

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices:

- dsPIC33FJ06GS101
- dsPIC33FJ06GS102
- dsPIC33FJ06GS202
- dsPIC33FJ16GS402
- dsPIC33FJ16GS404
- dsPIC33FJ16GS502
- dsPIC33FJ16GS504

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

REGISTER 5	-1: NVMCO	N: FLASH I	MEMORY C	ONTROL REC	GISTER		
R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	ERASE		_	NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7							bit 0
Logondy		<u> </u>	ala Oply hit				
R - Readable	hit	30 = 30		II – Unimplem	onted hit read	as '0'	
-n – Value at F		'1' – Rit is s		0° – Bit is clear	ared	x – Bitis unkr	NOWD
		1 – Dit 13 3	61				IOWIT
bit 15	WR: Write Con	trol bit ⁽¹⁾					
2.1.10	1 = Initiates a	Flash memor	y program or	erase operatio	n; the operatio	n is self-timed	and the bit is
	cleared by	hardware on	ce the operat	ion is complete	· ·		
	0 = Program of	r erase opera	tion is comple	ete and inactive			
bit 14	WREN: Write E	nable bit(")					
	1 = Enable Flas	sh program/er	ase operation	ทาร าร			
bit 13	WRERR: Write	Sequence E	rror Flag bit ⁽¹⁾)			
	1 = An improp	er program	or erase sed	quence attempt	, or terminatio	on has occurr	ed (bit is set
	automatica	Illy on any se	t attempt of th	e WR bit)			
bit 10 7	0 = The progra	im or erase o	peration com	pleted normally			
bit 6	EPASE: Eraso	Program Eng	ble bit(1)				
bit 0	1 = Performs t	he erase ope	ration specifie	ed by NVMOP<	3.0> on the nex	t WR comman	d
	0 = Performs t	he program o	peration spec	ified by NVMO	P<3:0> on the r	next WR comm	and
bit 5-4	Unimplemente	d: Read as ')'				
bit 3-0	NVMOP<3:0>:	NVM Operati	on Select bits	_S (1,2)			
	If ERASE = 1:						
	1111 = Memory	y bulk erase (neneral segmi	operation				
	0011 = No ope	ration	GIIL				
	0010 = Memor	y page erase	operation				
	0001 = No ope	ration	evenetiese ve eie				
	If ERASE $= 0$		guration regis	ster byte			
	1111 = No ope	ration					
	1101 = No ope	ration					
	0011 = Memory	y word progra	m operation				
	0010 = N0 0pe	v row program	n operation				
	0000 = Program	m a single Co	nfiguration re	gister byte			
Note 1: The	ese bits can only	be Reset on I	POR.				

2: All other combinations of NVMOP<3:0> are unimplemented.

REGISTER 7-14: IEC	C3: INTERRUPT ENABLE	CONTROL REGISTER 3
--------------------	----------------------	---------------------------

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
	—		_	—	—	PSEMIE	—			
bit 15			·	•			bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	—			
bit 7	-			•			bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15-10	Unimplemen	ted: Read as '	0'							
bit 9	PSEMIE: PW	M Special Ever	nt Match Inter	rupt Enable bit	t					
	1 = Interrupt request enabled									

- 0 = Interrupt request not enabled
- bit 8-0 Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIE	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 U1EIE: UART1 Error Interrupt Enable bit

1 = Interrupt request enabled

- 0 = Interrupt request not enabled
- bit 0 Unimplemented: Read as '0'

8.1 CPU Clocking System

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with Postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

The LPRC internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of

output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 24-20) and the value of the FRC Oscillator Tuning register (see Register 8-4).

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 21.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), FOSC, is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJ06GS101/ X02 and dsPIC33FJ16GSX02/X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by Equation 8-1.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Reserved	Reserved	xx	100	I
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	_
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

_	-								
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	_	—			—	_		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	ROON: Refe	rence Oscillato	r Output Enab	ole bit					
	1 = Referenc	e oscillator out	out is enabled	on the REFCL	.K0 pin ⁽²⁾				
	0 = Referenc	e oscillator out	out is disabled	b					
bit 14	Unimplemer	nted: Read as '	0'						
bit 13	ROSSLP: Re	eference Oscilla	tor Run in Sle	eep bit					
	1 = Referenc	e oscillator outp	out continues	to run in Sleep					
	0 = Referenc	e oscillator out	out is disabled	d in Sleep					
bit 12	ROSEL: Ref	Reference Oscillator Source Select bit							
	1 = Oscillator $0 = System c$	r crystal is used clock is used as	as the reference	ence clock e clock					
bit 11-8	RODIV<3:0>	Reference Os	cillator Divide	er bits ⁽¹⁾					
	1111 = Refe	rence clock divi	ded by 32.76	8					
	1110 = Refe	rence clock divi	ded by 16,38	4					
	1101 = Refe	rence clock divi	ded by 8,192						
	1100 = Refe	rence clock divi	ded by 4,096						
	1011 = Refe	rence clock divi	ded by 2,048						
	1010 = Refe	rence clock divi	ded by 1,024 ded by 512						
	1000 = Refe	rence clock divi	ded by 256						
	0111 = Refe	rence clock divi	ded by 128						
	0110 = Refe	rence clock divi	ded by 64						
0101 = Reference clock divided by 32									
0100 = Reference clock divided by 16									
	0011 = Refe	rence clock divi	ded by 0 ded by 4						
	0001 = Refe	rence clock divi	ded by 2						
	0000 = Refe	rence clock	-						
bit 7-0	Unimplemer	nted: Read as '	0'						

REGISTER 8-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. Refer to Section 10.6 "Peripheral Pin Select" for more information.

10.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.5 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

EQUATION 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
_	— FLT1R5 FLT1R4		FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0					
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	—	—	_		—						
bit 7							bit 0					
r												
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown						
bit 15-14	Unimplemen	ted: Read as '	0'									
bit 13-8	FLT1R<5:0>:	Assign PWM I	Fault Input 1 (FLT1) to the C	orresponding R	Pn Pin bits						
	111111 = Inp	out tied to Vss										
	100011 = Inp	out tied to RP35	5									
	$100010 = \ln p$	but fied to RP34	+ >									
	100001 = Inp	but fied to RP32)									
	•		-									
	•											
	•											
	00000 = Inpu	It tied to RP0										
bit 7-0	Unimplemen	ted: Read as '	0'									
	-											

REGISTER 10-9: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	FLT7R<5:0>:	Assign PWM	Fault Input 7 (FLT7) to the C	orresponding R	Pn Pin bits	
	111111 = Inp	out tied to Vss					
	100011 = Inp	out tied to RP3	5				
	100010 = Inp	but fied to RP34	1 >				
	100001 = Inp	but tied to RP3	2				
	•		_				
	•						
	•						
	00000 = Inpu	it tied to RP0					
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	FLT6R<5:0>:	Assign PWM	Fault Input 6 (FLT6) to the C	orresponding R	Pn Pin bits	
	111111 = Inp	out tied to Vss		-			
	100011 = Inp	out tied to RP3	5				
	100010 = Inp	out tied to RP34	4				
	100001 = Inp	out tied to RP3	3				
	100000 = Inp	but tied to RP32	2				
	•						
	•						
	•						
	00000 = Inpu	it tied to RPU					

REGISTER 10-12: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	SYNCI1R5	SYNCI1R4	SYNCI1R3	SYNCI1R2	SYNCI1R1	SYNCI1R0
bit 15			1	1	L		bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0
bit 7	t 7						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	SYNCI1R<5:0	0>: Assign PW	M Master Time	e Base Extern	al Synchronizat	ion Signal to th	е
		y REILEII DIS					
	$100011 = \ln p$	out fied to RP35	5				
	100010 = Inp	out tied to RP34	ļ				
	100001 = Inp	out tied to RP33	3				
	100000 = Inp	out fied to RP32	2				
	•						
	00000 = Inpu	it tied to RP0					
bit 7-6		ted: Read as '	0'				
bit 5-0	FLT8R<5:0>:	Assign PWM I	- Fault Input 8 (F	FLT8) to the C	orrespondina R	Pn Pin bits	
	111111 = Inp	out tied to Vss	in the second	-,	5		
	100011 = Inp	out tied to RP35	5				
	100010 = Inp	out tied to RP34	ļ.				
	100001 = Inp	out fied to RP33	3				
	•		-				
	•						
	•						
	00000 = I npu	t tied to RP0					

REGISTER 10-13: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL	_				—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown				
bit 15	TON: Timer1	On bit									
	1 = Starts 16- 0 = Stops 16-	bit Timer1									
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	TSIDL: Timer	TSIDL: Timer1 Stop in Idle Mode bit									
	1 = Discontin	ues module op	eration when	device enters	Idle mode						
	0 = Continues	s module opera	ation in Idle m	ode							
bit 12-7	Unimplemen	ted: Read as '	0'								
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	$\frac{\text{When ICS} = 1}{\text{This bit is ignored.}}$										
	When TCS =	0:									
	1 = Gated tim	ne accumulation	n is enabled								
	0 = Gated tim	e accumulation	n is disabled	- O-l							
DIT 5-4	ICKPS<1:U> Timer1 Input Clock Prescale Select bits										
	10 = 1.64										
	01 = 1:8										
h it 0	00 = 1:1	tad. Daad aa (0'								
DIT 3		ted: Read as	U ^r aak Innut Sun	obranization C	alaat hit						
DIT Z	TSYNC: Timer1 External Clock Input Synchronization Select bit										
	1 = Synchron	1 = Synchronizes external clock input									
	0 = Does not	synchronize ex	kternal clock i	nput							
	When TCS =	<u>0:</u> ored									
bit 1	TCS: Timer1	Clock Source ?	Select bit								
	1 = External of	clock from T1C	K pin (on the	rising edae)							
	0 = Internal c	lock (FCY)	1 (0 - 0 - /							
bit 0	Unimplemen	ted: Read as '	0'								

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
TON ⁽²⁾	_	TSIDL ⁽¹⁾	—	—			—	
bit 15		•				•	bit 8	
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	
	TGATE ⁽²⁾	TCKPS1 ⁽²⁾	TCKPS0 ⁽²⁾			TCS ⁽²⁾		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15	TON: Timery 1 = Starts 16-	On bit ⁽²⁾ bit Timery						
	0 = Stops 16-	bit Timery						
bit 14	Unimplemen	ted: Read as '	כ'					
bit 13	TSIDL: Timer	y Stop in Idle M	lode bit ⁽¹⁾					
	1 = Discontinues	ues timer opera s timer operatio	ation when dev n in Idle mode	vice enters Idle e	e mode			
bit 12-7	Unimplemen	ted: Read as '	כ'					
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽²⁾ <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled							
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Prescal	e Select bits ⁽²)			
	11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value							
bit 3-2	Unimplemen	ted: Read as '	כ'					
bit 1	TCS: Timery Clock Source Select bit ⁽²⁾ 1 = External clock from TxCK pin 0 = Internal clock (Eosc/2)							
bit 0	Unimplemen	ted: Read as '	כי					
Note 1: Who	en 32-bit timer	operation is en	abled (T32 = :	1) in the Time	rx Control regist	er (TxCON<3>)), the TSIDL	

REGISTER 12-2: TyCON: TIMERY CONTROL REGISTER (y = 3)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timerx Control (TxCON<3>) register, these bits have no effect.

NOTES:

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: UARTx Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
	0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to "**UART**" (DS70188) in the "*dsPIC33F/PIC24H Family Reference Manual*" for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

FIGURE 24-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 24-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard (unless of Operating	I Operatin otherwise g temperat	g Condition stated) ure -40°0 -40°0	DNS: 3.0V $C \le TA \le +8$ $C \le TA \le +1$	to 3.6V 35°C for Industrial 25°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
OC15	Tfd	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns		
OC20	TFLT	Fault Input Pulse Width	TCY + 20	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-9: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS

FIGURE 24-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 24-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time		2.5	_	ns	
MP11	TRPWM	PWMx Output Rise Time	_	2.5		ns	
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—	—	15	ns	
MP30	Тғн	Minimum PWMx Fault Pulse Width	8	—		ns	DTC<1:0> = 10
MP31	TPDLY	Tap Delay	1.04		_	ns	Aclk = 120 MHz
MP32	ACLK	PWMx Input Clock			120	MHz	See Note 2

Note 1: These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWMx module.

TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			Standard O (unless oth Operating to	perating Co erwise state emperature	nditions: 3.0 ed) -40°C ≤ Ta)V to 3.6V ≤ +150°C for High Temperature	
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions			
Power-Down Current (IPD) ^(2,4)							
HDC60e	1000	2000	μA	+150°C	3.3V	Base Power-Down Current	
HDC61c	100	110	μΑ	+150°C 3.3V Watchdog Timer Current: ∆IwDT ⁽³⁾			

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- JTAG disabled
- **3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	Ν		44			
Pitch	е		0.65 BSC			
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width E			8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D	D 8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2