

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

•XFI

| Product Status             | Active                                                                          |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 40 MIPs                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                           |
| Number of I/O              | 21                                                                              |
| Program Memory Size        | 6KB (6K x 8)                                                                    |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 1K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 6x10b; D/A 2x10b                                                            |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 28-VQFN Exposed Pad                                                             |
| Supplier Device Package    | 28-QFN-S (6x6)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202-e-mm |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



RECOMMENDED

#### 2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF.

#### 2.3 **Capacitor on Internal Voltage Regulator (VCAP)**

A low-ESR (<5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 µF and 10 µF, 16V connected to ground. The type can be ceramic or tantalum. Refer to Section 24.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 21.2 "On-Chip Voltage Regulator" for details.

#### 2.4 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions:

- Device Reset
- · Device programming and debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.



MCLR from the external capacitor, C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

FIGURE 2-1:





dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

#### REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

- bit 1 RND: Rounding Mode Select bit 1 = Biased (conventional) rounding is enabled
  - 0 = Unbiased (convergent) rounding is enabled
- bit 0 IF: Integer or Fractional Multiplier Mode Select bit
  - 1 = Integer mode is enabled for DSP multiply ops
    - 0 = Fractional mode is enabled for DSP multiply ops
- Note 1: This bit will always read as '0'.
  - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

| File<br>Name | SFR<br>Addr | Bit 15  | Bit 14   | Bit 13   | Bit 12   | Bit 11  | Bit 10   | Bit 9    | Bit 8    | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3   | Bit 2    | Bit 1    | Bit 0          | All<br>Resets |
|--------------|-------------|---------|----------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|---------|----------|----------|----------------|---------------|
| INTCON1      | 0080        | NSTDIS  | OVAERR   | OVBERR   | COVAERR  | COVBERR | OVATE    | OVBTE    | COVTE    | SFTACERR | DIV0ERR  | _        | MATHERR  | ADDRERR | STKERR   | OSCFAIL  | _              | 0000          |
| INTCON2      | 0082        | ALTIVT  | DISI     | —        | —        | _       | —        | —        | —        | _        | —        | _        | —        | —       | INT2EP   | INT1EP   | INT0EP         | 0000          |
| IFS0         | 0084        | —       | —        | ADIF     | U1TXIF   | U1RXIF  | SPI1IF   | SPI1EIF  | T3IF     | T2IF     | OC2IF    | IC2IF    | —        | T1IF    | OC1IF    | IC1IF    | INTOIF         | 0000          |
| IFS1         | 0086        | —       | —        | INT2IF   | _        | _       | —        | —        | —        | _        | —        | _        | INT1IF   | CNIF    | AC1IF    | MI2C1IF  | SI2C1IF        | 0000          |
| IFS3         | 008A        | —       | _        | _        | _        | _       | _        | PSEMIF   | _        | _        | _        | _        | _        | _       | _        | _        | _              | 0000          |
| IFS4         | 008C        | —       | _        | _        | _        | _       | _        | _        | _        | _        | _        | _        | _        | _       | _        | U1EIF    | _              | 0000          |
| IFS5         | 008E        | PWM2IF  | PWM1IF   | _        | _        | _       | _        | _        | _        | _        | _        | _        | _        | _       | _        | _        | _              | 0000          |
| IFS6         | 0090        | ADCP1IF | ADCP0IF  | _        | _        | _       | _        | AC4IF    | AC3IF    | AC2IF    | _        | _        | _        | _       | _        | PWM4IF   | PWM3IF         | 0000          |
| IFS7         | 0092        | —       | _        | _        | _        | _       | _        | _        | _        | _        | _        | _        | ADCP6IF  | _       | _        | ADCP3IF  | ADCP2IF        | 0000          |
| IEC0         | 0094        | —       | _        | ADIE     | U1TXIE   | U1RXIE  | SPI1IE   | SPI1EIE  | T3IE     | T2IE     | OC2IE    | IC2IE    | _        | T1IE    | OC1IE    | IC1IE    | INTOIE         | 0000          |
| IEC1         | 0096        | —       | _        | INT2IE   | _        | —       |          | —        | —        | _        | —        | —        | INT1IE   | CNIE    | AC1IE    | MI2C1IE  | SI2C1IE        | 0000          |
| IEC3         | 009A        | _       | _        |          | —        | —       |          | PSEMIE   | _        | _        | —        | —        | _        | _       | _        | _        | _              | 0000          |
| IEC4         | 009C        | _       | _        |          | —        | —       |          | _        | _        | _        | —        | —        | _        | _       | _        | U1EIE    | _              | 0000          |
| IEC5         | 009E        | PWM2IE  | PWM1IE   |          | —        | —       |          | _        | _        | _        | —        | —        | _        | _       | _        | _        | _              | 0000          |
| IEC6         | 00A0        | ADCP1IE | ADCP0IE  |          | —        | —       |          | AC4IE    | AC3IE    | AC2IE    | —        | —        | _        | _       | _        | PWM4IE   | PWM3IE         | 0000          |
| IEC7         | 00A2        | _       | _        |          | —        | —       |          | _        | _        | _        | —        | —        | ADCP6IE  | _       | _        | ADCP3IE  | ADCP2IE        | 0000          |
| IPC0         | 00A4        | _       | T1IP2    | T1IP1    | T1IP0    | —       | OC1IP2   | OC1IP1   | OC1IP0   | _        | IC1IP2   | IC1IP1   | IC1IP0   | _       | INT0IP2  | INT0IP1  | INT0IP2        | 4444          |
| IPC1         | 00A6        | _       | T2IP2    | T2IP1    | T2IP0    | —       | OC2IP2   | OC2IP1   | OC2IP0   | _        | IC2IP2   | IC2IP1   | IC2IP0   |         | _        | _        | _              | 4440          |
| IPC2         | 00A8        | _       | U1RXIP2  | U1RXIP1  | U1RXIP0  | —       | SPI1IP2  | SPI1IP1  | SPI1IP0  | _        | SPI1EIP2 | SPI1EIP1 | SPI1EIP0 | _       | T3IP2    | T3IP1    | T3IP0          | 4444          |
| IPC3         | 00AA        | _       | _        |          | —        | —       |          | _        | _        | -        | ADIP2    | ADIP1    | ADIP0    | _       | U1TXIP2  | U1TXIP1  | U1TXIP0        | 0044          |
| IPC4         | 00AC        | _       | CNIP2    | CNIP1    | CNIP0    | —       | AC1IP2   | AC1IP1   | AC1IP0   | _        | MI2C1IP2 | MI2C1IP1 | MI2C1IP0 | _       | SI2C1IP2 | SI2C1IP1 | SI2C1IP0       | 4444          |
| IPC5         | 00AE        | _       | _        |          | —        | —       |          | _        | _        | _        | —        | —        | _        | _       | INT1IP2  | INT1IP1  | INT1IP0        | 0004          |
| IPC7         | 00B2        | _       | _        |          | —        | —       |          | _        | _        | _        | INT2IP2  | INT2IP1  | INT2IP0  | _       | _        | _        | _              | 0040          |
| IPC14        | 00C0        | _       | _        |          |          | _       |          | _        | _        | —        | PSEMIP2  | PSEMIP1  | PSEMIP0  | _       | _        | —        | —              | 0040          |
| IPC16        | 00C4        | —       | —        | _        | —        | _       | —        | —        | —        | —        | U1EIP2   | U1EIP1   | U1EIP0   | —       | _        | —        | —              | 0040          |
| IPC23        | 00D2        | —       | PWM2IP2  | PWM2IP1  | PWM2IP0  | —       | PWM1IP2  | PWM1IP1  | PWM1IP0  | —        | _        | —        | —        | —       | _        | —        | —              | 4400          |
| IPC24        | 00D4        | —       | —        | _        | —        | _       | —        | —        | —        | —        | PWM4IP2  | PWM4IP1  | PWM4IP0  | —       | PWM3IP2  | PWM3IP1  | PWM3IP0        | 0044          |
| IPC25        | 00D6        | _       | AC2IP2   | AC2IP1   | AC2IP0   | —       |          | _        | _        | _        | —        | —        | _        | _       | _        | _        | _              | 4000          |
| IPC26        | 00D8        | —       | —        | _        | —        | _       | —        | —        | —        | —        | AC4IP2   | AC4IP1   | AC4IP0   | —       | AC3IP2   | AC3IP1   | AC3IP0         | 0044          |
| IPC27        | 00DA        | —       | ADCP1IP2 | ADCP1IP1 | ADCP1IP0 | —       | ADCP0IP2 | ADCP0IP1 | ADCP0IP0 |          | —        | _        | —        | —       | —        | _        | —              | 4400          |
| IPC28        | 00DC        | —       | —        | —        | _        | —       | —        | —        | —        | -        | ADCP3IP2 | ADCP3IP1 | ADCP3IP0 | —       | ADCP2IP2 | ADCP2IP1 | ADCP2IP0       | 0044          |
| IPC29        | 00DE        | —       | —        | —        | _        | —       | —        | —        | —        | -        | —        | _        | —        | —       | ADCP6IP2 | ADCP6IP1 | ADCP6IP0       | 0004          |
| INTTREG      | 00E0        | _       | _        |          | _        | ILR3    | ILR2     | ILR1     | ILR0     |          | VECNUM6  | VECNUM5  | VECNUM4  | VECNUM3 | VECNUM2  | VECNUM1  | <b>VECNUM0</b> | 0000          |

#### TABLE 4-9: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ16GS502 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

#### TABLE 4-14: INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ16GSX04

| File<br>Name | SFR<br>Addr                   | Bit 15 | Bit 14                   | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------------------------------|--------|--------------------------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| IC1BUF       | 0140 Input Capture 1 Register |        |                          |        |        |        |        |       |       |       |       | xxxx  |       |       |       |       |       |               |
| IC1CON       | 0142                          | —      | —                        | ICSIDL | —      | _      | —      | _     | —     | ICTMR | ICI1  | ICI0  | ICOV  | ICBNE | ICM2  | ICM1  | ICM0  | 0000          |
| IC2BUF       | 0144                          |        | Input Capture 2 Register |        |        |        |        |       |       |       |       |       | xxxx  |       |       |       |       |               |
| IC2CON       | 0146                          | _      | _                        | ICSIDL | —      |        | _      | —     |       | ICTMR | ICI1  | ICI0  | ICOV  | ICBNE | ICM2  | ICM1  | ICM0  | 0000          |
|              |                               |        |                          |        |        |        |        |       |       |       |       |       |       |       |       |       |       |               |

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-15: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14                                  | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------------|--------|-----------------------------------------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| OC1RS        | 0180        |        | Output Compare 1 Secondary Register     |        |        |        |        |       |       |       |       |       | xxxx  |       |       |       |       |               |
| OC1R         | 0182        |        | Output Compare 1 Register xxx           |        |        |        |        |       |       |       |       | xxxx  |       |       |       |       |       |               |
| OC1CON       | 0184        | —      | OCSIDL OCFLT OCTSEL OCM2 OCM1 OCM0 0000 |        |        |        |        |       |       |       |       |       |       |       |       |       |       |               |
|              |             |        |                                         |        |        |        |        |       |       |       |       |       |       |       |       |       |       |               |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-16: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ06GSX04

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14                                 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9     | Bit 8      | Bit 7      | Bit 6   | Bit 5 | Bit 4 | Bit 3  | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|--------------|-------------|--------|----------------------------------------|--------|--------|--------|--------|-----------|------------|------------|---------|-------|-------|--------|-------|-------|-------|---------------|
| OC1RS        | 0180        |        |                                        |        |        |        |        | Output Co | mpare 1 Se | condary Re | egister |       |       |        |       |       |       | xxxx          |
| OC1R         | 0182        |        | Output Compare 1 Register xxx          |        |        |        |        |           |            | xxxx       |         |       |       |        |       |       |       |               |
| OC1CON       | 0184        | _      | OCSIDL OCFLT OCTSEL OCM2 OCM1 OCM0 000 |        |        |        |        |           |            |            |         |       | 0000  |        |       |       |       |               |
| OC2RS        | 0186        |        |                                        |        |        |        |        | Output Co | mpare 2 Se | condary Re | egister |       |       |        |       |       |       | xxxx          |
| OC2R         | 0188        |        | Output Compare 2 Register xxxx         |        |        |        |        |           |            |            |         | xxxxx |       |        |       |       |       |               |
| OC2CON       | 018A        | _      | -                                      | OCSIDL | _      | _      | _      | _         | _          | _          |         | _     | OCFLT | OCTSEL | OCM2  | OCM1  | OCM0  | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-17: HIGH-SPEED PWM REGISTER MAP

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14                          | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9   | Bit 8   | Bit 7    | Bit 6 | Bit 5    | Bit 4    | Bit 3   | Bit 2   | Bit 1   | Bit 0   | All<br>Resets |
|--------------|-------------|--------|---------------------------------|--------|--------|--------|--------|---------|---------|----------|-------|----------|----------|---------|---------|---------|---------|---------------|
| PTCON        | 0400        | PTEN   | _                               | PTSIDL | SESTAT | SEIEN  | EIPU   | SYNCPOL | SYNCOEN | SYNCEN   | -     | SYNCSRC1 | SYNCSRC0 | SEVTPS3 | SEVTPS2 | SEVTPS1 | SEVTPS0 | 0000          |
| PTCON2       | 0402        | _      | PCLKDIV2 PCLKDIV1 PCLKDIV0 0000 |        |        |        |        |         |         |          |       |          |          |         |         |         |         |               |
| PTPER        | 0404        |        |                                 |        |        |        |        |         |         | PTPER<15 | :0>   |          |          |         |         |         |         | FFF8          |
| SEVTCMP      | 0406        |        | SEVTCMP<15:3> 0000              |        |        |        |        |         |         |          |       |          |          | 0000    |         |         |         |               |
| MDC          | 040A        |        | MDC<15:0> 000                   |        |        |        |        |         |         |          |       |          |          |         | 0000    |         |         |               |

© 2008-2014 Microchip Technology Inc.

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-33: PERIPHERAL PIN SELECT INPUT REGISTER MAP

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    | Bit 7 | Bit 6 | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
|--------------|-------------|--------|--------|----------|----------|----------|----------|----------|----------|-------|-------|----------|----------|----------|----------|----------|----------|---------------|
| RPINR0       | 0680        | —      | —      | INT1R5   | INT1R4   | INT1R3   | INT1R2   | INT1R1   | INT1R0   | _     | —     | —        | —        | _        | —        | —        | —        | 3F00          |
| RPINR1       | 0682        | _      | _      | _        | _        | _        | _        | _        | _        | _     | _     | INT2R5   | INT2R4   | INT2R3   | INT2R2   | INT2R1   | INT2R0   | 003F          |
| RPINR2       | 0684        | _      | _      | T1CKR5   | T1CKR4   | T1CKR3   | T1CKR2   | T1CKR1   | T1CKR0   | _     | _     | —        | —        | _        |          | _        | _        | 0000          |
| RPINR3       | 0686        | _      | _      | T3CKR5   | T3CKR4   | T3CKR3   | T3CKR2   | T3CKR1   | T3CKR0   | _     | _     | T2CKR5   | T2CKR4   | T2CKR3   | T2CKR2   | T2CKR1   | T2CKR0   | 3F3F          |
| RPINR7       | 068E        | _      | _      | IC2R5    | IC2R4    | IC2R3    | IC2R2    | IC2R1    | IC2R0    | _     | _     | IC1R5    | IC1R4    | IC1R3    | IC1R2    | IC1R1    | IC1R0    | 3F3F          |
| RPINR11      | 0696        |        | —      | _        | _        | -        |          | —        | _        |       | _     | OCFAR5   | OCFAR4   | OCFAR3   | OCFAR2   | OCFAR1   | OCFAR0   | 3F3F          |
| RPINR18      | 06A4        | _      | _      | U1CTSR5  | U1CTSR4  | U1CTSR3  | U1CTSR2  | U1CTSR1  | U1CTSR0  | _     | _     | U1RXR5   | U1RXR4   | U1RXR3   | U1RXR2   | U1RXR1   | U1RXR0   | 003F          |
| RPINR20      | 06A8        | _      | _      | SCK1R5   | SCK1R4   | SCK1R3   | SCK1R2   | SCK1R1   | SCK1R0   | _     | _     | SDI1R5   | SDI1R4   | SDI1R3   | SDI1R2   | SDI1R1   | SDI1R0   | 3F3F          |
| RPINR21      | 06AA        | _      | _      | _        | _        | _        | _        | _        | _        | _     | _     | SS1R5    | SS1R54   | SS1R3    | SS1R2    | SS1R1    | SS1R0    | 0000          |
| RPINR29      | 06BA        | _      | _      | FLT1R5   | FLT1R4   | FLT1R3   | FLT1R2   | FLT1R1   | FLT1R0   | _     | _     | _        | _        | _        | _        | _        | _        | 3F00          |
| RPINR30      | 06BC        | _      | _      | FLT3R5   | FLT3R4   | FLT3R3   | FLT3R2   | FLT3R1   | FLT3R0   | _     | _     | FLT2R5   | FLT2R4   | FLT2R3   | FLT2R2   | FLT2R1   | FLT2R0   | 3F3F          |
| RPINR31      | 06BE        | _      | _      | FLT5R5   | FLT5R4   | FLT5R3   | FLT5R2   | FLT5R1   | FLT5R0   | _     | _     | FLT4R5   | FLT4R4   | FLT4R3   | FLT4R2   | FLT4R1   | FLT4R0   | 3F3F          |
| RPINR32      | 06C0        | _      | _      | FLT7R5   | FLT7R4   | FLT7R3   | FLT7R2   | FLT7R1   | FLT7R0   | _     | _     | FLT6R5   | FLT6R4   | FLT6R3   | FLT6R2   | FLT6R1   | FLT6R0   | 3F3F          |
| RPINR33      | 06C2        | _      | _      | SYNCI1R5 | SYNCI1R4 | SYNCI1R3 | SYNCI1R2 | SYNCI1R1 | SYNCI1R0 | _     |       | FLT8R5   | FLT8R4   | FLT8R3   | FLT8R2   | FLT8R1   | FLT8R0   | 3F3F          |
| RPINR34      | 06C4        | _      | _      | _        | _        | _        |          | _        | _        | _     | _     | SYNCI2R5 | SYNCI2R4 | SYNCI2R3 | SYNCI2R2 | SYNCI2R1 | SYNCI2R0 | 3F3F          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-34: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS101

| File<br>Name | SFR<br>Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|--------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|--------|--------|---------------|
| RPOR0        | 06D0        | —      | _      | RP1R5  | RP1R4  | RP1R3  | RP1R2  | RP1R1  | RP1R0  |       | —     | RP0R5  | RP0R4  | RP0R3  | RP0R2  | RP0R1  | RP0R0  | 0000          |
| RPOR1        | 06D2        | —      | _      | RP3R5  | RP3R4  | RP3R3  | RP3R2  | RP3R1  | RP3R0  | _     | _     | RP2R5  | RP2R4  | RP2R3  | RP2R2  | RP2R1  | RP2R0  | 0000          |
| RPOR2        | 06D4        | —      | _      | RP5R5  | RP5R4  | RP5R3  | RP5R2  | RP5R1  | RP5R0  | _     | _     | RP4R5  | RP4R4  | RP4R3  | RP4R2  | RP4R1  | RP4R0  | 0000          |
| RPOR3        | 06D6        | —      | _      | RP7R5  | RP7R4  | RP7R3  | RP7R2  | RP7R1  | RP7R0  | _     | _     | RP6R5  | RP6R4  | RP6R3  | RP6R2  | RP6R1  | RP6R0  | 0000          |
| RPOR16       | 06F0        | —      | _      | RP33R5 | RP33R4 | RP33R3 | RP33R2 | RP33R1 | RP33R0 | _     | _     | RP32R5 | RP32R4 | RP32R3 | RP32R2 | RP32R1 | RP32R0 | 0000          |
| RPOR17       | 06F2        | _      | -      | RP35R5 | RP35R4 | RP35R3 | RP35R2 | RP35R1 | RP35R0 | _     | -     | RP34R5 | RP34R4 | RP34R3 | RP34R2 | RP34R1 | RP34R0 | 0000          |

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### 4.4 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

#### 4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

#### 4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

| Byte<br>Address |                                                                   | MOV<br>MOV<br>MOV   | #0x1100, W0<br>W0, XMODSRT<br>#0x1163, W0 | ;set modulo start address                                                                                                   |
|-----------------|-------------------------------------------------------------------|---------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 0x1100          |                                                                   | MOV<br>MOV          | W0, MODEND<br>#0x8001, W0                 | ;set modulo end address                                                                                                     |
|                 |                                                                   | MOV                 | W0, MODCON                                | ;enable W1, X AGU for modulo                                                                                                |
|                 |                                                                   | MOV                 | #0x0000, W0                               | ;W0 holds buffer fill value $% \left( $ |
|                 | ♥ (  )                                                            | MOV                 | #0x1110, W1                               | ;point W1 to buffer                                                                                                         |
| 0x1163          |                                                                   | DO<br>MOV<br>AGAIN: | AGAIN, #0x31<br>W0, [W1++]<br>INC W0, W0  | ;fill the 50 buffer locations<br>;fill the next location<br>;increment the fill value                                       |
| S<br>E<br>L     | Start Addr = 0x1100<br>End Addr = 0x1163<br>Length = 0x0032 words |                     |                                           |                                                                                                                             |

#### 4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and Program Space Visibility (PSV) is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

# Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.



### FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

### 5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for

power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the Digital Signal Controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data, either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

#### 5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

#### FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS



© 2008-2014 Microchip Technology Inc.

### 6.3 External Reset (EXTR)

The External Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 24.0** "**Electrical Characteristics**" for minimum pulse width specifications. The External Reset (MCLR) pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

#### 6.3.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This External Reset signal can be directly connected to the MCLR pin to reset the device when the rest of the system is reset.

#### 6.3.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the External Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The External Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

#### 6.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle and the Reset vector fetch will commence.

The Software Reset (SWR) flag (instruction) in the Reset Control (RCON<6>) register is set to indicate the Software Reset.

# 6.5 Watchdog Timer Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out (WDTO) flag in the Reset Control (RCON<4>) register is set to indicate the Watchdog Timer Reset. Refer to **Section 21.4 "Watchdog Timer (WDT)**" for more information on the Watchdog Timer Reset.

### 6.6 Trap Conflict Reset

If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of Priority Levels 13 through 15, inclusive. The address error (Level 13) and oscillator error (Level 14) traps fall into this category.

The Trap Reset (TRAPR) flag in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on Trap Conflict Resets.

### 6.7 Configuration Mismatch Reset

To maintain the integrity of the Peripheral Pin Select Control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset occurs.

The Configuration Mismatch (CM) flag in the Reset Control (RCON<9>) register is set to indicate the Configuration Mismatch Reset. Refer to **Section 10.0 "I/O Ports"** for more information on the Configuration Mismatch Reset.

| Note: | The    | Configuration      | Mismatch     | Reset   |
|-------|--------|--------------------|--------------|---------|
|       | featu  | re and associate   | d Reset flag | are not |
|       | availa | able on all device | es.          |         |

### 6.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset (IOPUWR) flag in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

#### 6.8.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

### dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

| REGISTER 9      | -3: PMD | 3: PERIPHER      | AL MODULE | DISABLE C         | ONTROL RE        | GISTER 3        |       |
|-----------------|---------|------------------|-----------|-------------------|------------------|-----------------|-------|
| U-0             | U-0     | U-0              | U-0       | U-0               | R/W-0            | U-0             | U-0   |
| —               | —       | —                | —         | —                 | CMPMD            | —               | _     |
| bit 15          |         |                  |           |                   |                  |                 | bit 8 |
|                 |         |                  |           |                   |                  |                 |       |
| U-0             | U-0     | U-0              | U-0       | U-0               | U-0              | U-0             | U-0   |
| —               | —       | —                | _         | —                 | _                | —               | _     |
| bit 7           |         |                  |           |                   |                  |                 | bit 0 |
|                 |         |                  |           |                   |                  |                 |       |
| Legend:         |         |                  |           |                   |                  |                 |       |
| R = Readable    | bit     | W = Writable I   | bit       | U = Unimplem      | nented bit, read | d as '0'        |       |
| -n = Value at F | POR     | '1' = Bit is set |           | '0' = Bit is clea | ared             | x = Bit is unkn | own   |
|                 |         |                  |           |                   |                  |                 |       |

| bit 15-11 | Unimplemented: Read as '0'                  |
|-----------|---------------------------------------------|
| bit 10    | CMPMD: Analog Comparator Module Disable bit |
|           | 1 = Analog comparator module is disabled    |
|           | 0 = Analog comparator module is enabled     |
| bit 9-0   | Unimplemented: Read as '0'                  |

#### REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | U-0 | U-0 | R/W-0  | U-0 | U-0 | U-0   |
|-------|-----|-----|-----|--------|-----|-----|-------|
| —     | —   | —   | —   | REFOMD | —   | —   | —     |
| bit 7 |     |     |     |        |     |     | bit 0 |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 15-4 | Unimplemented: Read as '0 | ,' |
|----------|---------------------------|----|
|----------|---------------------------|----|

bit 3 **REFOMD**: Reference Clock Generator Module Disable bit

1 = Reference clock generator module is disabled

- 0 = Reference clock generator module is enabled
- bit 2-0 Unimplemented: Read as '0'

The Timer2/3 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 12-1.

| Mode                | TCS | TGATE |
|---------------------|-----|-------|
| Timer               | 0   | 0     |
| Gated Timer         | 0   | 1     |
| Synchronous Counter | 1   | x     |

#### TABLE 12-1: TIMER MODE SETTINGS

### 12.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

### 12.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Timer2 and Timer 3 that can be combined to form a 32-bit timer are listed in Table 12-2.

#### TABLE 12-2: 32-BIT TIMER

| Type B Timer (Isw) | Type C Timer (msw) |  |  |
|--------------------|--------------------|--|--|
| Timer2             | Timer3             |  |  |

A block diagram representation of the 32-bit timer module is shown in Figure 12-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

To configure the features of Timer2/3 for 32-bit operation:

- 1. Set the T32 control bit.
- Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, which always contains the most significant word of the count, while TMR2 contains the least significant word.

### dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

| R/W-0              | U-0                                                                                                                                                                                                                                 | R/W-0                 | U-0                   | U-0                         | U-0               | U-0                | U-0          |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------------|-------------------|--------------------|--------------|--|
| TON <sup>(2)</sup> | _                                                                                                                                                                                                                                   | TSIDL <sup>(1)</sup>  | —                     | —                           |                   |                    | —            |  |
| bit 15             |                                                                                                                                                                                                                                     | •                     |                       |                             |                   | •                  | bit 8        |  |
|                    |                                                                                                                                                                                                                                     |                       |                       |                             |                   |                    |              |  |
| U-0                | R/W-0                                                                                                                                                                                                                               | R/W-0                 | R/W-0                 | U-0                         | U-0               | R/W-0              | U-0          |  |
|                    | TGATE <sup>(2)</sup>                                                                                                                                                                                                                | TCKPS1 <sup>(2)</sup> | TCKPS0 <sup>(2)</sup> |                             |                   | TCS <sup>(2)</sup> |              |  |
| bit 7              |                                                                                                                                                                                                                                     |                       |                       |                             |                   |                    | bit 0        |  |
|                    |                                                                                                                                                                                                                                     |                       |                       |                             |                   |                    |              |  |
| Legend:            |                                                                                                                                                                                                                                     |                       |                       |                             |                   |                    |              |  |
| R = Readable       | bit                                                                                                                                                                                                                                 | W = Writable          | bit                   | U = Unimple                 | mented bit, read  | l as '0'           |              |  |
| -n = Value at P    | POR                                                                                                                                                                                                                                 | '1' = Bit is set      |                       | '0' = Bit is cle            | eared             | x = Bit is unkr    | nown         |  |
| bit 15             | <b>TON:</b> Timery On bit <sup>(2)</sup><br>1 = Starts 16-bit Timery                                                                                                                                                                |                       |                       |                             |                   |                    |              |  |
| <b>h</b> :+ 4 4    | 0 = Stops 16-bit Timery                                                                                                                                                                                                             |                       |                       |                             |                   |                    |              |  |
| DIT 14             | Unimplemented: Read as '0'                                                                                                                                                                                                          |                       |                       |                             |                   |                    |              |  |
| DIL 13             | <ul> <li>1 SIDL: Timery Stop in Idle Mode bit''</li> <li>1 = Discontinues timer operation when device enters Idle mode</li> <li>0 = Continues timer operation in Idle mode</li> </ul>                                               |                       |                       |                             |                   |                    |              |  |
| bit 12-7           | Unimplemen                                                                                                                                                                                                                          | ted: Read as '        | כי                    |                             |                   |                    |              |  |
| bit 6              | <b>TGATE:</b> Timery Gated Time Accumulation Enable bit <sup>(2)</sup><br><u>When TCS = 1:</u><br>This bit is ignored.<br><u>When TCS = 0:</u><br>1 = Gated time accumulation is enabled<br>0 = Gated time accumulation is disabled |                       |                       |                             |                   |                    |              |  |
| bit 5-4            | TCKPS<1:0>                                                                                                                                                                                                                          | : Timery Input        | Clock Prescal         | e Select bits <sup>(2</sup> | )                 |                    |              |  |
|                    | 11 = 1:256 prescale value<br>10 = 1:64 prescale value<br>01 = 1:8 prescale value<br>00 = 1:1 prescale value                                                                                                                         |                       |                       |                             |                   |                    |              |  |
| bit 3-2            | Unimplemen                                                                                                                                                                                                                          | ted: Read as '        | כ'                    |                             |                   |                    |              |  |
| bit 1              | <b>TCS:</b> Timery Clock Source Select bit <sup>(2)</sup><br>1 = External clock from TxCK pin<br>0 = Internal clock (Fosc/2)                                                                                                        |                       |                       |                             |                   |                    |              |  |
| bit 0              | Unimplemen                                                                                                                                                                                                                          | ted: Read as '        | כי                    |                             |                   |                    |              |  |
| Note 1: Who        | en 32-bit timer                                                                                                                                                                                                                     | operation is en       | abled (T32 = :        | 1) in the Time              | rx Control regist | er (TxCON<3>)      | ), the TSIDL |  |

#### REGISTER 12-2: TyCON: TIMERY CONTROL REGISTER (y = 3)

**Note 1:** When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control (TxCON<3>) register, these bits have no effect.

| REGISTER 15-16: | TRIGx: PWMx PRIMARY | TRIGGER COMPARE | VALUE REGISTER |
|-----------------|---------------------|-----------------|----------------|
| REGISTER 15-16: | TRIGX: PWMx PRIMARY | TRIGGER COMPARE | VALUE REGISTER |

| R/W-0           | R/W-0        | R/W-0             | R/W-0          | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
|-----------------|--------------|-------------------|----------------|------------------|------------------|-----------------|-------|
|                 |              |                   | TRGCI          | MP<15:8>         |                  |                 |       |
| bit 15          |              |                   |                |                  |                  |                 | bit 8 |
| DAVA            | <b>D M A</b> | DAMA              |                | DAMO             |                  |                 |       |
| R/W-0           | R/W-0        | R/W-0             | R/W-0          | R/W-0            | 0-0              | 0-0             | 0-0   |
|                 |              | TRGCMP<7:3>       |                |                  | —                | —               | _     |
| bit 7           |              |                   |                |                  |                  |                 | bit 0 |
|                 |              |                   |                |                  |                  |                 |       |
| Legend:         |              |                   |                |                  |                  |                 |       |
| R = Readable    | bit          | W = Writable I    | bit            | U = Unimpler     | mented bit, read | d as '0'        |       |
| -n = Value at P | POR          | '1' = Bit is set  |                | '0' = Bit is cle | eared            | x = Bit is unki | nown  |
|                 |              |                   |                |                  |                  |                 |       |
| bit 15-3        | TRGCMP<      | 15:3>: Trigger Co | ontrol Value b | oits             |                  |                 |       |

When primary PWM functions in the local time base, this register contains the compare values that can trigger the ADC module.
 bit 2-0
 Unimplemented: Read as '0'

#### REGISTER 15-17: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER

| R/W-0  | R/W-0 | R/W-0 | R/W-0  | R/W-0     | R/W-0 | R/W-0 | R/W-0 |
|--------|-------|-------|--------|-----------|-------|-------|-------|
|        |       |       | STRGCM | /IP<15:8> |       |       |       |
| bit 15 |       |       |        |           |       |       | bit 8 |
|        |       |       |        |           |       |       |       |
| R/W-0  | R/W-0 | R/W-0 | R/W-0  | R/W-0     | U-0   | U-0   | U-0   |

| 10,00 0 | 10/00 0 | 10/00 0     | 10/00/0 | 10/00 0 | 00 | 00 | 00    |
|---------|---------|-------------|---------|---------|----|----|-------|
|         | S       | TRGCMP<7:3> | —       | —       | —  |    |       |
| bit 7   |         |             |         |         |    |    | bit 0 |
|         |         |             |         |         |    |    |       |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

bit 15-3 **STRGCMP<15:3>:** Secondary Trigger Control Value bits When secondary PWM functions in the local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

### REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

| bit 5 | ACKDT: Acknowledge Data bit (when operating as I <sup>2</sup> C master, applicable during master receive)                                                                                                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Value that is transmitted when the software initiates an Acknowledge sequence.<br>1 = Sends NACK during Acknowledge<br>0 = Sends ACK during Acknowledge                                                                          |
| bit 4 | <b>ACKEN:</b> Acknowledge Sequence Enable bit (when operating as I <sup>2</sup> C master, applicable during master receive)                                                                                                      |
|       | <ul> <li>1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit.<br/>Hardware is clear at end of master Acknowledge sequence.</li> <li>0 = Acknowledge sequence is not in progress</li> </ul> |
| bit 3 | <b>RCEN:</b> Receive Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                                      |
|       | 1 = Enables Receive mode for $I^2C$ . Hardware is clear at end of eighth bit of master receive data byte.<br>0 = Receive sequence is not in progress                                                                             |
| bit 2 | <b>PEN:</b> Stop Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                                |
|       | <ul><li>1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at end of master Stop sequence.</li><li>0 = Stop condition is not in progress</li></ul>                                                            |
| bit 1 | <b>RSEN:</b> Repeated Start Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                     |
|       | 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at end of master Repeated Start sequence.                                                                                                        |
|       | 0 = Repeated Start condition is not in progress                                                                                                                                                                                  |
| bit 0 | SEN: Start Condition Enable bit (when operating as I <sup>2</sup> C master)                                                                                                                                                      |
|       | 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at end of master Start sequence.                                                                                                                          |
|       | 0 = Start condition is not in progress                                                                                                                                                                                           |

| DC CHARACTERISTICS |        |                                                                                                                                                                                                                | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |      |      |        |                                                                                                                                 |  |
|--------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Param              | Symbol | Characteristic                                                                                                                                                                                                 | Min                                                                                                                                             | Typ  | Max  | -40°C: | ≤ TA ≤ +125°C for Extended                                                                                                      |  |
| T aranı.           | Cymbol | Output Low Voltage                                                                                                                                                                                             |                                                                                                                                                 | Typ. | max. | Units  |                                                                                                                                 |  |
| DO10               |        | I/O Pins:<br>4x Sink Driver Pins – RA0-RA2,<br>RB0-RB2, RB5-RB10, RB15,<br>RC1, RC2, RC9, RC10                                                                                                                 | —                                                                                                                                               | _    | 0.4  | V      | IOL ≤ 6 mA, VDD = 3.3V<br>See <b>Note 1</b>                                                                                     |  |
|                    | Vol    | <b>Output Low Voltage</b><br>I/O Pins:<br>8x Sink Driver Pins – RC0,<br>RC3-RC8, RC11-RC13                                                                                                                     | _                                                                                                                                               | _    | 0.4  | V      | Io∟ ≤ 10 mA, VDD = 3.3V<br>See <b>Note 1</b>                                                                                    |  |
|                    |        | <b>Output Low Voltage</b><br>I/O Pins:<br>16x Sink Driver Pins – RA3,<br>RA4, RB3, RB4, RB11-RB14                                                                                                              | _                                                                                                                                               | _    | 0.4  | V      | Io∟ ≤ 18 mA, VDD = 3.3V<br>See <b>Note 1</b>                                                                                    |  |
| DO20               | Vон    | Output High Voltage<br>I/O Pins:<br>4x Source Driver Pins –<br>RA0-RA2, RB0-RB2, RB5-<br>RB10, RB15, RC1, RC2, RC9,<br>RC10                                                                                    | 2.4                                                                                                                                             | _    |      | V      | Іон ≥ -6 mA, VDD = 3.3V<br>See <b>Note 1</b>                                                                                    |  |
|                    |        | <b>Output High Voltage</b><br>I/O Pins:<br>8x Source Driver Pins – RC0,<br>RC3-RC8, RC11-RC13                                                                                                                  | 2.4                                                                                                                                             | _    | _    | V      | Іон ≥ -10 mA, Voo = 3.3V<br>See <b>Note 1</b>                                                                                   |  |
|                    |        | <b>Output High Voltage</b><br>I/O Pins:<br>16x Source Driver Pins – RA3,<br>RA4, RB3, RB4, RB11-RB14                                                                                                           | 2.4                                                                                                                                             | _    | _    | V      | ІОн ≥ -18 mA, VDD = 3.3V<br>See <b>Note 1</b>                                                                                   |  |
|                    |        | Output High Voltage<br>I/O Pins:<br>4x Source Driver Pins –<br>RA0-RA2, RB0-RB2,<br>RB5-RB10, RB15, RC1, RC2,<br>RC9, RC10<br>Output High Voltage<br>8x Source Driver Pins – RC0,<br>RC3-RC8, RC11-RC13<br>DH1 | 1.5                                                                                                                                             | _    | _    | V      | $\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -12 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See } \textbf{Note 1} \end{array}$ |  |
|                    |        |                                                                                                                                                                                                                | 2.0                                                                                                                                             | _    | _    |        | $IOH \ge -11 \text{ mA}, \text{ VDD} = 3.3\text{V}$<br>See <b>Note 1</b>                                                        |  |
|                    |        |                                                                                                                                                                                                                | 3.0                                                                                                                                             | _    | _    |        | $OH \ge -3 \text{ mA}, \text{ VDD} = 3.3 \text{V}$<br>See <b>Note 1</b>                                                         |  |
|                    |        |                                                                                                                                                                                                                | 1.5                                                                                                                                             | _    | _    | V      | IOH ≥ -16 mA, VDD = 3.3V<br>See <b>Note 1</b>                                                                                   |  |
| DO20A              | Vон1   |                                                                                                                                                                                                                | 2.0                                                                                                                                             | —    | —    |        | $IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$<br>See <b>Note 1</b>                                                       |  |
|                    |        |                                                                                                                                                                                                                | 3.0                                                                                                                                             | _    | _    |        | $IOH \ge -4 \text{ mA}, \text{ VDD} = 3.3\text{V}$<br>See <b>Note 1</b>                                                         |  |
|                    |        | <b>Output High Voltage</b><br>I/O Pins:<br>16x Source Driver Pins – RA3,<br>RA4, RB3, RB4, RB11-RB14                                                                                                           | 1.5                                                                                                                                             | _    | —    | V      | $\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -30 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See } Note \ 1 \end{array}$        |  |
|                    |        |                                                                                                                                                                                                                | 2.0                                                                                                                                             |      |      |        | IOH ≥ -25 mA, VDD = 3.3V<br>See <b>Note 1</b>                                                                                   |  |
|                    |        |                                                                                                                                                                                                                | 3.0                                                                                                                                             | _    | _    |        | $IOH \ge -8 \text{ mA}, \text{ VDD} = 3.3\text{V}$<br>See <b>Note 1</b>                                                         |  |

#### TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

**Note 1:** Parameters are characterized, but not tested.

| TABLE 24-22: | <b>RESET, WATCHDOG TIMER,</b> | <b>OSCILLATOR START-UP</b> | TIMER, POWER-UP TIMER |
|--------------|-------------------------------|----------------------------|-----------------------|
|              | TIMING REQUIREMENTS           |                            |                       |

| AC CHARACTERISTICS |        |                                                             | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                                      |     |       |                                                                                                   |
|--------------------|--------|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------|-----|-------|---------------------------------------------------------------------------------------------------|
| Param<br>No.       | Symbol | Characteristic <sup>(1)</sup>                               | Min                                                  | Тур <sup>(2)</sup>                   | Max | Units | Conditions                                                                                        |
| SY10               | TMCL   | MCLR Pulse Width (low)                                      | 2                                                    | —                                    | _   | μS    | -40°C to +85°C                                                                                    |
| SY11               | Tpwrt  | Power-up Timer Period                                       |                                                      | 2<br>4<br>8<br>16<br>32<br>64<br>128 |     | ms    | -40°C to +85°C,<br>User programmable                                                              |
| SY12               | TPOR   | Power-on Reset Delay                                        | 3                                                    | 10                                   | 30  | μs    | -40°C to +85°C                                                                                    |
| SY13               | Tioz   | I/O High-Impedance from MCLR<br>Low or Watchdog Timer Reset | 0.68                                                 | 0.72                                 | 1.2 | μS    |                                                                                                   |
| SY20               | Twdt1  | Watchdog Timer Time-out Period                              | _                                                    | _                                    | _   | ms    | See <b>Section 21.4 "Watch-<br/>dog Timer (WDT)</b> " and<br>LPRC Parameter F21a<br>(Table 24-20) |
| SY30               | Tost   | Oscillator Start-up Time                                    | _                                                    | 1024 Tosc                            | _   |       | Tosc = OSC1 period                                                                                |

Note 1: These parameters are characterized but not tested in manufacturing.

**2:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.



# FIGURE 24-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

# TABLE 24-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING<br/>REQUIREMENTS

| AC CHARACTERISTICS |                       |                                               | Standard<br>(unless o<br>Operating | Operatin<br>therwise<br>tempera | <b>g Conditi</b><br>stated)<br>ture -40°<br>-40° | ons: 3.0\<br>°C ≤ Ta ≤<br>°C ≤ Ta ≤ | <b>/ to 3.6V</b><br>+85°C for Industrial<br>+125°C for Extended |
|--------------------|-----------------------|-----------------------------------------------|------------------------------------|---------------------------------|--------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                 | Min                                | Тур <sup>(2)</sup>              | Max                                              | Units                               | Conditions                                                      |
| SP10               | TscP                  | Maximum SCKx Frequency                        | —                                  | _                               | 9                                                | MHz                                 | See Note 3                                                      |
| SP20               | TscF                  | SCKx Output Fall Time                         | —                                  | —                               | —                                                | ns                                  | See Parameter DO32 and Note 4                                   |
| SP21               | TscR                  | SCKx Output Rise Time                         | —                                  | —                               | —                                                | ns                                  | See Parameter DO31 and Note 4                                   |
| SP30               | TdoF                  | SDOx Data Output Fall Time                    | —                                  | —                               | —                                                | ns                                  | See Parameter DO32 and Note 4                                   |
| SP31               | TdoR                  | SDOx Data Output Rise Time                    | —                                  | —                               | —                                                | ns                                  | See Parameter DO31 and Note 4                                   |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge     | —                                  | 6                               | 20                                               | ns                                  |                                                                 |
| SP36               | TdoV2sc,<br>TdoV2scL  | SDOx Data Output Setup to<br>First SCKx Edge  | 30                                 | —                               | —                                                | ns                                  |                                                                 |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data<br>Input to SCKx Edge | 30                                 | _                               | _                                                | ns                                  |                                                                 |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge     | 30                                 | —                               | —                                                | ns                                  |                                                                 |

**Note 1:** These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

# TABLE 24-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING<br/>REQUIREMENTS

| AC CHARACTERISTICS |                       |                                                              | Standard Op<br>(unless othe<br>Operating ter | erating<br>rwise sta<br>mperatur | Condition<br>ated)<br>e -40°<br>-40° | ons: 3.0<br>C ≤ Ta ≤<br>C < Ta < | <b>/ to 3.6V</b><br>+85°C for Industrial<br>+125°C for Extended |
|--------------------|-----------------------|--------------------------------------------------------------|----------------------------------------------|----------------------------------|--------------------------------------|----------------------------------|-----------------------------------------------------------------|
| Param<br>No.       | Symbol                | Characteristic <sup>(1)</sup>                                | Min                                          | Typ <sup>(2)</sup>               | Max                                  | Units                            | Conditions                                                      |
| SP70               | TscP                  | Maximum SCKx Input<br>Frequency                              | —                                            | Ι                                | 11                                   | MHz                              | See Note 3                                                      |
| SP72               | TscF                  | SCKx Input Fall Time                                         | —                                            | _                                | _                                    | ns                               | See Parameter DO32 and <b>Note 4</b>                            |
| SP73               | TscR                  | SCKx Input Rise Time                                         | —                                            | _                                | _                                    | ns                               | See Parameter DO31 and <b>Note 4</b>                            |
| SP30               | TdoF                  | SDOx Data Output Fall Time                                   | —                                            | _                                | —                                    | ns                               | See Parameter DO32 and <b>Note 4</b>                            |
| SP31               | TdoR                  | SDOx Data Output Rise Time                                   | —                                            |                                  | —                                    | ns                               | See Parameter DO31 and <b>Note 4</b>                            |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge                    | —                                            | 6                                | 20                                   | ns                               |                                                                 |
| SP36               | TdoV2scH,<br>TdoV2scL | SDOx Data Output Setup to<br>First SCKx Edge                 | 30                                           |                                  | —                                    | ns                               |                                                                 |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input to SCKx Edge                   | 30                                           |                                  | _                                    | ns                               |                                                                 |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge                    | 30                                           |                                  | _                                    | ns                               |                                                                 |
| SP50               | TssL2scH,<br>TssL2scL | $\overline{SSx} \downarrow$ to SCKx $\uparrow$ or SCKx Input | 120                                          | Ι                                | _                                    | ns                               |                                                                 |
| SP51               | TssH2doZ              | SSx ↑ to SDOx Output<br>High-Impedance <sup>(4)</sup>        | 10                                           | —                                | 50                                   | ns                               |                                                                 |
| SP52               | TscH2ssH<br>TscL2ssH  | SSx after SCKx Edge                                          | 1.5 TCY + 40                                 | —                                |                                      | ns                               | See Note 4                                                      |
| SP60               | TssL2doV              | SDOx Data Output Valid after<br>SSx Edge                     | —                                            | —                                | 50                                   | ns                               |                                                                 |

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

**3:** The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

|        |        |                                                                                                                             | Standard Operating Conditions: 3.0V to 3.6V<br>(unless otherwise stated) |         |         |                  |                                                                               |  |
|--------|--------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------|---------|------------------|-------------------------------------------------------------------------------|--|
|        |        |                                                                                                                             |                                                                          | g tempe | erature | -40°C ≤<br>Tempe | $40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature                   |  |
| Param. | Symbol | Characteristic                                                                                                              | Min.                                                                     | Тур.    | Max.    | Units            | Conditions                                                                    |  |
|        | Vol    | Output Low Voltage<br>I/O Pins:<br>4x Sink Driver Pins –<br>RA0-RA2, RB0-RB2, RB5-<br>RB10, RB15, RC1, RC2, RC9,<br>RC10    | _                                                                        | _       | 0.4     | V                | Io∟ ≤ 3.6 mA, VDD = 3.3V<br>See <b>Note 1</b>                                 |  |
| DO10   |        | Output Low Voltage<br>I/O Pins:<br>8x Sink Driver Pins – RC0,<br>RC3-RC8, RC11-RC13                                         | _                                                                        | _       | 0.4     | V                | IOL ≤ 6 mA, VDD = 3.3V<br>See <b>Note</b> 1                                   |  |
|        |        | Output Low Voltage<br>I/O Pins:<br>16x Sink Driver Pins – RA3,<br>RA4, RB3, RB4, RB11-RB14                                  | _                                                                        | _       | 0.4     | V                | $IOL \le 12 \text{ mA}, \text{ VDD} = 3.3\text{V}$<br>See <b>Note 1</b>       |  |
|        | Vон    | Output High Voltage<br>I/O Pins:<br>4x Source Driver Pins –<br>RA0-RA2, RB0-RB2, RB5-<br>RB10, RB15, RC1, RC2, RC9,<br>RC10 | 2.4                                                                      |         | _       | V                | IoL ≥ -4 mA, VDD = 3.3V<br>See <b>Note</b> 1                                  |  |
| DO20   |        | Output High Voltage<br>I/O Pins:<br>8x Source Driver Pins – RC0,<br>RC3-RC8, RC11-RC13                                      | 2.4                                                                      | _       | _       | V                | IoL ≥ -8 mA, VDD = 3.3V<br>See <b>Note</b> 1                                  |  |
|        |        | Output High Voltage<br>I/O Pins:<br>16x Source Driver Pins – RA3,<br>RA4, RB3, RB4, RB11-RB14                               | 2.4                                                                      | _       | _       | V                | IOL ≥ -16 mA, VDD = 3.3V<br>See <b>Note</b> 1                                 |  |
|        | VoH1   | Output High Voltage<br>I/O Pins:                                                                                            | 1.5                                                                      |         | _       |                  | Юн ≥ -3.9 mA, VDD = 3.3V<br>See <b>Note 1</b>                                 |  |
|        |        | 4x Source Driver Pins –<br>RA0-RA2, RB0-RB2, RB5-<br>RB10, RB15, RC1, RC2, RC9,<br>RC10                                     | 2.0                                                                      | _       | _       | V                | IOH ≥ -3.7 mA, VDD = 3.3V<br>See <b>Note 1</b>                                |  |
|        |        |                                                                                                                             | 3.0                                                                      |         | _       |                  | $IOH \ge -2 \text{ mA}, \text{ VDD} = 3.3 \text{V}$<br>See <b>Note 1</b>      |  |
|        |        | Output High Voltage<br>I/O Pins:                                                                                            | 1.5                                                                      | _       | _       |                  | IOH ≥ -7.5 mA, VDD = 3.3V<br>See <b>Note 1</b>                                |  |
| DO20A  |        | 8x Source Driver Pins – RC0,<br>RC3-RC8, RC11-RC13                                                                          | 2.0                                                                      | _       | _       | V                | Юн ≥ -6.8 mA, VDD = 3.3V<br>See <b>Note 1</b>                                 |  |
|        |        |                                                                                                                             | 3.0                                                                      | _       | _       |                  | $IOH \ge -3 \text{ mA}, \text{ VDD} = 3.3\text{V}$<br>See <b>Note 1</b>       |  |
|        |        | Output High Voltage<br>I/O Pins:<br>16x Source Driver Pins – RA3,<br>RA4, RB3, RB4, RB11-RB14                               | 1.5                                                                      | _       | _       |                  | IOH ≥ -15 mA, VDD = 3.3V<br>See <b>Note 1</b>                                 |  |
|        |        |                                                                                                                             | 2.0                                                                      |         |         | V                | $IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \overline{V}$<br>See <b>Note 1</b> |  |
|        |        |                                                                                                                             | 3.0                                                                      | _       | _       |                  | IOH ≥ -7 mA, VDD = 3.3V<br>See <b>Note 1</b>                                  |  |

### TABLE 25-5: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

**Note 1:** Parameters are characterized, but not tested.