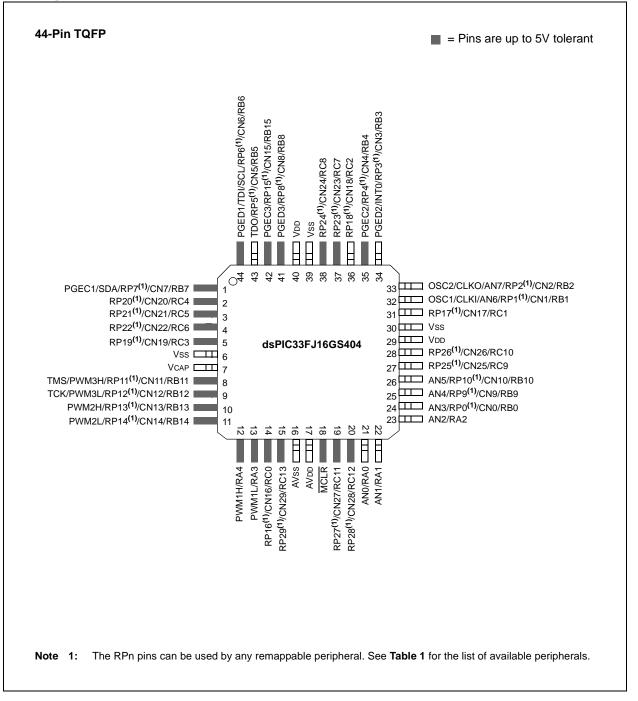


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT	0048		XS<15:1>								0	xxxx						
XMODEND	004A							XE<15:1>									1	xxxx
YMODSRT	004C							YS<15:1>									0	xxxx
YMODEND	004E							YE<15:1>									1	xxxx
XBREV	0050	BREN	XB14	XB13	XB12	XB11	XB10	XB9	XB8	XB7	XB6	XB5	XB4	XB3	XB2	XB1	XB0	xxxx
DISICNT	0052	_	_					Disable	Interrupts Co	ounter Re	gister							xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dspic33FJ06GS101

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060		_	_	_	_	_	—	_	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	_	_	_	_		_	_		CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3:CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402 AND
dsPIC33FJ16GS502

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504

	File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
(CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
(CNEN2	0062	_	-	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
(CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
(CNPU2	006A	_	_	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

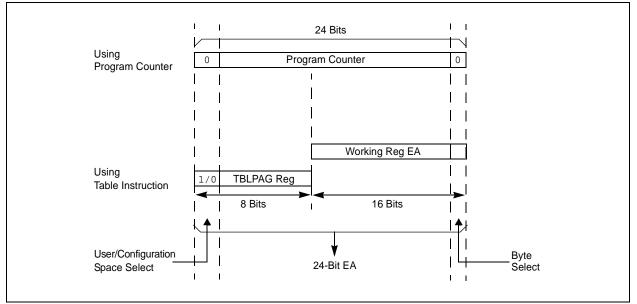
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for

power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the Digital Signal Controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data, either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

© 2008-2014 Microchip Technology Inc.

6.3 External Reset (EXTR)

The External Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 24.0** "**Electrical Characteristics**" for minimum pulse width specifications. The External Reset (MCLR) pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.3.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This External Reset signal can be directly connected to the MCLR pin to reset the device when the rest of the system is reset.

6.3.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the External Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The External Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle and the Reset vector fetch will commence.

The Software Reset (SWR) flag (instruction) in the Reset Control (RCON<6>) register is set to indicate the Software Reset.

6.5 Watchdog Timer Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out (WDTO) flag in the Reset Control (RCON<4>) register is set to indicate the Watchdog Timer Reset. Refer to **Section 21.4 "Watchdog Timer (WDT)"** for more information on the Watchdog Timer Reset.

6.6 Trap Conflict Reset

If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of Priority Levels 13 through 15, inclusive. The address error (Level 13) and oscillator error (Level 14) traps fall into this category.

The Trap Reset (TRAPR) flag in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on Trap Conflict Resets.

6.7 Configuration Mismatch Reset

To maintain the integrity of the Peripheral Pin Select Control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset occurs.

The Configuration Mismatch (CM) flag in the Reset Control (RCON<9>) register is set to indicate the Configuration Mismatch Reset. Refer to **Section 10.0 "I/O Ports"** for more information on the Configuration Mismatch Reset.

Note:	The	Configuration	Mismatch	Reset
	featu	re and associate	d Reset flag	are not
	availa	able on all device	es.	

6.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset (IOPUWR) flag in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

6.8.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—		_	—		
oit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—			_	—	INT2EP	INT1EP	INT0EP
bit 7							bit C
Legend:							
R = Readable bit		W = Writable I	oit	•	mented bit, rea		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15		able Alternate Int	•	r Table bit			
		ernate vector table ndard (default) ve	-				
bit 14		Instruction Status					
DIT 14		instruction Status					
		struction is active					
bit 13-3		ented: Read as '0					
bit 2	-	ternal Interrupt 2		t Polaritv Selec	t bit		
		t on negative edg	•	,,			
		t on positive edge					
bit 1	INT1EP: Ex	ternal Interrupt 1	Edge Detec	t Polarity Selec	t bit		
		t on negative edg					
	0 = Interrup	t on positive edge	Э				
bit 0		ternal Interrupt 0	•	t Polarity Selec	t bit		
	•	t on negative edg					
	0 – Interrun	t on positive edge	`				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

11.0	11.0						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	0-0	T1IE	OC1IE	IC1IE	INTOIE
bit 7	OOZIL	IOZIL		1112	OOTIL	IOTIL	bit
							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as	ʻ0'				
bit 13	ADIE: ADC1	Conversion C	omplete Interru	upt Enable bit			
		request enable					
	•	request not en					
bit 12			er Interrupt Ena	able bit			
		request enable request not en					
bit 11	-	-	Interrupt Enabl	e bit			
		request enable	=				
	0 = Interrupt	request not en	abled				
bit 10	SPI1IE: SPI1	Event Interrup	ot Enable bit				
		request enable					
bit 9	-	request not en I1 Event Interr					
DIL 9		request enable	•				
		request not en					
bit 8	T3IE: Timer3	Interrupt Enat	ole bit				
		request enable					
	-	request not en					
bit 7		Interrupt Enat					
	•	request enable request not en					
bit 6	-	-	hannel 2 Interr	upt Enable bit			
	-	request enable					
		request not en					
bit 5	IC2IE: Input (Capture Chanr	nel 2 Interrupt I	Enable bit			
		request enable					
L:4	-	request not en					
bit 4	-	ted: Read as					
bit 3		Interrupt Enat					
		request enable					
bit 2	-	-	hannel 1 Interr	upt Enable bit			
	-	request enable					

DECISTED 7-12 IECO INTERRIET ENABLE CONTROL DECISTER O

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	ADCP1IP2	ADCP1IP1	ADCP1IP0	—	ADCP0IP2	ADCP0IP1	ADCP0IP0
oit 15			•				bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—		_
oit 7	·	•					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
L 1 4 4 4 0							
DIT 14-12	ADCP1IP<2:0	D>: ADC Pair 1	Conversion E	Oone Interrupt	Priority bits		
Dit 14-12		D>: ADC Pair 1 ot is Priority 7 (•	Priority bits		
DIT 14-12				•	Priority bits		
dit 14-12				•	Priority bits		
DIT 14-12		ot is Priority 7 (•	Priority bits		
dit 14-12	111 = Interrup • • 001 = Interrup	ot is Priority 7 (highest priorit	•	Priority bits		
bit 14-12 bit 11	<pre>111 = Interrup</pre>	ot is Priority 7 (ot is Priority 1	highest priorit <u>i</u> abled	•	Priority bits		
	<pre>111 = Interrup</pre>	ot is Priority 7 (ot is Priority 1 ot source is dis	highest priorit <u>;</u> abled 0'	y interrupt)			
pit 11	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as '	highest priority abled 0') Conversion E	y interrupt) Done Interrupt			
pit 11	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ')>: ADC Pair 0	highest priority abled 0') Conversion E	y interrupt) Done Interrupt			
pit 11	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ')>: ADC Pair 0	highest priority abled 0') Conversion E	y interrupt) Done Interrupt			
pit 11	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ' D>: ADC Pair 0 ot is Priority 7 (highest priority abled 0') Conversion E	y interrupt) Done Interrupt			
pit 11	<pre>111 = Interrup 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0 111 = Interrup 001 = Interrup</pre>	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ' D>: ADC Pair 0 ot is Priority 7 (highest priorit abled o' Conversion E highest priorit	y interrupt) Done Interrupt			

REGISTER 7-32: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27

8.4 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,2)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽³⁾	NOSC1 ⁽³⁾	NOSC0 ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	—	CF	_	—	OSWEN
bit 7							bit 0

Legend:	y = Value set from Co	y = Value set from Configuration bits on POR							
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits (read-only)
	<pre>111 = Fast RC oscillator (FRC) with divide-by-n 110 = Fast RC oscillator (FRC) with divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Reserved 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC oscillator (FRC) with PLL 000 = Fast RC oscillator (FRC)</pre>
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽³⁾
	<pre>111 = Fast RC oscillator (FRC) with divide-by-n 110 = Fast RC oscillator (FRC) with divide-by-16 101 = Low-Power RC oscillator (LPRC) 100 = Reserved 011 = Primary oscillator (XT, HS, EC) with PLL 010 = Primary oscillator (XT, HS, EC) 001 = Fast RC oscillator (FRC) with PLL</pre>
	000 = Fast RC oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	<pre>If Clock Switching is Enabled and FSCM is Disabled, (FOSC<fcksm> = 0b01): 1 = Clock switching is disabled, system clock source is locked 0 = Clock switching is enabled, system clock source can be modified by clock switching</fcksm></pre>
bit 6	IOLOCK: Peripheral Pin Select Lock bit
	 1 = Peripheral Pin Select is locked, write to Peripheral Pin Select registers not allowed 0 = Peripheral Pin Select is not locked, write to Peripheral Pin Select registers allowed
bit 5	LOCK: PLL Lock Status bit (read-only)
	 1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
Note 1:	Writes to this register require an unlock sequence. Refer to " Oscillator (Part IV) " (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip web site) for details.
2:	This register is reset only on a Power-on Reset (POR).
3:	Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

mode as a transition clock source between the two PLL modes.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

RP18R3

RP18R2

RP18R1

RP18R0

bit 0

RP18R4

REGISTER 10-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

RP18R5

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP19R<5:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP18R<5:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is		'1' = Bit is set	t '0' = Bit is cle		ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	כ'				

REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

bit 13-8	RP21R<5:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'

bit 5-0 **RP20R<5:0>:** Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_			DTR>	<13:8>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			DTR	2x<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_			ALTDTI	Rx<13:8>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ALTD	TR <7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- The I2CxADD register holds the slave address
- A status bit, ADD10, indicates 10-Bit Addressing mode
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit. Hardware is clear at end of master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	1 = Enables Receive mode for I^2C . Hardware is clear at end of eighth bit of master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at end of master Stop sequence.0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at end of master Repeated Start sequence.
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at end of master Start sequence.
	0 = Start condition is not in progress

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN5: Interrupt Request Enable 5 bit
	 1 = Enables IRQ generation when requested conversion of Channels AN11 and AN10 is completed 0 = IRQ is not generated
bit 14	PEND5: Pending Conversion Status 5 bit
	 1 = Conversion of Channels AN11 and AN10 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG5: Software Trigger 5 bit
	1 = Starts conversion of AN11 and AN10 (if selected by the TRGSRCx bits) ⁽²⁾
	This bit is automatically cleared by hardware when the PEND5 bit is set.
	0 = Conversion has not started
Note 1:	This register is only implemented in the dsPIC33FJ16GS504 devices.

2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions					
Operati	Operating Voltage							
DC10	Vdd	Supply Voltage ⁽⁴⁾	3.0	_	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	—	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	—	_	Vss	V		
DC17	SVDD	VDD Rise Rate ⁽³⁾ to Ensure Internal Power-on Reset Signal	0.03	—		V/ms	0V-3.0V in 0.1 seconds	

TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 24-11 for BOR values.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	—	35	ns		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2	

TABLE 25-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 25-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	I		35	ns		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25			ns		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	_	_	ns		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2	
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge			55	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

26.0 50 MIPS ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics for devices operating at 50 MIPS.

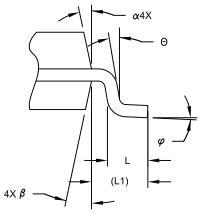
The specifications for 50 MIPS are identical to those shown in **Section 24.0 "Electrical Characteristics"**, with the exception of the parameters listed in this section.

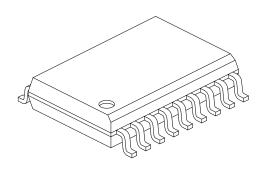
Parameters in this section begin with the letter "M", which denotes 50 MIPS operation. For example, Parameter DC29a in **Section 24.0** "Electrical Characteristics", is the up to 40 MIPS operation equivalent of MDC29a.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 50 MIPS devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	
Voltage on any 5V tolerant pin with respect to Vss, when Vdd $\geq 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when $VDD < 3.0V^{(3)}$	
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sourced/sunk by any 16x I/O pin	45 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200mA


Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).

3: See the **"Pin Diagrams"** section for 5V tolerant pins.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS					
Dimension Lim		MIN	NOM	MAX		
Number of Pins	N	18				
Pitch	е	1.27 BSC				
Overall Height	A	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	11.55 BSC				
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

Revision G (May 2014)

The values for the TUN<5:0> bits in Register 8-4 (OSCTUN) have changed.

The DC Characteristics Idle Current values in **Section 24.0 "Electrical Characteristics"** have been updated.

The timer specifications in Section 26.0 "50 MIPS Electrical Characteristics" have been removed.

All diagrams in **Section 28.0 "Packaging Information"** have been updated.

Minor text edits have been applied throughout the document.

INDEX

Α	
AC Characteristics	. 300, 338, 345
Internal FRC Accuracy	
Internal LPRC Accuracy	
Load Conditions	300, 338
ADC	
Control Registers	
Functionality	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	
Auxiliary Clock Generation	138

В

Barrel Shifter
Bit-Reversed Addressing
Example
Implementation76
Sequence Table (16-Entry)77
Block Diagrams
16-Bit Timer1 Module183
Connections for On-Chip Voltage Regulator270
DSP Engine
dsPIC33F06GS101 Devices with 1 SAR240
dsPIC33F06GS102 Devices with 1 SAR241
dsPIC33F06GS202 Devices with 1 SAR242
dsPIC33F16GS402/404 Devices with 1 SAR243
dsPIC33F16GS502 Devices with 2 SARs244
dsPIC33F16GS504 Devices with 2 SARs245
dsPIC33FJ06GS101/X02 and
dsPIC33FJ16GSX02/X0418
dsPIC33FJ06GS101/X02 and
dsPIC33FJ16GSX02/X04 CPU Core32
High-Speed Analog Comparator
I2CX Module226
Input Capture x191
Multiplexing of Remappable Output for RPn159
Oscillator System 135
Output Compare x Module193
Partitioned Output Pair, Complementary
PWM Mode200
PLL137
Remappable MUX Input for U1RX157
Reset System
Shared Port Structure155
Simplified Conceptual High-Speed PWM199
SPIx Module219
Timer2/3 (32-Bit)
Type B Timer185
Type C Timer
UART1
Watchdog Timer (WDT)271
Brown-out Reset (BOR)

С

C Compilers	
MPLAB XC Compilers	
Clock Switching	
Enabling	
Sequence	
•	

Code Examples	
Erasing a Program Memory Page	87
Initiating a Programming Sequence	88
Loading Write Buffers	88
Port Write/Read	156
PWRSAV Instruction Syntax	147
Code Protection 2	67, 273
CodeGuard Security	267
Configuration Bits	267
Description	268
Configuration Register Map	267
Configuring Analog Port Pins	156
CPU	
Control Registers	34
CPU Clocking System	136
PLL Configuration	137
Selection	136
Sources	136
Customer Change Notification Service	392
Customer Notification Service	
Customer Support	392

D

DAC	264
Output Range	264
Data Accumulators and Adder/Subtracter	-
Data Space Write Saturation	42
Overflow and Saturation	40
Round Logic	41
Write Back	41
Data Address Space	45
Alignment	45
Memory Map for dsPIC33FJ06GS101/102 Devices with 256 Bytes of RAM	
Memory Map for dsPIC33FJ06GS202 Device	
with 1-Kbyte RAM	
Memory Map for dsPIC33FJ16GS402/404/502/504	
Devices with 2-Kbyte RAM	
Near Data Space	
Software Stack	
Width	45
Data Addressing	
Overview	31
DC and AC Characteristics	
Graphs and Tables	347
DC Characteristics 288	3, 342
Doze Current (IDOZE) 294	4, 344
High Temperature	334
I/O Pin Input Specifications	295
I/O Pin Output Specifications	7, 336
Idle Current (IIDLE) 292	2, 343
Operating Current (IDD)), 342
Operating MIPS vs. Voltage	-
Power-Down Current (IPD)	
Program Memory 299	
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	