

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs102t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

KLOIJ IL	-N J-Z. CONC			LOISTER			
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
		—	US	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit 8
R/W-0	0 R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	A SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit		505		
R = Read	lable bit	VV = VVritable	bit	-n = Value at	POR	$1^{\prime} = Bit is set$	
0' = Bit is	cleared	'x = Bit is unk	nown	U = Unimple	mented bit, read	d as '0'	
bit 15 12	Unimplomor	tad. Bood oo	0'				
bit 12		ltinly Unsigned	U /Signad Contr	al hit			
DIL 12	1 – DSP end	ine multinlies a	re unsigned				
	0 = DSP engi	ine multiplies a	ire signed				
bit 11	EDT: Early DO	D Loop Termina	ation Control b	_{oit} (1)			
	1 = Terminate 0 = No effect	e executing DO	loop at end of	current loop i	teration		
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	oops are active					
	•						
	•						
	001 = 1 DO lo	oop is active					
	000 = 0 DO Ic	ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
	1 = Accumula 0 = Accumula	ator A saturation ator A saturation	n is enabled n is disabled				
bit 6	SATB: ACCE	Saturation Er	able bit				
	1 = Accumula 0 = Accumula	ator B saturation ator B saturation	n is enabled n is disabled				
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit		
	1 = Data spa	ce write satura	tion is enabled	ł			
	0 = Data spa	ce write satura	tion is disable	d 			
bit 4	ACCSAT: Ac	cumulator Satu	Iration Mode S	Select bit			
	1 = 9.31 satu 0 = 1.31 satu	ration (super s ration (normal	aturation) saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status I	oit 3 (2)			
	1 = CPU Inte 0 = CPU Inte	rrupt Priority Lo rrupt Priority Lo	evel is greater evel is 7 or les	than 7 s			
bit 2	PSV: Program	n Space Visibil	ity in Data Spa	ace Enable bit			
	1 = Program 0 = Program	space is visible space is not vi	e in data space sible in data sj	e bace			
Note 1:	This hit will always	read as 'o'					
2:	The IPL3 bit is cor	ncatenated with	n the IPL<2:0>	bits (SR<7:5>	>) to form the C	PU Interrupt Prior	rity Level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

TABLE 4-35: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402 AND dsPIC33FJ16GS502

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0			RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_		RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06D2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0		_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06D4	_		RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	_		RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06D6	_		RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_		RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06D8			RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	-		RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06DA			RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	-		RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06DC			RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	-		RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06DE			RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	-		RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR16	06F0			RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	-		RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR17	06F2	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-36: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_		RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06D2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06D4	_	_	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06D6	—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_		RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06D8	—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_		RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06DA	_	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06DC	_	_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	_	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06DE	_	_	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	_	_	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06E0	_	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	_	_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06E2	_	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	_	_	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06E4	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06E6	_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06E8	_	_	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06EA	_	_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06EC	_	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0	_	_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR16	06F0	_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR17	06F2	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes the items such as the Input Change Notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	_	TSIDL ⁽¹⁾	—	—			—
bit 15		•				•	bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾	—		TCS ⁽²⁾	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	TON: Timery 1 = Starts 16-	On bit ⁽²⁾ bit Timery					
h :+ 4 4	0 = Stops 16	bit Timery	<u>.</u>				
DIT 14		teo: Read as) Aada hit(1)				
DIL 13	1 = Discontinues	ues timer operatio	ation when dev in in Idle mode	vice enters Idle	e mode		
bit 12-7	Unimplemen	ted: Read as '	כי				
bit 6	TGATE: TimeWhen TCS =This bit is ignoWhen TCS =1 = Gated time0 = Gated time	ery Gated Time <u>1:</u> ored. <u>0:</u> ue accumulatior ue accumulatior	Accumulation	Enable bit ⁽²⁾			
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescal	e Select bits ⁽²)		
	11 = 1:256 pr 10 = 1:64 pre 01 = 1:8 pres 00 = 1:1 pres	escale value scale value cale value cale value					
bit 3-2	Unimplemen	ted: Read as '	כ'				
bit 1	TCS: Timery 1 = External c 0 = Internal cl	Clock Source S clock from TxCl lock (Fosc/2)	Select bit ⁽²⁾ < pin				
bit 0	Unimplemen	ted: Read as '	כי				
Note 1: Who	en 32-bit timer	operation is en	abled (T32 = :	1) in the Time	rx Control regist	er (TxCON<3>)), the TSIDL

REGISTER 12-2: TyCON: TIMERY CONTROL REGISTER (y = 3)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control (TxCON<3>) register, these bits have no effect.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³) CKP	MSTEN	SPRE2 ⁽²⁾	SPRE1 ⁽²⁾	SPRE0 ⁽²⁾	PPRE1 ⁽²⁾	PPRE0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Disa	able SCKx Pin	bit (SPI Maste	er modes only)			
	1 = Internal S	PI clock is disa	abled; pin func	tions as I/O			
L:L 44	0 = Internal S	PI CIOCK IS ENA	DIEC				
DICTI		ia pot upod by	DII modulo: nin f	unationa ao I/C	`		
	1 = SDOX pin 0 = SDOX pin	is controlled by	v the module)		
bit 10	MODE16: Wo	ord/Byte Comm	unication Sele	ect bit			
	1 = Communi	cation is word-	wide (16 bits)				
	0 = Communi	cation is byte-	wide (8 bits)				
bit 9	SMP: SPIx Da	ata Input Samp	ole Phase bit				
	Master mode:	<u>.</u>					
	1 = Input data 0 = Input data	a sampled at ei a sampled at m	nd of data outp iddle of data o	out time			
	Slave mode:	i oumpiou ut m					
	SMP must be	cleared when	SPIx is used i	n Slave mode.			
bit 8	CKE: SPIx CI	ock Edge Sele	ect bit ⁽¹⁾				
	1 = Serial out	put data chang	ges on transitio	on from active	clock state to Id	le clock state (s	see bit 6)
	0 = Serial out	put data chang	jes on transitio	on from Idle clo	ock state to activ	/e clock state (s	see bit 6)
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de)(3)			
	$1 = \frac{SSX}{SSX}$ pin is $0 = \frac{SSX}{SSX}$ pin is	s used for Slav	e mode odule: pin co	ntrolled by port	t function		
bit 6	CKP: Clock P	olarity Select I	nitaalo, piirool		Turiotion		
	1 = Idle state	for clock is a h	igh level: activ	ve state is a lov	w level		
	0 = Idle state	for clock is a lo	ow level; active	e state is a hig	h level		
bit 5	MSTEN: Mas	ter Mode Enab	ole bit				
	1 = Master m	ode					
	0 = Slave mo	de					
Nate 4		used in the E					l
NOTE 1:	(FRMEN = 1).	usea in the Fr	amed SPI MOO	ues. Program t	This dit to "U" tor	ine Framed SP	Imodes
2:	Do not set both pri	mary and seco	ondary prescal	ers to a value	of 1:1.		

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

- **3:** This bit must be cleared when FRMEN = 1.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: UARTx Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
	0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to "**UART**" (DS70188) in the "*dsPIC33F/PIC24H Family Reference Manual*" for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

19.4 ADC Control Registers

The ADC module uses the following control and status registers:

- ADCON: Analog-to-Digital Control Register
- ADSTAT: Analog-to-Digital Status Register
- ADBASE: Analog-to-Digital Base Register(1,2)
- ADPCFG: Analog-to-Digital Port Configuration Register
- ADCPC0: Analog-to-Digital Convert Pair Control Register 0
- ADCPC1: Analog-to-Digital Convert Pair Control Register 1
- ADCPC2: Analog-to-Digital Convert Pair Control Register 2(1)
- ADCPC3: Analog-to-Digital Convert Pair Control Register 3(1)

The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG registers configure the port pins as analog inputs or as digital I/O. The ADCPCx registers control the triggering of the ADC conversions. See Register 19-1 through Register 19-8 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual Sample-and-Hold circuits can be triggered independently of each other.

REGISTER 19-6: ADCPC1: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN3 ⁽¹⁾	PEND3 ⁽¹⁾	SWTRG3 ⁽¹⁾	TRGSRC34 ⁽¹⁾	TRGSRC33 ⁽¹⁾	TRGSRC32 ⁽¹⁾	TRGSRC31 ⁽¹⁾	TRGSRC30 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN2 ⁽²⁾	PEND2 ⁽²⁾	SWTRG2 ⁽²⁾	TRGSRC24 ⁽²⁾	TRGSRC23 ⁽²⁾	TRGSRC22 ⁽²⁾	TRGSRC21 ⁽²⁾	TRGSRC20 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN3: Interrupt Request Enable 3 bit ⁽¹⁾ 1 = Enables IRQ generation when requested conversion of Channels AN7 and AN6 is completed 0 = IRQ is not generated
bit 14	PEND3: Pending Conversion Status 3 bit ⁽¹⁾
	 1 = Conversion of Channels AN7 and AN6 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG3: Software Trigger 3 bit ⁽¹⁾
	 1 = Starts conversion of AN7 and AN6 (if selected by the TRGSRCx bits)⁽³⁾ This bit is automatically cleared by hardware when the PEND3 bit is set. 0 = Conversion has not started
Note 1:	These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.

- 2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
- **3:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

21.8 Code Protection and CodeGuard[™] Security

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices offer the intermediate implementation of CodeGuard[™] Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property (IP) in collaborative system designs.

When coupled with software encryption libraries, Code-Guard[™] Security can be used to securely update Flash even when multiple IPs reside on a single chip.

TABLE 21-3:CODE FLASH SECURITY
SEGMENT SIZES FOR
6-Kbyte DEVICES

Configuration Bits		
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x11 0K	GS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h 000FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x10	BS = 256 IW	000200h 0003FEh
256	GS = 1536 IW	0007FEh 000800h 000FFEh 0001000h
		002BFEh
	-	000000
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x01	VS = 256 IW BS = 768 IW	000000h 0001FEh 000200h 0003FEh 000400h 0007FEh
BSS<2:0> = x01 768	VS = 256 IW BS = 768 IW GS = 1024 IW	000000h 0001FEh 000200h 0003FEh 000400h 0007FEh 0007FEh 000FFEh 000FFEh
BSS<2:0> = x01 768	VS = 256 IW BS = 768 IW GS = 1024 IW	0000000h 0001FEh 000200h 0003FEh 000400h 0007FEh 000800h 0007FEh 0001000h 0002BFEh
BSS<2:0> = x01 768	VS = 256 IW BS = 768 IW GS = 1024 IW VS = 256 IW	000000h 0001FEh 000200h 0003FEh 000400h 0007FEh 000800h 0002BFEh 001000h 002BFEh
BSS<2:0> = x01 768 BSS<2:0> = x00 1792	VS = 256 IW BS = 768 IW GS = 1024 IW VS = 256 IW BS = 1792 IW	000000h 0001FEh 000200h 0003FEh 000400h 0007FEh 000800h 0002BFEh 001000h 0001EEh 00001FEh 0001FEh 0003FEh 0003FEh 0003FEh 0003FEh 0003FEh 0003FEh 000800h 0007FEh 000800h

The code protection features are controlled by the Configuration registers: FBS and FGS.

Secure segment and RAM protection is not implemented in dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices.

Note:	Refer	to "(CodeGua	rd™ S	ecurity"
	(DS701	99) fo	r further	informa	ation on
	CodeGu	uard Se	curity usa	ige, conf	iguration
	and ope	eration.			

TABLE 21-4: CODE FLASH SECURITY SEGMENT SIZES FOR 16-Kbyte DEVICES

Configuration Bits			
	VS = 256 IW	000000h 0001FEh	
BSS<2:0> = x11 0K	GS = 5376 IW	000200h 0003FEh 000400h 0007FEh 000800h 000FFEh 000FFEh 001000h	
		002BFEN	
	VS = 256 IW	000000h 0001FEh	
$BSS_2:0 > - v_10$	BS = 256 IW	000200h 0003FEh	
256	GS - 5120 IW	000400N 0007FEh 000800h 000FFEh 001000h	
	00 = 5120 100	002BFEh	
	VS = 256 IW	000000h 0001FEh	
BSS<2:0> = x01	BS = 768 IW	000200h 0003FEh 000400h 0007FEh	
768		000800h 000FFEh 001000h	
	GS = 4608 IW	002BFEh	
	VS = 256 IW	000000h 0001FEh	
BSS<2:0> = x00	BS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h	
1192	GS = 3584 IW	001000h 002BFEh	

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal \in {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm Wn	Dividend Divisor Working register pair (Direct Addressing)

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	BTST f,#bit4 Bit Test f		1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = \overline{f}	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5		1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - C)$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE Wb, Wn		Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = $f - 1$	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Multiply Wm by Wn to Accum Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Square Wm to Accumulator MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd		Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
				Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Асс	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#litl0,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN	c	Return from Subroutine	1	3 (2)	None
63	RLC	RLC	I C UDDC	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	L, WREG	Wd - Pototo Loft through Corry Wa	1	1	
64	DING	RLC	ws,wa	f = Rotate Left (No Corru) f	1	1	C,N,Z
0+		RINC	f WRFC	WREG - Rotate Left (No Carry) f	1	1	N 7
		RLNC	WS Wd	Wd = Rotate eft (No Carry) Ws	1	1	N 7
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	CN7
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C.N.Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS, when $VDD \ge 3.0V^{(3)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when $VDD < 3.0V^{(3)}$	0.3V to (VDD + 0.3V)
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	
Maximum current sourced/sunk by any 4x I/O pin	15 mA
Maximum current sourced/sunk by any 8x I/O pin	
Maximum current sourced/sunk by any 16x I/O pin	45 mA
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
- 3: See the "Pin Diagrams" section for 5V tolerant pins.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param	Symbol	Characteristic	Min	Typ	Max	-40°C:	≤ TA ≤ +125°C for Extended	
T aranı.	Cymbol	Output Low Voltage		Typ.	max.	Units		
		I/O Pins: 4x Sink Driver Pins – RA0-RA2, RB0-RB2, RB5-RB10, RB15, RC1, RC2, RC9, RC10	—	_	0.4	V	IOL ≤ 6 mA, VDD = 3.3V See Note 1	
DO10	Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins – RC0, RC3-RC8, RC11-RC13	_	_	0.4	V	Io∟ ≤ 10 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 16x Sink Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	_	_	0.4	V	Io∟ ≤ 18 mA, VDD = 3.3V See Note 1	
DO20 Voн		Output High Voltage I/O Pins: 4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	2.4	_		V	Іон ≥ -6 mA, VDD = 3.3V See Note 1	
	Vон	Output High Voltage I/O Pins: 8x Source Driver Pins – RC0, RC3-RC8, RC11-RC13	2.4	_	_	V	Іон ≥ -10 mA, Voo = 3.3V See Note 1	
		Output High Voltage I/O Pins: 16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.4	_	_	V	ІОн ≥ -18 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins:	1.5	_	_	V	$\begin{array}{l} \mbox{IOH} \geq -12 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See } Note \ 1 \end{array}$	
		4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5 BB10 BB15 BC1 BC2	2.0	_	_		$IOH \ge -11 \text{ mA}, \text{ VDD} = 3.3\text{V}$ See Note 1	
		RC9, RC10	3.0	_	_		$OH \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ See Note 1	
		Output High Voltage 8x Source Driver Pins – RC0,	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1	
DO20A	VoH1	RC3-RC8, RC11-RC13	2.0	—	—	V	$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$ See Note 1	
			3.0	_	_		$IOH \ge -4 \text{ mA}, \text{ VDD} = 3.3\text{V}$ See Note 1	
		Output High Voltage I/O Pins:	1.5	_	—		$\begin{array}{l} \mbox{IOH} \geq -30 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See } Note \ 1 \end{array}$	
		16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.0			V	IOH ≥ -25 mA, VDD = 3.3V See Note 1	
			3.0	_	_		$IOH \ge -8 \text{ mA}, \text{ VDD} = 3.3\text{V}$ See Note 1	

TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO Syster Frequency	m	100	—	200	MHz	
OS52	TLOCK	PLL Start-up Time (L	.ock Time)	0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter	-) (2)	-3	0.5	3	%	Measured over 100 ms period

TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCKx) is 2 MHz.

SPI SCK Jitter =
$$\left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}} \right\rfloor = \left\lfloor \frac{3\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{3\%}{4} \right\rfloor = 0.75\%$$

TABLE 24-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteris	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS56	Fhpout	On-Chip 16x PLL CCO Frequency		112	118	120	MHz	
OS57	FHPIN	On-Chip 16x PLL Phase Detector Input Frequency		7.0	7.37	7.5	MHz	
OS58	Tsu	Frequency Generator Lock Time			—	10	μs	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

25.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

Note: Programming of the Flash memory is not allowed above +125°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 24.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 24.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

40°C to +150°C
65°C to +160°C
0.3V to +4.0V
0.3V to (VDD + 0.3V)
0.3V to (VDD + 0.3V)
-0.3V to 5.6V
60 mA
60 mA
+155°C
4 mA
8 mA
180 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - **3:** AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 4: Refer to the "Pin Diagrams" section for 5V tolerant pins.