

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.8 Configuration of Analog and Digital Pins During ICSP Operations

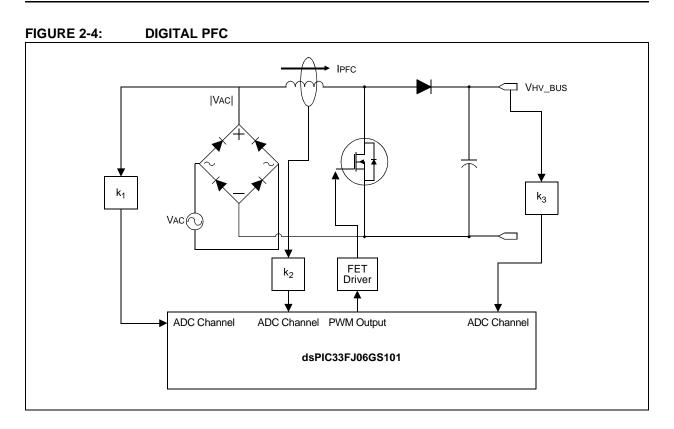
If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG register.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

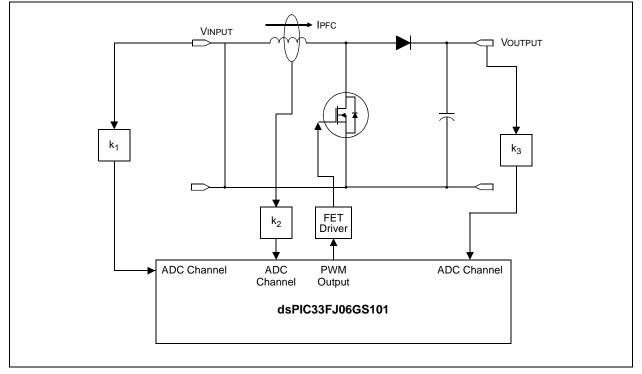
If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3, or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os


Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.


2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

6.8.2 UNINITIALIZED W REGISTER RESET

Any attempt to use the Uninitialized W register as an Address Pointer will reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (boot and secure segment), that operation will cause a Security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an interrupt or trap vector.

Refer to Section 21.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the Reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or Uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	_

TABLE 6-3: RESET FLAG BIT OPERATION

Note: All Reset flag bits can be set or cleared by user software.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
ADCP1IE	ADCP0IE	—	—	—	_	AC4IE	AC3IE	
bit 15							bit	
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
AC2IE		_	_		_	PWM4IE	PWM3IE	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit. rea	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown	
bit 15	ADCP1IE: AD	DC Pair 1 Conv	ersion Done	Interrupt Enable	e bit			
		equest is enab						
		request is not e						
bit 14				Interrupt Enable	bit			
	•	equest is enab equest is not e						
bit 13-10	•	ted: Read as '						
bit 9	-	g Comparator		able bit				
		equest is enab						
		equest is not e						
bit 8	AC3IE: Analo	g Comparator	3 Interrupt Er	nable bit				
		equest is enab						
		equest is not e						
bit 7		g Comparator	•	hable bit				
	 I = Interrupt request is enabled Interrupt request is not enabled 							
bit 6-2	•	ted: Read as '						
bit 1	-	PWM4IE: PWM4 Interrupt Enable bit						
		equest is enab						
	•	equest is not e						
bit 0	PWM3IE: PW	/M3 Interrupt E	nable bit					
		equest is enab						

REGISTER 7-17: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock such as a PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock. The auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Table 24-18 in Section 24.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less

8.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

8.4 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,2)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽³⁾	NOSC1 ⁽³⁾	NOSC0 ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF	_	—	OSWEN
bit 7							bit 0

Legend:	y = Value set from Configuration bits on POR				
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits (read-only)
	<pre>111 = Fast RC oscillator (FRC) with divide-by-n 110 = Fast RC oscillator (FRC) with divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Reserved 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC oscillator (FRC) with PLL 000 = Fast RC oscillator (FRC)</pre>
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽³⁾
	<pre>111 = Fast RC oscillator (FRC) with divide-by-n 110 = Fast RC oscillator (FRC) with divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Reserved 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC oscillator (FRC) with PLL</pre>
	000 = Fast RC oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	<pre>If Clock Switching is Enabled and FSCM is Disabled, (FOSC<fcksm> = 0b01): 1 = Clock switching is disabled, system clock source is locked 0 = Clock switching is enabled, system clock source can be modified by clock switching</fcksm></pre>
bit 6	IOLOCK: Peripheral Pin Select Lock bit
	 1 = Peripheral Pin Select is locked, write to Peripheral Pin Select registers not allowed 0 = Peripheral Pin Select is not locked, write to Peripheral Pin Select registers allowed
bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
Note 1:	Writes to this register require an unlock sequence. Refer to " Oscillator (Part IV) " (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip web site) for details.
2:	This register is reset only on a Power-on Reset (POR).
3:	Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

mode as a transition clock source between the two PLL modes.

10.6 Peripheral Pin Select

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

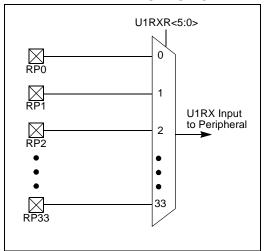
10.6.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 30 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and another one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


10.6.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-14). Each register contains sets of 6-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—		—	—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-6	Unimplemen	ted: Read as '	0'				
bit 5-0	SS1R<5:0>:	Assign SPI1 SI	ave Select In	put (SS1IN) to	the Correspond	ing RPn Pin bit	S
	111111 = Inp	out tied to Vss					
	100011 = Inp	out tied to RP35	5				
	100010 = Input tied to RP34						
100001 = Input tied to RP33		3					
100000 = Input tied to RP32		2					
	•						
	•						
	•						
	00000 1000						

REGISTER 10-8: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

00000 = Input tied to RP0

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

HS/HC-0) HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾
bit 15	ł						bit 8
R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DTC1	DTC0	—	—		CAM ^(2,3)	XPRES ⁽⁴⁾	IUE
bit 7							bit
Legend:		HC = Hardware	Clearable bit	HS = Hardw	are Settable bi	it	
R = Readal	hle hit	W = Writable bit			mented bit, rea		
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unl	nown
		1 – Dit 13 Set			caleu		NIOWI
bit 15	FLTSTAT: F	ault Interrupt Statu	us bit ⁽¹⁾				
		rrupt is pending					
		interrupt is pendin	g; this bit is cle	ared by setting	FLTIEN = 0		
bit 14	CLSTAT: Cu	urrent-Limit Interru	pt Status bit ⁽¹⁾				
		mit interrupt is per nt-limit interrupt is	Q	t is cleared by	setting CLIEN	= 0	
bit 13	TRGSTAT: Tr	rigger Interrupt Sta	itus bit				
		terrupt is pending					
	0 = No trigge	r interrupt is pendi	ng; this bit is cl	eared by settin	g TRGIEN = 0)	
bit 12	FLTIEN: Fai	ult Interrupt Enable	e bit				
		rrupt is enabled					
		rrupt is disabled a		T bit is cleared			
bit 11		CLIEN: Current-Limit Interrupt Enable bit					
		mit interrupt is ena mit interrupt is dis		CLSTAT bit is c	leared		
bit 10	TRGIEN: Trig	ger Interrupt Enat	ole bit				
		event generates a vent interrupts are			it is cleared		
bit 9	ITB: Indepe	ndent Time Base I	Mode bit ⁽³⁾				
	1 = PHASEx/	/SPHASEx registe egister provides tir	r provides time		r this PWM ge	enerator	
bit 8		ster Duty Cycle Re	-				
		ister provides duty Cx register provid				erator	
bit 7-6		ead-Time Control			lie i till gene		
	11 = Reserve		513				
		ne function is disa	bled				
		e dead time is acti dead time is activ					
bit 5-3		ited: Read as '0'	- ,				
Note 1:	Software must clo	ar the interrupt sta	tue here and th	e correspondir	a IFSy hit in t	he interrupt or	ontroller
2:		Time Base mode (-	-	
3:	-	be changed only v	when PTEN = 0	. Changing the	e clock selectio	on during ope	ration will
		real Dariad Deast	modo confirm				

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER

4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0 and PWMCONx<ITB> = 1.

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 2	CAM: Center-Aligned Mode Enable bit ^(2,3)	
	1 = Center-Aligned mode is enabled	
	0 = Center-Aligned mode is disabled	

- bit 1 **XPRES:** External PWM Reset Control bit⁽⁴⁾
 - 1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base (ITB) mode
 - 0 = External pins do not affect PWM time base
- bit 0 IUE: Immediate Update Enable bit
 - 1 = Updates to the active MDC/PDCx/SDCx registers are immediate
 - 0 = Updates to the active MDC/PDCx/SDCx registers are synchronized to the PWM time base
- Note 1: Software must clear the interrupt status here and the corresponding IFSx bit in the interrupt controller.
 - 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
 - **3:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0 and PWMCONx<ITB> = 1.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	_	SPISIDL	—	—		—	—
bit 15							bit 8
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
	SPIROV	—	—	_		SPITBF	SPIRBF
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14 bit 13 bit 12-7 bit 6	 1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins 0 = Disables module Unimplemented: Read as '0' SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode Unimplemented: Read as '0' SPIROV: SPIx Receive Overflow Flag bit 						
	previous 0 = No overfl	data in the SPI low has occurre	xBUF registe		arded. The use	er software has	not read the
bit 5-2	•	ted: Read as '0					
bit 1	 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty. Automatically set in hardware when CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR. 						
bit 0	1 = Receive 0 = Receive data from		RXB is full , SPIxRXB is IxRXB. Auton	empty. Autom		hardware when when core reads	

REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

The double-word instructions execute in two instruction cycles.

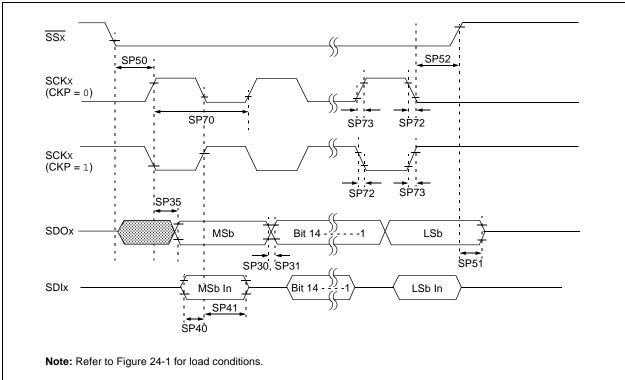
Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal $\in \{0255\}$ for Byte mode, $\{0:1023\}$ for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

TABLE 24-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_	—	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_		ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	—	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 24-18: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

DC CHARACTERISTICS			Standard Operating Conditions (see Note 2): 3.0V to 3.6V Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristic	Min	Min Typ Max Units Comments				
CM10	VIOFF	Input Offset Voltage	-58	+14/-40	66	mV		
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVDD - 1.5	V		
CM12	Vgain	Open Loop Gain ⁽¹⁾	90	—	-	db		
CM13	CMRR	Common-Mode Rejection Ratio ⁽¹⁾	70	—	-	db		
CM14	TRESP	Large Signal Response	21	30	49	ns	V+ input step of 100 mv while V- input held at AVDD/2. Delay measured from analog input pin to PWM output pin.	

TABLE 24-42: COMPARATOR MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

AC and DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristic	Min Typ Max		Units	Comments	
DA01	EXTREF	External Voltage Reference ⁽¹⁾	0		AVDD - 1.6	V	
DA08	INTREF	Internal Voltage Reference ⁽¹⁾	1.25	1.32	1.41	V	
DA02	CVRES	Resolution		10		Bits	
DA03	INL	Integral Nonlinearity Error	-7	-1	+7	LSB	AVDD = 3.3V, DACREF = (AVDD/2)V
DA04	DNL	Differential Nonlinearity Error	-5	-0.5	+5	LSB	
DA05	EOFF	Offset Error	0.4	-0.8	2.6	%	
DA06	EG	Gain Error	0.4	-1.8	5.2	%	
DA07	TSET	Settling Time ⁽¹⁾	711	1551	2100	nsec	Measured when range = 1 (high range), and CMREF<9:0> transitions from 0x1FF to 0x300.

TABLE 24-43: DAC MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

25.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

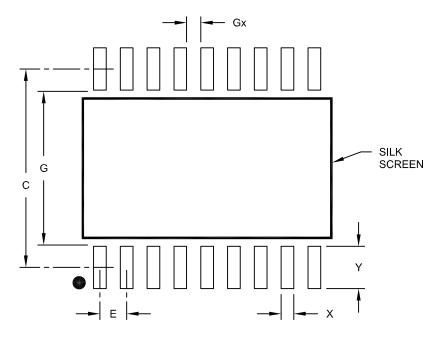
Note: Programming of the Flash memory is not allowed above +125°C.

The specifications between -40°C to +150°C are identical to those shown in **Section 24.0** "**Electrical Characteristics**" for operation between -40°C to +125°C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 24.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾


Ambient temperature under bias ⁽³⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to VSS	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(4)}$	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(4)}$	-0.3V to 5.6V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 8x I/O pin	8 mA
Maximum current sourced/sunk by any 16x I/O pin	
Maximum current sunk by all ports combined	
Maximum current sourced by all ports combined ⁽²⁾	180 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - 3: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 4: Refer to the "Pin Diagrams" section for 5V tolerant pins.

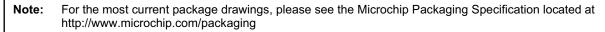
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

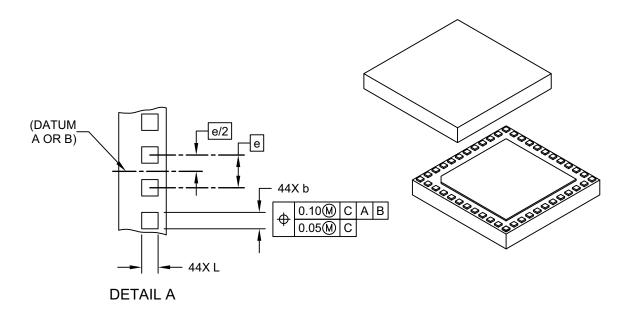
18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		


Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N	44			
Number of Terminals per Side	ND	12			
Number of Terminals per Side	NE	10			
Pitch	е		0.50 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	Е		6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70	
Terminal Width	b	0.20	0.25	0.30	
Terminal Length	L	0.20	0.25	0.30	
Terminal-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157D Sheet 2 of 2

Revision E (December 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 16-Kbyte Flash and up to 2-Kbyte SRAM) with High-Speed PWM, ADC and Comparators"	Changed CN6 to CN5 on pin 16 of dsPIC33FJ16GS502 28-pin SPDIP, SOIC pin diagram.
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Removed the 10 Ohm resistor from Figure 2-1.
Section 4.0 "Memory Organization"	Renamed bit 13 of the REFOCON SFR in the System Control Register Map from ROSIDL to ROSSLP and changed the All Resets value from '0000' to '2300' for the ACLKCON SFR (see 4-41).
Section 8.0 "Oscillator Configuration"	Updated the default reset values from R/W-0 to R/W-1 for the SELACLK and APSTSCLR<2:0> bits in the ACLKCON register (see Register 8-5). Renamed the ROSIDL bit to ROSSLP in the REFOCON register (see Register 8-6).
Section 9.0 "Power-Saving Features"	Updated the last paragraph of Section 9.2.2 " Idle Mode " to clarify when instruction execution begins. Added Note 1 to the PMD1 register (see Register 9-1).
Section 10.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 10.2 "Open-Drain Configuration ".
Section 15.0 "High-Speed PWM"	Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 1 of the shaded note that follows the MDC register (see Register 15-5). Updated the smallest pulse width value from 0x0008 to 0x0009 and the maximum pulse width value from 0x0FFEF to 0x0008 in Note 2 of the shaded note that follows the PDCx and SDCx registers (see Register 15-7 and Register 15-8). Added Note 2 and updated the FLTDAT<1:0> and CLDAT<1:0> bits, changing the word 'data' to 'state' in the IOCONx register (see Register 15-14).
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.

TABLE A-4: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 26.0 "50 MIPS Electrical Characteristics"	Added new chapter in support of 50 MIPS devices.
Section 27.0 "DC and AC Device Characteristics Graphs"	Added new chapter.
Section 28.0 "Packaging Information"	Added 44-pin VTLA package marking information and diagrams (see Section 28.1 "Package Marking Information" and Section 28.2 "Package Details", respectively).
"Product Identification System"	Added the TL package definition.