

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	6KB (6K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj06gs202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

ABLE 7-1: INTERROPT VECTORS										
Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source						
Highest Natural Order Priority										
8	0	0x000014	0x000114	INT0 – External Interrupt 0						
9	1	0x000016	0x000116	IC1 – Input Capture 1						
10	2	0x000018	0x000118	OC1 – Output Compare 1						
11	3	0x00001A	0x00011A	T1 – Timer1						
12	4	0x00001C	0x00011C	Reserved						
13	5	0x00001E	0x00011E	IC2 – Input Capture 2						
14	6	0x000020	0x000120	OC2 – Output Compare 2						
15	7	0x000022	0x000122	T2 – Timer2						
16	8	0x000024	0x000124	T3 – Timer3						
17	9	0x000026	0x000126	SPI1E – SPI1 Fault						
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done						
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver						
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter						
21	13	0x00002E	0x00012E	ADC – ADC Group Convert Done						
22-23	14-15	0x000030-0x000032	0x000130-0x000132	Reserved						
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Event						
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Event						
26	18	0x000038	0x000138	CMP1 – Analog Comparator 1 Interrupt						
27	19	0x00003A	0x00013A	CN – Input Change Notification Interrupt						
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1						
29-36	21-28	0x00003E-0x00004C	0x00013E-0x00014C	Reserved						
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2						
38-64	30-56	0x000050-0x000084	0x000150-0x000184	Reserved						
65	57	0x000086	0x000186	PWM PSEM Special Event Match						
66-72	58-64	0x000088-0x000094	0x000188-0x000194	Reserved						
73	65	0x000096	0x000196	U1E – UART1 Error Interrupt						
74-101	66-93	0x000098-0x0000CE	0x000198-0x0001CE	Reserved						
102	94	0x0000D0	0x0001D0	PWM1 – PWM1 Interrupt						
103	95	0x0000D2	0x0001D2	PWM2 – PWM2 Interrupt						
104	96	0x0000D4	0x0001D4	PWM3 – PWM3 Interrupt						
105	97	0x0000D6	0x0001D6	PWM4 – PWM4 Interrupt						
106-110	98-102	0x0000D8-0x0000E0	0x0001D8-0x0001E0	Reserved						
111	103	0x0000E2	0x00001E2	CMP2 – Analog Comparator 2						
112	104	0x0000E4	0x0001E4	CMP3 – Analog Comparator 3						
113	105	0x0000E6	0x0001E6	CMP4 – Analog Comparator 4						
114-117	106-109	0x0000E8-0x0000EE	0x0001E8-0x0001EE	Reserved						
118	110	0x0000F0	0x0001F0	ADC Pair 0 Convert Done						
119	111	0x0000F2	0x0001F2	ADC Pair 1 Convert Done						
120	112	0x0000F4	0x0001F4	ADC Pair 2 Convert Done						
121	113	0x0000F6	0x0001F6	ADC Pair 3 Convert Done						
122	114	0x0000F8	0x0001F8	ADC Pair 4 Convert Done						
123	115	0x0000FA	0x0001FA	ADC Pair 5 Convert Done						
124	116	0x0000FC	0x0001FC	ADC Pair 6 Convert Done						
125	117	0x0000FE	0x0001FE	Reserved						
	Lowest Natural Order Priority									

TABLE 7-1:INTERRUPT VECTORS

REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0 "Oscillator Configuration"**.

9.2 Instruction-Based Power-Saving Modes

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes the items such as the Input Change Notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

NOTES:

10.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.5 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

EQUATION 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

15.0 HIGH-SPEED PWM

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70323) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed PWM module on the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction (PFC)
- Uninterruptible Power Supply (UPS)
- Inverters
- Battery Chargers
- Digital Lighting

15.1 Features Overview

The high-speed PWM module incorporates the following features:

- 2-4 PWM generators with 4-8 outputs
- Individual time base and duty cycle for each of the eight PWM outputs
- Dead time for rising and falling edges:
- Duty cycle resolution of 1.04 ns
- Dead-time resolution of 1.04 ns
- Phase-shift resolution of 1.04 ns
- Frequency resolution of 1.04 ns
- PWM modes supported:
- Standard Edge-Aligned
- True Independent Output
- Complementary
- Center-Aligned
- Push-Pull
- Multiphase
- Variable Phase
- Fixed Off-Time
- Current Reset
- Current-Limit

- Independent Fault/Current-Limit inputs for each of the eight PWM outputs
- Output override control
- Special Event Trigger
- PWM capture feature
- Prescaler for input clock
- Dual trigger from PWM to ADC
- PWMxH, PWMxL output pin swapping
- PWM4H, PWM4L pins remappable
- On-the-fly PWM frequency, duty cycle and phase-shift changes
- Disabling of Individual PWM generators to reduce power consumption
- Leading-Edge Blanking (LEB) functionality

Figure 15-1 conceptualizes the PWM module in a simplified block diagram. Figure 15-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode. Each functional unit of the PWM module is discussed in subsequent sections.

The PWM module contains four PWM generators. The module has up to eight PWM output pins: PWM1H, PWM1L, PWM2H, PWM2L, PWM3H, PWM3L, PWM4H and PWM4L. For complementary outputs, these eight I/O pins are grouped into H/L pairs.

Note: Duty cycle, dead time, phase shift and frequency resolution is 8.32 ns in Center-Aligned PWM mode.

15.2 Feature Description

The PWM module is designed for applications that require:

- High-resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode, and Push-Pull mode outputs
- The ability to create multiphase PWM outputs

For Center-Aligned mode, the duty cycle, period phase and dead-time resolutions will be 8.32 ns.

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable. Multiphase PWM is often used to improve DC/DC Converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC Converters are often operated in parallel, but phase-shifted in time. A single PWM output operating at 250 kHz has a period of 4 μ s, but an array of four PWM channels, staggered by 1 μ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50%, and the power flow is controlled by varying the relative phase shift between the two PWM generators.

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN		PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	—	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0
. .							
Legend:		HC = Hardware	e Clearable bit	HS = Hardwa	re Settable bit		
R = Readabl	le bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	own
bit 15	PTEN: PW	M Module Enabl	e bit				
	1 = PWM n	nodule is enable	d				
hit 14		ented: Read as	ία '∩'				
bit 13	PTSIDL: P	WM Time Base	Stop in Idle Mod	e bit			
	1 = PWM ti	ime base halts ir	CPU Idle mode)			
	0 = PWM ti	ime base runs in	CPU Idle mode				
bit 12	SESTAT: S	pecial Event Inte	errupt Status bit				
	1 = Special	l event interrupt i	s pending				
L:44		event interrupt	s not pending				
DIT	J = Special	ecial Event Inter	rupt Enable bit				
	0 = Special	l event interrupt i	is disabled				
bit 10	EIPU: Enal	ble Immediate P	eriod Updates bi	it(1)			
	1 = Active 0 = Active	Period register is Period register u	s updated immed pdates occur on	diately PWM cycle bo	oundaries		
bit 9	SYNCPOL	: Synchronizatio	n Input/Output P	olarity bit ⁽¹⁾			
	1 = SYNCI 0 = SYNCI	x and SYNCO po x and SYNCO a	olarity is inverted re active-high	d (active-low)			
bit 8	SYNCOEN	: Primary Time	Base Sync Enab	le bit ⁽¹⁾			
	1 = SYNCO 0 = SYNCO	D output is enabl D output is disab	ed led				
bit 7	SYNCEN:	External Time Ba	ase Synchroniza	tion Enable bit	(1)		
	1 = Externa 0 = Externa	al synchronizatio al synchronizatio	n of primary time	e base is enab e base is disab	led led		
bit 6	Unimplem	ented: Read as	·0'				
bit 5-4	SYNCSRC	<1:0>: Synchror	nous Source Sel	ection bits ⁽¹⁾			
	11 = Reser	rved					
	10 = Reser	rved					
	01 = SYNC 00 = SYNC	,,∠ C 1					
Note 1: T	hese bits sho	uld be changed o	only when PTEN	I = 0. In additio	n, when using	the SYNCIx fea	ature, the user

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-7: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	Cx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	id as '0'	
-n – Value at F	2 D R	'1' - Rit is set		'0' – Bit is cle	ared	v – Ritis unk	nown

bit 15-0 PDCx<15:0>: PWM Generator # Duty Cycle Value bits

- **Note 1:** In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **SDCx<15:0>:** Secondary Duty Cycle for PWMxL Output Pin bits

- **Note 1:** The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	_	GSWTRG	—	FORM ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ^(1,2)	SEQSAMP ^(1,2)	ASYNCSAMP ⁽¹⁾		ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bi	it	U = Unimplei	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ADON: Analo	og-to-Digital Ope	erating Mode bit				
	1 = Analog-to	o-Digital Convert	er (ADC) module	is operating			
		iverter is oπ	,				
DIC 14		nteo: Read as U	ada hit				
DIL 13	1 - Discontin		ode bit	o ontore Idlo i	modo		
	1 = Discontinue 0 = Continue	s module operat	tion in Idle mode		noue		
bit 12	SLOWCLK:	Enable The Slov	v Clock Divider bit	(1)			
	1 = ADC is c	clocked by the a	uxiliary PLL (ACL)	<)			
	0 = ADC is c	clock by the prim	ary PLL (Fvco)				
bit 11	Unimplemer	nted: Read as '0	,				
bit 10	GSWTRG: G	Blobal Software	Frigger bit				
	When this bi	t is set by the us	ser, it will trigger o	onversions if	selected by the	e TRGSRC<4:(0> bits in the
	ADCPCx reg	isters. This bit m	iust be cleared by	the user prior	to initiating and	other global trig	ger (i.e., this
hit Q	Unimplement	oted: Read as 'n	,				
bit 8	FORM: Data	Output Format I					
DIT O	1 = Fractiona	al (Dout = dddd	1 dddd dd00 00	00)			
	0 = Integer ([DOUT = 0000 00	Odd dddd dddd)				
bit 7	EIE: Early Int	terrupt Enable b	it(1)				
	1 = Interrupt	is generated after	er first conversion	is completed			
	0 = Interrupt	is generated after	er second convers	ion is comple	ted		
bit 6	ORDER: Cor	nversion Order b	_{bit} (1,2)				
	1 = Odd num	bered analog in	put is converted fi	rst, followed b	y conversion of	f even numbere	ed input
hit E		Sequential Semi	alo Epoblo hit(1,2)	list, iolioweu i	by conversion o		eu input
DILO	1 - Shared	Sequential Samp		is sampled a	at the start of	the second (conversion if
	ORDER	= 0. If ORDER =	= 1, then the share	ed S&H is san	npled at the sta	art of the first co	onversion.
	0 = Shared S	S&H is sampled	at the same time	the dedicated	S&H is sampl	ed if the share	d S&H is not
	currently	busy with an e	existing conversion	n process. If	the shared S&	&H is busy at	the time the
	ueaicate	u sample	a, men me snarec	I SAM WIII SAM	iple at the start		reision cycle.
Note 1: T	hese control b	its can only be c	hanged while AD	C is disabled ((ADON = 0).		

REGISTER 19-1: ADCON: ANALOG-TO-DIGITAL CONTROL REGISTER

2: These bits are only available on devices with one SAR.

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾ (CONTINUED)

```
bit 4-0
               TRGSRC4<4:0>: Trigger 4 Source Selection bits
               Selects trigger source for conversion of Analog Channels AN9 and AN8.
               11111 = Timer2 period match
               11011 = Reserved
               11010 = PWM Generator 4 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               10111 = PWM Generator 1 current-limit ADC trigger
               10110 = Reserved
               10010 = Reserved
               10001 = PWM Generator 4 secondary trigger is selected
               10000 = PWM Generator 3 secondary trigger is selected
               01111 = PWM Generator 2 secondary trigger is selected
               01110 = PWM Generator 1 secondary trigger is selected
               01101 = Reserved
               01100 = Timer1 period match
               01000 = Reserved
               00111 = PWM Generator 4 primary trigger is selected
               00110 = PWM Generator 3 primary trigger is selected
               00101 = PWM Generator 2 primary trigger is selected
               00100 = PWM Generator 1 primary trigger is selected
               00011 = PWM Special Event Trigger is selected
               00010 = Global software trigger is selected
               00001 = Individual software trigger is selected
               00000 = No conversion is enabled
```

- Note 1: This register is only implemented in the dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—		_	_	—	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN6	PEND6	SWTRG6			TRGSRC6<4:0)>	
bit 7							bit 0
r							
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7	IRQEN6: Inte	errupt Request	Enable 6 bit				
	1 = Enables I	RQ generation	when reques	ted conversior	n of Channels Al	N13 and AN12	is completed
		t generated	0				
bit 6	PEND6: Pend	ding Conversio	n Status 6 bit				
	1 = Conversio 0 = Conversio	on of Channels on is complete	AN13 and AN	N 12 is pending	g; set when sele	cted trigger is a	asserted
bit 5	SWTRG6: So	oftware Trigger	6 bit				
	 1 = Starts conversion of AN13 (INTREF) and AN12 (EXTREF) (if selected by the TRGSRCx bits)⁽²⁾ This bit is automatically cleared by hardware when the PEND6 bit is set. 						
	0 = Conversi	on has not star	ted				
Note 1: T	Note 1: This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.						

REGISTER 19-8: ADCPC3: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 3⁽¹⁾

2: The trigger source must be set as global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

24.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 AC characteristics and timing parameters.

TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Table 24-1.

FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2 Pin			15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C™ mode

TABLE 24-3	E 24-30: SPIX MAXIMUM DATA/CLOCK RATE SUMMARY							
AC CHARA	CTERISTICS		Standard Operating (unless otherwise s Operating temperate	g Conditions: stated) ure -40°C ≤ -40°C ≤	3.0V to 3.6V TA \leq +85°C for TA \leq +125°C fo	Industrial or Extended		
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	СКЕ	СКР	SMP		
15 MHz	Table 24-31	—	—	0,1	0,1	0,1		
9 MHz	—	Table 24-32	—	1	0,1	1		
9 MHz	_	Table 24-33	_	0	0,1	1		
15 MHz		_	Table 24-34	1	0	0		
11 MHz	_	_	Table 24-35	1	1	0		
15 MHz	_	_	Table 24-36	0	1	0		
11 MHz	—	_	Table 24-37	0	0	0		

SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING FIGURE 24-11: **CHARACTERISTICS**

SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING FIGURE 24-12: **CHARACTERISTICS**

TABLE 25-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard O (unless oth Operating to	perating Co erwise state emperature	nditions: 3.0 ed) -40°C ≤ Ta)V to 3.6V ≤ +150°C for High Temperature		
Parameter No.	Typical ⁽¹⁾	Мах	Units	Units Conditions				
Power-Down (Current (IPD)	(2,4)						
HDC60e	1000	2000	μA	+150°C 3.3V Base Power-Down Current				
HDC61c	100	110	μΑ	+150°C 3.3V Watchdog Timer Current: ΔIwDT ⁽³⁾				

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- JTAG disabled
- **3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Terminal Pitch	E		0.50 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Terminal Pad Spacing	C1		5.65	
Terminal Pad Spacing	C2		5.65	
Terminal Pad Width (X44)	X1			0.30
Terminal Pad Length (X44)	Y1			0.45
Distance Between Pads	(G1)		0.20 REF.	
Distance Between Pads	G	0.20		
Distance Between Pads	K1	0.267		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2157A

Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
Doze Mode	148
DSP Engine	
Multiplier	40

Е

Electrical Characteristics	
50 MIPS	
AC	
AC Characteristics and	
Timing Parameters	300, 345
BOR	
Equations	
Device Operating Frequency	
Fosc Calculation	
Maximum Row Write Time	
Minimum Row Write Time	
Programming Time	
XT with PLL Mode Example	
Errata	14
External Reset (EXTR)	

F

Fail-Safe Clock Monitor (FSCM)	146
Flash Program Memory	
Control Registers	
Operations	
Programming Algorithm	
RTSP Operation	
Table Instructions	
Flexible Configuration	

G

Guidelines for Getting Started with 16	δ-Bit DSCs21
--	--------------

Н

High-Speed 10-Bit Analog-to-Digital	
Converter (ADC)	239
High-Speed Analog Comparator	
Digital Logic	
Input Range	
Interaction with I/O Buffers	
High-Speed PWM	
Control Registers	
High-Temperature Electrical Characteristics	
I	
I/O Ports	155
Parallel I/O (PIO)	155
Write/Read Timing	
l ² C	
Control Registers	
Operating Modes	
In-Circuit Debugger	272

In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	267, 272
Input Capture	191
Control Register	
Input Change Notification	156

Instruction Addressing Modes	73
File Register Instructions	73
Fundamental Modes Supported	74
MAC Instructions	74
MCU Instructions	
Move and Accumulator Instructions	74
Other Instructions	74
Instruction Set	
Overview	278
Summary	275
Instruction-Based Power-Saving Modes	147
Idle	148
Sleep	147
Interfacing Program and Data Memory Spaces	
Internal RC Oscillator	
Use with WDT	271
Internet Address	392
Interrupts	
Alternate Interrupt Vector Table (AIVT)	
Control and Status Registers	100
IECx	100
IFSx	100
INTCON1	100
INTCON2	100
INTTREG	100
IPCx	100
Interrupt Vector Table (IVT)	
Reset Sequence	
Setup Procedures	134
Initialization	134
Interrupt Disable	134
Interrupt Service Routine	134
Trap Service Routine	134
Interrupts Coincident with Power Save Instructions	148

J

JTAG Boundary Scan Interface	. 267
JTAG Interface	. 272

Μ

Memory Organization	43
Microchip Internet Web Site	392
Modulo Addressing	75
Applicability	
Operation Example	75
Start and End Address	75
W Address Register Selection	75
MPLAB Assembler, Linker, Librarian	284
MPLAB ICD 3 In-Circuit Debugger	285
MPLAB PM3 Device Programmer	285
MPLAB REAL ICE In-Circuit Emulator System	285
MPLAB X Integrated Development	
Environment Software	283
MPLAB X SIM Software Simulator	285
MPLIB Object Librarian	284
MPLINK Object Linker	284

0

Open-Drain Configuration	156
Oscillator Configuration	135
Control Registers	139
Output Compare	193
Modes	194
Operation Diagram	194

Timing Diagrams	
Analog-to-Digital Conversion per Input	
Brown-out Situations94	
External Clock	
High-Speed PWMx	
High-Speed PWMx Fault	
I/O	
I2Cx Bus Data (Master Mode) 324	
I2Cx Bus Data (Slave Mode)	
12Cx Bus Start/Stop Bits (Master Mode)	
IZCX Bus Start/Stop Bits Stave Mode)	
OCv/PW/My 310	
Output Compare x (OCx) 309	
Reset Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	
SPIx Master Mode (Full-Duplex, CKE = 0.	
CKP = x, SMP = 1)	
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, CMP = 1)	
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	
SPIX Slave Mode (Full-Duplex, $CKE = 1$,	
CKP = 0, $SMP = 0$)	
SFIX Slave mode (ruii-Duplex, CRE = 1, CRP = 1 SMP = 0) 318	
CRF = 1, SMF = 0	
Timer1 2 3 External Clock 307	
Timing Requirements	
10-Bit. High-Speed ADC Requirements	
External Clock	
I/O	
Input Capture x	
Simple OCx/PWMx Mode	
SPIx Master Mode (CKE = 0)	
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	
SPIx Master Mode (Half-Duplex,	
I ransmit Only)	
SPIX Module Master Mode (CKE = 1)	
SPIX Module Slave Mode (CKE = 0)	
SPIX Slave Mode (Eull-Duplex, CKE = 0	
CKP = 0, $SMP = 0$). 323	
SPIx Slave Mode (Full-Duplex_CKE = 0	
CKP = 1, $SMP = 0$)	
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	

Timing Specifications	
10-Bit High-Speed ADC Module 3	28
Auxiliary PLL Clock 3	02
Comparator Module 3	30
DAC Module 3	30
DAC Output Buffer DC 3	31
High-Speed PWMx Requirements	11
I2Cx Bus Data Requirements (Master Mode)	25
I2Cx Bus Data Requirements (Slave Mode) 3	27
Output Compare x Requirements	09
PLL Clock 302, 3	38
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	
Requirements 3	06
Simple OCx/PWMx Mode Requirements 3	10
Timer1 External Clock Requirements 3	07
Timer2 External Clock Requirements	80
Timer3 External Clock Requirements 3	80

U

Universal Asynchronous Receiver	
Transmitter (UART)	233
Using the RCON Status Bits	96
V	

Voltage Regulator (On-Chip) 270

w

Watchdog Timer (WDT)	. 267, 271
Programming Considerations	271
Watchdog Timer Time-out Reset (WDTO)	95
WWW Address	392
WWW, On-Line Support	14