

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

TABLE 1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CONTROLLER FAMILIES

		(si				Rer	napp	able I	Perip	herals						ADC			
Device	Pins	Program Flash Memory (Kbyte	RAM (Bytes)	Remappable Pins	16-Bit Timer	Input Capture	Output Compare	UART	SPI	PWM ⁽²⁾	Analog Comparator	External Interrupts ⁽³⁾	DAC Output	I ² C TM	SARs	Sample-and-Hold (S&H) Circuit	Analog-to-Digital Inputs	I/O Pins	Packages
dsPIC33FJ06GS101	18	6	256	8	2	0	1	1	1	2x2 ⁽¹⁾	0	3	0	1	1	3	6	13	SOIC
dsPIC33FJ06GS102	28	6	256	16	2	0	1	1	1	2x2	0	3	0	1	1	3	6	21	SPDIP, SOIC, QFN-S
dsPIC33FJ06GS202	28	6	1K	16	2	1	1	1	1	2x2	2	3	1	1	1	3	6	21	SPDIP, SOIC, QFN-S
dsPIC33FJ16GS402	28	16	2K	16	3	2	2	1	1	3x2	0	3	0	1	1	4	8	21	SPDIP, SOIC, QFN-S
dsPIC33FJ16GS404	44	16	2K	30	3	2	2	1	1	3x2	0	3	0	1	1	4	8	35	QFN, TQFP, VTLA
dsPIC33FJ16GS502	28	16	2K	16	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	8	21	SPDIP, SOIC, QFN-S, UQFN
dsPIC33FJ16GS504	44	16	2K	30	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	12	35	QFN, TQFP, VTLA

Note 1: The PWM4H:PWM4L pins are remappable.

2: The PWM Fault pins and PWM synchronization pins are remappable.

3: Only two out of three interrupts are remappable.

FIGURE 2-9: INTERLEAVED PFC

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate consider each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

											0102/10							
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_	_	_			_	_	_		_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	—	_	INT2IF	_	_	_	_	_	_	_	_	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS3	008A	—	_		—		_	PSEMIF	—	—	_	—	—	_	_			0000
IFS4	008C	—	_		_			_	—	—		—	_			U1EIF		0000
IFS5	008E	PWM2IF	PWM1IF		-			_	-	_		_	-					0000
IFS6	0090	ADCP1IF	ADCP0IF		-			_	-	_		_	-				PWM3IF	0000
IFS7	0092	—	—	-	—	-	-	—	—	—	-	_	—	_	-	ADCP3IF	ADCP2IF	0000
IEC0	0094	—	—	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	—	—	INT2IE	—	_	_	—	—	—	_	—	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC3	009A	—	—	_	—	_	_	PSEMIE	—	—	_	—	—	_	_	_	_	0000
IEC4	009C	—	—	_	—	_		—	—	—	_	—	—	_	_	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE	_	—	_		—	—	—	_	—	—	_	_	—	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	—	_		—	—	—	_	—	—	_	_	_	PWM3IE	0000
IEC7	00A2	—	—	_	—	_	_	—	—	—	-	—	—	_	_	ADCP3IE	ADCP2IE	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	—	IC2IP2	IC2IP1	IC2IP0	—	_	_	_	4440
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPI1EIP2	SPI1EIP1	SPI1EIP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA		—	_	_	_					ADIP2	ADIP1	ADIP0	—	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC		CNIP2	CNIP1	CNIP0	_				—	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4044
IPC5	00AE			_	_	_				—	_	_	_	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	—	—	—	—	—	—	—	—	—	INT2IP2	INT2IP1	INT2IP0	—	—	—	—	0040
IPC14	00C0	—	—	—	—	—	—	—	—	—	PSEMIP2	PSEMIP1	PSEMIP0	—	—	—	—	0040
IPC16	00C4	—	—	—	—	—	—	—	—	—	U1EIP2	U1EIP1	U1EIP0	—	—	—	—	0040
IPC23	00D2	—	PWM2IP2	PWM2IP1	PWM2IP0	—	PWM1IP2	PWM1IP1	PWM1IP0			—		—	—	—	—	4400
IPC24	00D4	—	—	_	—	_		—	—	—	-	—	—	—	PWM3IP2	PWM3IP1	PWM3IP0	0004
IPC27	00DA	—	ADCP1IP2	ADCP1IP1	ADCP1IP0	—	ADCP0IP2	ADCP0IP1	ADCP0IP0			—		—	—	—	—	4400
IPC28	00DC	—	—	_	—	—	-	—	—	—	ADCP3IP2	ADCP3IP1	ADCP3IP0	—	ADCP2IP2	ADCP2IP1	ADCP2IP0	0044
INTTREG	00E0	—	—	—	—	ILR3	ILR2	ILR1	ILR0	—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-8. INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33E.116GS402/404 DEVICES ONLY

Legend: x = unknown value on Reset, ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ16GSX04

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140							Inpu	t Capture	1 Register								xxxx
IC1CON	0142	—	—	ICSIDL	—	_	—	_	—	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2BUF	0144							Inpu	t Capture 2	2 Register								xxxx
IC2CON	0146	_	_	ICSIDL	—		_	—		ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Con	npare 1 Sec	ondary Re	gister							xxxx
OC1R	0182							Outpu	ut Compare	1 Register								xxxx
OC1CON	0184	—	_	OCSIDL	_	_	—	—	_	—	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ06GSX04

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Co	mpare 1 Se	condary Re	egister							xxxx
OC1R	0182							Outp	out Compare	1 Registe	r							xxxx
OC1CON	0184	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC2RS	0186							Output Co	mpare 2 Se	condary Re	egister							xxxx
OC2R	0188							Outp	out Compare	2 Registe	r							xxxxx
OC2CON	018A	_	-	OCSIDL	_	_	_	_	_	_		_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: HIGH-SPEED PWM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0400	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	-	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0402	_	_	_	_	_	_	_	_	_	_	_	_	_	PCLKDIV2	PCLKDIV1	PCLKDIV0	0000
PTPER	0404									PTPER<15	:0>							FFF8
SEVTCMP	0406							SEVTC	CMP<15:3>						_	_	_	0000
MDC	040A									MDC<15:0)>							0000

© 2008-2014 Microchip Technology Inc.

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: SYSTEM CONTROL REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR				_	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742	-	COSC2	COSC1	COSC0		NOSC2	NOSC1	NOSC0	CLKLOCK	IOLOCK	LOCK		CF		—	OSWEN	0300 (2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	FRCDIV2	FRCDIV1	FRCDIV0	PLLPOST1	PLLPOST0	_	PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0	3040
PLLFBD	0746		_		_	_	_	_				PLLI	OIV<8:0>					0030
REFOCON	074E	ROON	-	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	—	—	—				—	—	0000
OSCTUN	0748	_	—	_	_	—	_	_	_	_	—			TUN<	:5:0>			0000
ACLKCON	0750	ENAPLL	APLLCK	SELACLK	_	_	APSTSCLR2	APSTSCLR1	APSTSCLR0	ASRCSEL	FRCSEL	_		_	-	_	_	2300

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The RCON register Reset values are dependent on the type of Reset.

2: The OSCCON register Reset values are dependent on the FOSCx Configuration bits and on type of Reset.

TABLE 4-42: NVM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_	—	—	—	—	—	ERASE	—	—	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000(1)
NVMKEY	0766	_	_		_		_	_					NVMK	EY<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-43: PMD REGISTER MAP FOR dsPIC33FJ06GS101 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	—		T2MD	T1MD	—	PWMMD	-	I2C1MD	_	U1MD		SPI1MD	—	_	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	-	_	—	_	_	—	OC2MD	OC1MD	0000
PMD3	0774	—	—	—	_	—	CMPMD	—	_	—	_	—	—	—	—	—	—	0000
PMD4	0776	—	—	_	_	—	—	—	_	—		—	-	REFOMD	—	—	—	0000
PMD6	077A	_	_	-	_	PWM4MD	_	_	PWM1MD	—		—		—	_	_	_	0000

Legend: x = unknown value on Reset, --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: PMD REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	—	—	—	T2MD	T1MD	—	PWMMD	—	I2C1MD	—	U1MD	_	SPI1MD	—	—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	—	_	_	_	_	_	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	-	_	CMPMD	_	_	—	_	_	_	_	_	_	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	—	_	_	_	REFOMD	_	_	_	0000
PMD6	077A	_	—	—	—	_	—	PWM2MD	PWM1MD	—	_	_	_	—	_	—	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000318G-page 71

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

The address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo	Address	sing a	ind B	it-Reversed
	Addressi	ng sho	ould n	not b	e enabled
	together.	If an a	oplicatio	on atte	empts to do
	so, Bit-R	leversed	Addres	ssing	will assume
	priority w	hen activ	ve for th	ne X W	AGU and X
	WAGU;	Modulo	Addres	ssing	will be dis-
	abled. H	lowever,	Modul	o Add	ressing wil
	continue	to function	on in th	e X R/	AGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for

power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the Digital Signal Controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data, either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

© 2008-2014 Microchip Technology Inc.

TABLE /-I.		UPT VECTORS	7	1			
Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source			
	Highest Natural Order Priority						
8	0	0x000014	0x000114	INT0 – External Interrupt 0			
9	1	0x000016	0x000116	IC1 – Input Capture 1			
10	2	0x000018	0x000118	OC1 – Output Compare 1			
11	3	0x00001A	0x00011A	T1 – Timer1			
12	4	0x00001C	0x00011C	Reserved			
13	5	0x00001E	0x00011E	IC2 – Input Capture 2			
14	6	0x000020	0x000120	OC2 – Output Compare 2			
15	7	0x000022	0x000122	T2 – Timer2			
16	8	0x000024	0x000124	T3 – Timer3			
17	9	0x000026	0x000126	SPI1E – SPI1 Fault			
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done			
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver			
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter			
21	13	0x00002E	0x00012E	ADC – ADC Group Convert Done			
22-23	14-15	0x000030-0x000032	0x000130-0x000132	Reserved			
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Event			
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Event			
26	18	0x000038	0x000138	CMP1 – Analog Comparator 1 Interrupt			
27	19	0x00003A	0x00013A	CN – Input Change Notification Interrupt			
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1			
29-36	21-28	0x00003E-0x00004C	0x00013E-0x00014C	Reserved			
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2			
38-64	30-56	0x000050-0x000084	0x000150-0x000184	Reserved			
65	57	0x000086	0x000186	PWM PSEM Special Event Match			
66-72	58-64	0x000088-0x000094	0x000188-0x000194	Reserved			
73	65	0x000096	0x000196	U1E – UART1 Error Interrupt			
74-101	66-93	0x000098-0x0000CE	0x000198-0x0001CE	Reserved			
102	94	0x0000D0	0x0001D0	PWM1 – PWM1 Interrupt			
103	95	0x0000D2	0x0001D2	PWM2 – PWM2 Interrupt			
104	96	0x0000D4	0x0001D4	PWM3 – PWM3 Interrupt			
105	97	0x0000D6	0x0001D6	PWM4 – PWM4 Interrupt			
106-110	98-102	0x0000D8-0x0000E0	0x0001D8-0x0001E0	Reserved			
111	103	0x0000E2	0x00001E2	CMP2 – Analog Comparator 2			
112	104	0x0000E4	0x0001E4	CMP3 – Analog Comparator 3			
113	105	0x0000E6	0x0001E6	CMP4 – Analog Comparator 4			
114-117	106-109	0x0000E8-0x0000EE	0x0001E8-0x0001EE	Reserved			
118	110	0x0000F0	0x0001F0	ADC Pair 0 Convert Done			
119	111	0x0000F2	0x0001F2	ADC Pair 1 Convert Done			
120	112	0x0000F4	0x0001F4	ADC Pair 2 Convert Done			
121	113	0x0000F6	0x0001F6	ADC Pair 3 Convert Done			
122	114	0x0000F8	0x0001F8	ADC Pair 4 Convert Done			
123	115	0x0000FA	0x0001FA	ADC Pair 5 Convert Done			
124	116	0x0000FC	0x0001FC	ADC Pair 6 Convert Done			
125	117	0x0000FE	0x0001FE	Reserved			
		Lowes	t Natural Order Priority				

TABLE 7-1:INTERRUPT VECTORS

0-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0				
bit 15							bit				
	DAV 4	DAMO	DAVO			DAMA	DAM 0				
0-0	R/W-1	R/W-0		0-0							
 bit 7	IGTIFZ	ICTIFT	ICTIFU	—	INTOF	INTUFT	bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplemer	ted: Read as '	0'								
bit 14-12	T1IP<2:0>:]	Timer1 Interrupt	• Priority bits								
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•	•									
	•										
	001 = Interru	001 = Interrupt is Priority 1									
	000 = Interrupt source is disabled										
bit 11	Unimplemer	nted: Read as '	0'								
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits										
	 111 = Interrupt is Priority 7 (highest priority interrupt) 										
	•										
	•										
	001 = Interru	pt is Priority 1	ablad								
hit 7	000 = Interru	ipt source is dis	abled								
		lieu: Reau as	U Channal 1 Into	reunt Driarity h	ita						
DIL 0-4	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits										
	•										
	• 001 – Intorru	•									
	001 = Interru	001 = Interrupt is Priority 1 000 = Interrupt source is disabled									
	000 = Interrupt source is disabled										
bit 3	Unimplemer	nted: Read as '	0'								
bit 3 bit 2-0	Unimplemer	• •ted: Read as ' : External Inter	0' rupt 0 Priority	bits							
bit 3 bit 2-0	Unimplemer INT0IP<2:0>	nted: Read as ' : External Inter pt is Priority 7 (^{0'} rupt 0 Priority highest priorit	bits y interrupt)							
bit 3 bit 2-0	Unimplemer INT0IP<2:0> 111 = Interru	n ted: Read as ' : External Inter opt is Priority 7 (^{0'} rupt 0 Priority highest priorit	bits y interrupt)							
bit 3 bit 2-0	Unimplemer INT0IP<2:0> 111 = Interru	nted: Read as ' : External Inter opt is Priority 7 (^{0'} rupt 0 Priority highest priorit	bits y interrupt)							
bit 3 bit 2-0	Unimplemer INT0IP<2:0> 111 = Interru • • 001 = Interru	nted: Read as ' : External Inter opt is Priority 7 (pt is Priority 1	^{0'} rupt 0 Priority highest priorit	bits y interrupt)							

IDCA. INTERRURT PRIORITY CONTROL REGISTER A

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	IC2MD	IC1MD
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_			—	—	OC2MD	OC1MD
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			0' = Bit is cleared $x = Bit is unknown$			nown	
bit 15-10	Unimplemen	ted: Read as '	כי				
bit 9	IC2MD: Input	Capture 2 Mod	dule Disable bi	t			
	1 = Input Cap	ture 2 module	is disabled				
		ture 2 module	is enabled				
DIT 8	IC1MD: Input	Capture 1 Mod	ule Disable bi	t			
	$\perp = $ Input Cap 0 = Input Cap	ture 1 module	is disabled				
bit 7-2	Unimplemen	ted: Read as ')'				
bit 1	OC2MD: Outr	out Compare 2	Module Disabl	le bit			
	1 = Output Compare 2 module is disabled						
	0 = Output Co	ompare 2 modu	le is enabled				
bit 0	OC1MD: Outp	out Compare 1	Module Disabl	le bit			
	1 = Output Co	ompare 1 modu	le is disabled				
	0 = Output Co	ompare 1 modu	ile is enabled				

REGISTER 9-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		_	—			—	
bit 15							bit 8	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	SYNCI2R5	SYNCI2R4	SYNCI2R3	SYNCI2R2	SYNCI2R1	SYNCI2R0	
bit 7						bit 0		
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-6	Unimplemen	ted: Read as '	0'					
bit 5-0	SYNCI2R<5: Correspondin	0>: Assign PW Ig RPn Pin bits	M Master Tim	e Base Extern	al Synchronizati	ion Signal to th	e	
	111111 = Inp	out tied to Vss						
	100011 = Inp	out tied to RP3	5					
	100010 = Inp	out tied to RP34	1					
	100001 = Inp	out fied to RP3	3					
	100000 = Inb		2					
	•							
	•							
	-	it find to DDO						
	00000 = inpu	IL LIEU LO RPU						

REGISTER 10-14: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34

REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	างพท
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	bit 13-8 RP1R<5:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-2 for peripheral function numbers)						
bit 7-6	bit 7-6 Unimplemented: Read as '0'						

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	_	TSIDL ⁽¹⁾	—	—			—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾ TCKPS1 ⁽²⁾ TCKPS0 ⁽²⁾ - TCS ⁽²⁾ -						
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimple	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	TON: Timery On bit ⁽²⁾ 1 = Starts 16-bit Timery						
h :+ 4 4	0 = Stops 16	bit Timery	<u>.</u>				
DIT 14	Unimplemented: Read as '0'						
DIL 13	 1 SIDL: Timery Stop in Idle Mode bit⁽¹⁾ 1 = Discontinues timer operation when device enters Idle mode 0 = Continues timer operation in Idle mode 						
bit 12-7	Unimplemen	ted: Read as '	כי				
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽²⁾ <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled						
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescal	e Select bits ⁽²)		
	11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value						
bit 3-2	Unimplemen	ted: Read as '	כ'				
bit 1	TCS: Timery 1 = External c 0 = Internal cl	Clock Source S clock from TxCl lock (Fosc/2)	Select bit ⁽²⁾ < pin				
bit 0	Unimplemen	ted: Read as '	כי				
Note 1: Who	en 32-bit timer	operation is en	abled (T32 = :	1) in the Time	rx Control regist	er (TxCON<3>)), the TSIDL

REGISTER 12-2: TyCON: TIMERY CONTROL REGISTER (y = 3)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control (TxCON<3>) register, these bits have no effect.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15	bit 8						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³) CKP	CKP MSTEN SPRE2 ⁽²⁾ SPRE1 ⁽²⁾ SPRE0 ⁽²⁾ PPRE1 ⁽²⁾ PPRE0 ⁽					PPRE0 ⁽²⁾
bit 7 bit (bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplement				mented bit, read	as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk					x = Bit is unkr	iown	
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Disa	able SCKx Pin	bit (SPI Maste	er modes only)			
	1 = Internal S	PI clock is disa	abled; pin func	tions as I/O			
L:L 44	0 = Internal S	PI CIOCK IS END	DIEC				
DICTI		DISSUU: Disable SDUX Pin bit					
	 1 = SDOX pin is not used by module; pin functions as I/O 0 = SDOX pin is controlled by the module 						
bit 10	MODE16: Wo	MODE16: Word/Byte Communication Select bit					
	1 = Communi	1 = Communication is word-wide (16 bits)					
	0 = Communi	0 = Communication is byte-wide (8 bits)					
bit 9	SMP: SPIx Da	ata Input Samp	ole Phase bit				
	Master mode:	<u>.</u>					
	1 = Input data 0 = Input data	a sampled at ei a sampled at m	nd of data outp iddle of data o	out time			
	Slave mode:	i oumpiou ut m					
	SMP must be	cleared when	SPIx is used i	n Slave mode.			
bit 8	CKE: SPIx CI	ock Edge Sele	ect bit ⁽¹⁾				
	1 = Serial out	put data chang	ges on transitio	on from active	clock state to Id	le clock state (s	see bit 6)
	0 = Serial out	put data chang	jes on transitio	on from Idle clo	ock state to activ	/e clock state (s	see bit 6)
bit 7	SSEN: Slave	Select Enable	bit (Slave mo	de)(3)			
	$1 = \frac{SSX}{SSX}$ pin is $0 = \frac{SSX}{SSX}$ pin is	s used for Slav	e mode nodule: pin co	ntrolled by port	t function		
bit 6	CKP: Clock P	olarity Select I	nitaalo, piirool		Turiotion		
	1 = Idle state	for clock is a h	igh level: activ	ve state is a lov	w level		
	0 = Idle state	for clock is a lo	ow level; active	e state is a hig	h level		
bit 5	MSTEN: Mas	ter Mode Enab	ole bit				
	1 = Master m	ode					
	0 = Slave mo	de					
Nate 4		used in the E					l
NOTE 1:	(FRMEN = 1).	usea in the Fr	amed SPI MOO	ues. Program t	This dit to "U" tor	ine Framed SP	Imodes
2:	Do not set both pri	mary and seco	ondary prescal	ers to a value	of 1:1.		

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1

- **3:** This bit must be cleared when FRMEN = 1.

IABL	E 22-2:	INSIR	JCTION SET OVERVIE				
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit14,Expr</pre>	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	2	None
		GOTO	Wn	Go to Indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , aND	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
		MOV	Wn.f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB	Prefetch and Store Accumulator	1	1	None

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,A	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE			1	3 (2)	None
61	RETLW	RETLW	#litl0,Wn	Return with Literal in Wn	1	3 (2)	None
62	RETURN	RETURN	~	Return from Subroutine	1	3 (2)	None
63	RLC	RLC	I	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	L, WREG	Wd - Pototo Loft through Corry Wa	1	1	
64	DING	RLC	ws,wa	f = Rotate Left (No Corru) f	1	1	0,IN,Z
04	RUNC	RLINC	f WRFC	WREG - Rotate Left (No Carry) f	1	1	N 7
		RLNC	we we	Wd = Rotate eft (No Carry) Ws	1	1	N 7
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C N 7
			-				0.11,2
		RRC	f,WREG	WREG = Rotate Right through Carry f		1	C.N.Z

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 24-17: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

18-Lead SOIC (.300")

28-Lead SOIC

Example

Example

○ ☎ 0830235

dsPIC33FJ06GS

202-E/SO(e3)

28-Lead SPDIP

Example

28-Lead QFN-S

Example

Legend: XX...X Customer-specific information Year code (last digit of calendar year) Y YΥ Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) (e3) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package. Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.

Revision E (December 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 16-Kbyte Flash and up to 2-Kbyte SRAM) with High-Speed PWM, ADC and Comparators"	Changed CN6 to CN5 on pin 16 of dsPIC33FJ16GS502 28-pin SPDIP, SOIC pin diagram.
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Removed the 10 Ohm resistor from Figure 2-1.
Section 4.0 "Memory Organization"	Renamed bit 13 of the REFOCON SFR in the System Control Register Map from ROSIDL to ROSSLP and changed the All Resets value from '0000' to '2300' for the ACLKCON SFR (see 4-41).
Section 8.0 "Oscillator Configuration"	Updated the default reset values from R/W-0 to R/W-1 for the SELACLK and APSTSCLR<2:0> bits in the ACLKCON register (see Register 8-5). Renamed the ROSIDL bit to ROSSLP in the REFOCON register (see Register 8-6).
Section 9.0 "Power-Saving Features"	Updated the last paragraph of Section 9.2.2 " Idle Mode " to clarify when instruction execution begins. Added Note 1 to the PMD1 register (see Register 9-1).
Section 10.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 10.2 "Open-Drain Configuration" .
Section 15.0 "High-Speed PWM"	Updated the smallest pulse width value from 0x0008 to 0x0009 in Note 1 of the shaded note that follows the MDC register (see Register 15-5). Updated the smallest pulse width value from 0x0008 to 0x0009 and the maximum pulse width value from 0x0FFEF to 0x0008 in Note 2 of the shaded note that follows the PDCx and SDCx registers (see Register 15-7
	and Register 15-8). Added Note 2 and updated the FLTDAT<1:0> and CLDAT<1:0> bits, changing the word 'data' to 'state' in the IOCONx register (see Register 15-14).
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.