Synchronous no prescaler	2 Tcy + 40	_	—	ns			
				Synchronous with prescale		—	_	_	N = Prescale value (1, 8, 64, 256)	
			Asynchronou	s 40	—	—	ns			
OS60	F⊤1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC	_	50	kHz			
TA20	TCKEXTMRL	Delay from Ext Clock Edge to		0.75 TCY + 40	—	1.75 Tcy + 40	—			

TABLE 24-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A timer.