

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

Note:	To access the documents listed below, browse to the documentation section of the dsPIC33FJ16GS504 product page of the Microchip web site (www.microchip.com).
	In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70197)
- "CPU" (DS70204)
- "Data Memory" (DS70202)
- "Program Memory" (DS70203)
- "Flash Programming" (DS70191)
- "Reset" (DS70192)
- "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196)
- "I/O Ports" (DS70193)
- "Timers" (DS70205)
- "Input Capture" (DS70198)
- "Output Compare" (DS70005157)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70188)
- "Serial Peripheral Interface (SPI)" (DS70206)
- "Inter-Integrated Circuit™ (I²C™)" (DS70000195)
- "CodeGuard™ Security (DS70199)
- "Programming and Diagnostics" (DS70207)
- "Device Configuration" (DS70194)
- "Interrupts (Part IV)" (DS70300)
- "Oscillator (Part IV)" (DS70307)
- "High- Speed PWM Module" (DS70000323)
- "High-Speed 10-Bit ADC" (DS70000321)
- "High-Speed Analog Comparator" (DS70296)
- "Oscillator (Part VI)" (DS70644)

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG register.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3, or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- Signed or Unsigned DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF), including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS Register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

~

or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

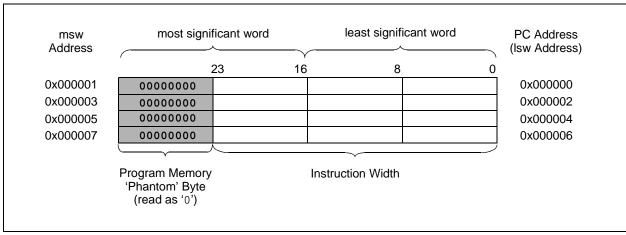
• SB: ACCB saturated (bit 31 overflow and saturation)

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain.

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate consider each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-35: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402 AND dsPIC33FJ16GS502

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	_		RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_		RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06D2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06D4	_	_	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	_		RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06D6	_	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_		RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06D8	_		RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0			RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06DA	_		RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0			RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06DC	_		RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0			RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06DE		_	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0		_	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR16	06F0	_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_		RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR17	06F2	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-36: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	_		RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_		RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06D2		_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0		_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06D4		_	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0		_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06D6		_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0		_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06D8		_	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0		_	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06DA		_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0		_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06DC		_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0		_	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06DE		_	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0		_	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06E0		_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0		_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06E2		_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0		_	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06E4		_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0		_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06E6		_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0		_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06E8		_	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0		_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06EA		_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0		_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06EC	_	-	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0	_		RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR16	06F0	_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR17	06F2	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-41: SYSTEM CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR			_		CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{xxxx} (1)
OSCCON	0742	—	COSC2	COSC1	COSC0		NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK	_	CF			OSWEN	0300 (2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	3040
PLLFBD	0746	_	—	_	_	_	—	_				PLLI	OIV<8:0>					0030
REFOCON	074E	ROON	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_		_	_	_			—	0000
OSCTUN	0748		—		_	-		-	-	_	-			TUN<	:5:0>			0000
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	-	_	APSTSCLR2	APSTSCLR1	APSTSCLR0	ASRCSEL	FRCSEL	_	_	_	_	_	—	2300

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The RCON register Reset values are dependent on the type of Reset.

2: The OSCCON register Reset values are dependent on the FOSCx Configuration bits and on type of Reset.

TABLE 4-42: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	_		—	_	_	ERASE	_		NVMOP3	NVMOP2	NVMOP1	NVMOP0	₀₀₀₀ (1)
NVMKEY	0766	_	_	_	_	_		-	_				NVMKE	EY<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-43: PMD REGISTER MAP FOR dsPIC33FJ06GS101 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	_	T2MD	T1MD	_	PWMMD	_	I2C1MD	—	U1MD	_	SPI1MD	—	—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	_		_	_	-	_	OC2MD	OC1MD	0000
PMD3	0774	—			I	-	CMPMD			_	-	_	_	_	_	_	_	0000
PMD4	0776	_	—	_	-	_	_	_	_	—	_	—	—	REFOMD	—	—	_	0000
PMD6	077A	_	-	-		PWM4MD	-	-	PWM1MD	_	-	_	_	-	-	_	—	0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: PMD REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	_	T2MD	T1MD	—	PWMMD	_	I2C1MD	_	U1MD	—	SPI1MD		—	ADCMD	0000
PMD2	0772	Ι	_	_	_	_	_	IC2MD	IC1MD	_	_	_	_	_	_	OC2MD	OC1MD	0000
PMD3	0774	Ι	—	—	—	—	CMPMD			-		—	—	—	_	—	-	0000
PMD4	0776	-	—	—	—	_	—	—	_	_	—	—	_	REFOMD	—	—	_	0000
PMD6	077A	_	—	_	—	—	—	PWM2MD	PWM1MD	_	-	_	_	_	_	-	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000318G-page 71

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70192) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), which is set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: **RESET SYSTEM BLOCK DIAGRAM RESET** Instruction Glitch Filter MCLR WDT Module Sleep or Idle BOR Internal SYSRST Regulator Vdd POR VDD Rise Detect Trap Conflict Illegal Opcode Uninitialized W Register Configuration Mismatch

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred

- 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0
pit 15						_	bit
		DAMO	DAMO		D 444 4	DAMA	DAMO
U-0	R/W-1 SPI1EIP2	R/W-0 SPI1EIP1	R/W-0 SPI1EIP0	U-0	R/W-1 T3IP2	R/W-0 T3IP1	R/W-0 T3IP0
 bit 7	3FITEIF2	SFILEIFT	SFILEIFU	—	TOIFZ	ISIFI	bit
<u> </u>							
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unkr	nown
bit 15	Unimplomen	ted: Read as '	0'				
bit 14-12	-	: UART1 Rec		Priority bits			
510 T T T 2		pt is Priority 7	•	•			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	sabled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8		SPI1 Event Ir	• •				
	111 = Interru	pt is Priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru						
bit 7		pt source is dis t ed: Read as '					
bit 6-4	=	>: SPI1 Error I		hy hito			
DIL 0-4		pt is Priority 7					
	•	prior nonty r	(ingricor priorit	y monupi)			
	•						
	•	nt in Driarity 1					
	001 = Interru 000 = Interru	pt is Phonity 1 pt source is dis	sabled				
bit 3		ted: Read as					
bit 2-0	-	imer3 Interrupt					
		pt is Priority 7	-	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					

IDC2. INTERDURT PRIORITY CONTROL RECISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
11.0	11.0						

REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0
Legend:							
D Doodoblob	:+		h:+		nonted hit read	oo 'O'	

REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	-					•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	_	P	CLKDIV<2:0>(1)
bit 7			•				bit 0

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

Γ.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will vield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable bit $W = Writable bit$		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk			nown				

bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- The I2CxADD register holds the slave address
- A status bit, ADD10, indicates 10-Bit Addressing mode
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit (
Legend:			mented bit, re	ad as 'O'							
R = Readable	hit	W = Writable			re Clearable bit						
-n = Value at F		(1) = Bit is set		0' = Bit is clear		x = Bit is unkno	nwn				
bit 15	12CEN · 120	Cx Enable bit									
			odule, and cor	nfigures the SE	Ax and SCLx pir	ns as serial port r	oins				
					trolled by port fur						
bit 14	Unimplem	ented: Read	as '0'								
bit 13	I2CSIDL:	2Cx Stop in Ic	lle Mode bit								
		tinues module ues module o	•		ers an Idle mode						
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)										
	1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch)										
	If STREN = 1:										
	Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.										
	-	-	nsmission. Ha	ardware clear a	it end of slave red	ception.					
	If STREN =		can only wri	te '1' to releas	se clock). Hardw	are clear at heri	nning of slav				
	transmissi	•				are clear at begi	Thing of Slav				
bit 11	IPMIEN: Ir	ntelligent Perip	heral Manage	ement Interface	e (IPMI) Enable b	bit					
	1 = IPMI m	node is enable	d; all address	es are Acknow	. ,						
h:+ 40		node is disable									
bit 10		Bit Slave Add		_							
	1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address										
bit 9		Disable Slew F		bit							
		ate control is o ate control is e									
bit 8											
bit 0	SMEN: SMBus Input Levels bit										
	 Enables I/O pin thresholds compliant with SMBus specification Disables SMBus input thresholds 										
bit 7	GCEN: Ge	eneral Call Ena	able bit (when	operating as I	² C slave)						
	1 = Enable recept	-	nen a general	call address is	received in the la	2CxRSR (module	e is enabled fo				
		al call addres	s is disabled								
bit 6	STREN: S	CLx Clock Str	etch Enable b	oit (when opera	ting as I ² C slave)					
		njunction with									
		es software or		-							
	v = v sable	es software or	receive clock	stretching							

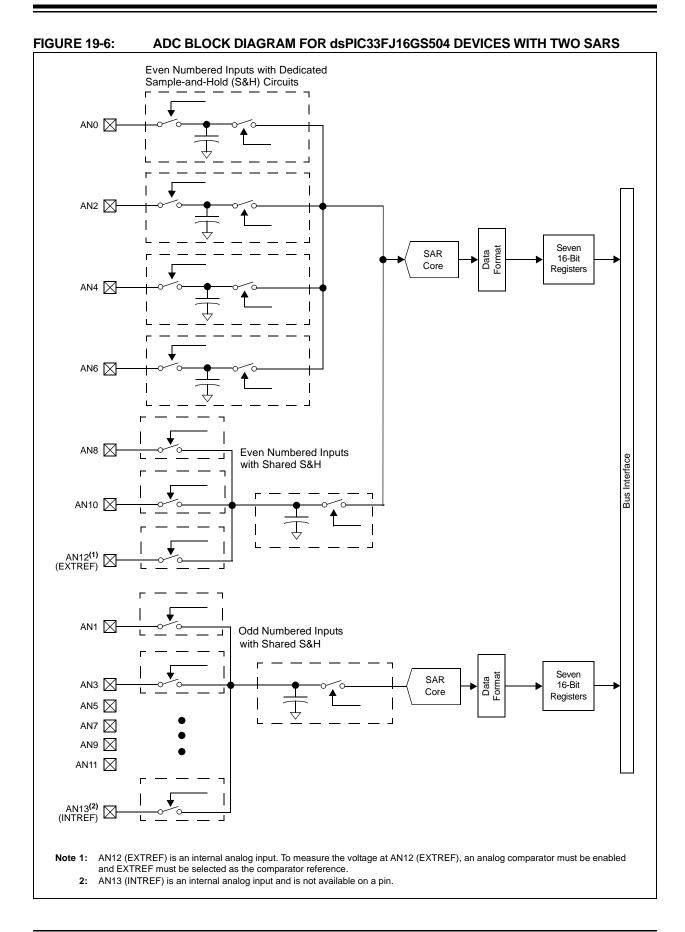
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	_		—	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0
Legend:		C = Clearab	ole bit	HSC = Hardw	vare Settable/C	learable bit	
R = Readab	le bit	W = Writabl	e bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unknown	n
HS = Hardw	are Settable	bit					
bit 15	ACKSTAT:	Acknowledge	e Status bit				
				licable to mas	ter transmit ope	eration)	
		eceived from					
		ceived from s		ve Acknowledg	ie		
bit 14						able to master tran	smit operation)
			progress (8 k	-			onne oporation)
			ot in progress	,			
	Hardware is	s set at begin	ning of maste	er transmissior	. Hardware is c	lear at end of slave	e Acknowledge.
bit 13-11	Unimpleme	ented: Read	as '0'				
bit 10		er Bus Collisio					
			een detected	l during a mas	ter operation		
	0 = No collis Hardware is		tion of bus co	Ilision			
bit 9		eneral Call S					
Sit 0			was receive	d			
			was not rece				
	Hardware is	s set when ac	dress match	es general call	address. Hard	ware is clear at Sto	p detection.
bit 8		-Bit Address					
		ddress was n					
		ddress was r s set at match		of matched 10	-bit address Ha	ardware is clear at	Stop detection
bit 7			sion Detect b				
					d because the	I ² C module is busy	,
	0 = No collis			- 9		· · · · · · · · · · · · · · · · · · ·	
	Hardware is	s set at occur	rence of write	e to I2CxTRN	while busy (clea	red by software).	
bit 6			/erflow Flag b				
	-		while the I2C	xRCV register	is still holding t	the previous byte	
	0 = No over Hardware is		nt to transfer	12CxRSR to 12	CxRCV (cleare	ed by software).	
bit 5			•	ng as I ² C slave		a by converg.	
	_	· ·	st byte receive	0	~/		
	0 = Indicate	s that the las	t byte receive	ed was a devid			
	Hardware is	s clear at dev	ice address n	natch. Hardwa	re is set by rece	eption of slave byte) .

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
		_			AMSK<9:8>			
bit 15	·			·			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			AMS	K<7:0>				
bit 7 bit								
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER


bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address bit x Select bits

1 = Enables masking for bit x of incoming message address; bit match is not required in this position

0 = Disables masking for bit x; bit match is required in this position

DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No. Symbol Characteristic		Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
Operating Voltage								
DC10	Vdd	Supply Voltage ⁽⁴⁾	3.0	_	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	_	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V		
DC17	SVDD	VDD Rise Rate ⁽³⁾ to Ensure Internal Power-on Reset Signal	0.03	—		V/ms	0V-3.0V in 0.1 seconds	

TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 24-11 for BOR values.

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	—	200	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾		-3	0.5	3	%	Measured over 100 ms period

TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

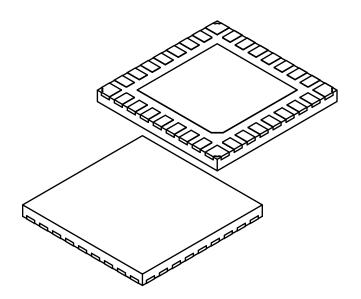
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCKx) is 2 MHz.

SPI SCK Jitter =
$$\left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}} \right\rfloor = \left\lfloor \frac{3\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{3\%}{4} \right\rfloor = 0.75\%$$


TABLE 24-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No. Symbol Characteris		stic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
OS56	Fhpout	On-Chip 16x PLL CCO Frequency		112	118	120	MHz		
OS57	Fhpin	On-Chip 16x PLL Phase Detector Input Frequency		7.0	7.37	7.5	MHz		
OS58	Tsu	Frequency Generator Lock Time			_	10	μs		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	ILLIMETER	S			
Dimension	MIN	NOM	MAX				
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	Α	0.40	0.50	0.60			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	(A3)	0.127 REF					
Overall Width	E		6.00 BSC				
Exposed Pad Width	E2		4.00				
Overall Length	D		6.00 BSC				
Exposed Pad Length	D2		4.00				
Terminal Width	b	0.35	0.40	0.45			
Corner Pad	b2	0.25	0.40	0.45			
Terminal Length	L	0.55	0.60	0.65			
Terminal-to-Exposed Pad	K	0.20	-	-			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 4. Outermost portions of corner structures may vary slightly.

Microchip Technology Drawing C04-0209B Sheet 2 of 2