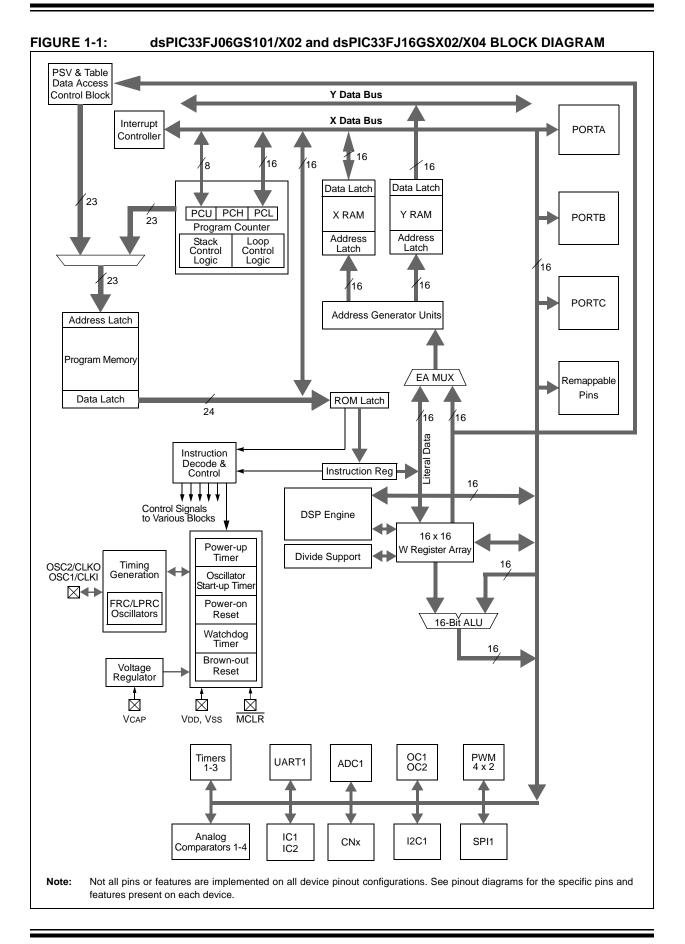


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

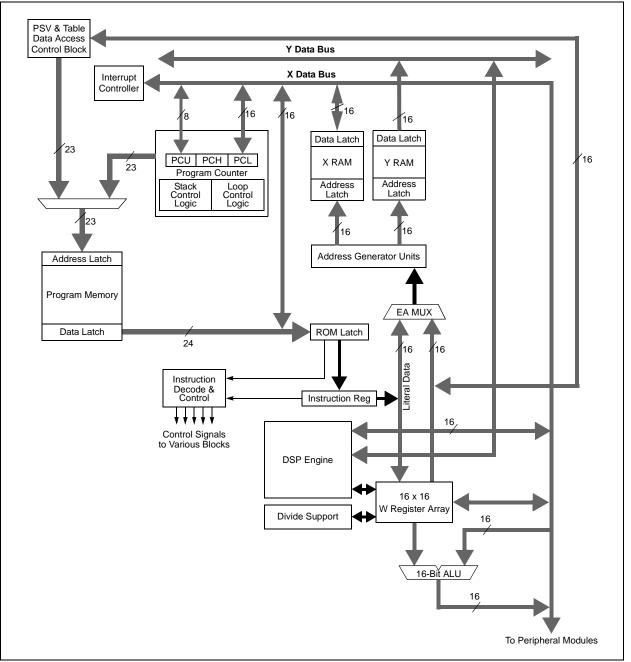

Details

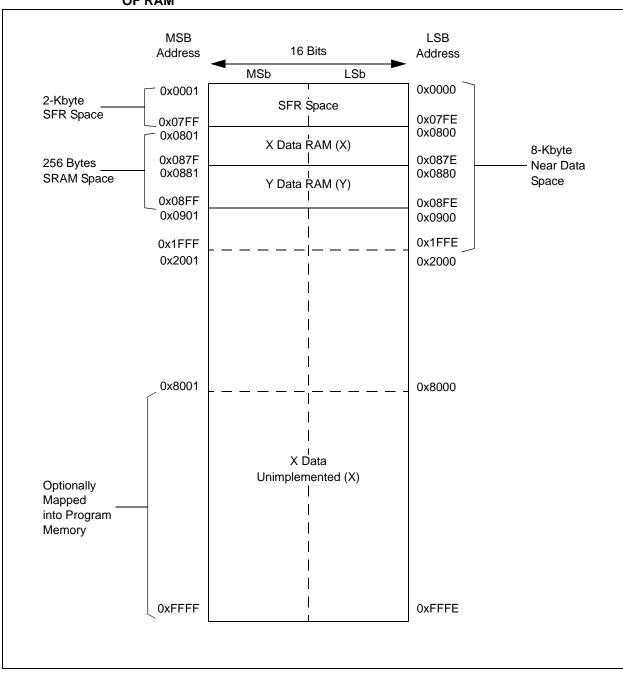
 \sim \equiv

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs402-50i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


3.3 Special MCU Features


dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices feature a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (1.0).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CPU CORE BLOCK DIAGRAM

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ06GS101/102 DEVICES WITH 256 BYTES OF RAM

REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	_	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	R-0						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-12	Unimplen	nented: Read as '0'		
	•		(Loval bita	
bit 11-8		New CPU Interrupt Priority		
	1111 = C	PU Interrupt Priority Level in	s 15	
	•			
	•			
	•		- 4	
		PU Interrupt Priority Level is		
		PU Interrupt Priority Level i	50	
bit 7	Unimplen	nented: Read as '0'		
bit 6-0	VECNUM	<6:0>: Vector Number of P	ending Interrupt bits	
	0111111	= Interrupt vector pending i	is Number 135	
	•			
	•			
	•			
	0000001	= Interrupt vector pending i	is Number 9	
	0000000	= Interrupt vector pending i	is Number 8	

			-		-		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
		—		—	—	—	PLLDIV<8>
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
10000	10,00 0			IV<7:0>	1000 0	10000	1010 0
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at		1' = Bit is set		$0^{\circ} = \text{Bit is cleared}$		x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as '	י'				
bit 8-0	PLLDIV<8:0>	>: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111 =	= 513					
	•						
	•						
	•						
	000110000=	= 50 (default)					
	•						
	•						
	•						
	000000010=	= 4					
	000000001 =						
	000000000 =	= 2					

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

NOTES:

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14 bit 13-8	IC2R<5:0>: /	÷ .		to the Correspo	onding RPn Pi	n bits	
	100011 = Inp 100010 = Inp 100001 = Inp	but tied to Vss but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3	4 3				
	100011 = Inp 100010 = Inp 100001 = Inp	out tied to RP3 out tied to RP3 out tied to RP3	4 3				
	100011 = Inp 100010 = Inp 100001 = Inp	but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3	4 3				
bit 7-6	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • •	but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3	4 3 2				
bit 7-6 bit 5-0	100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 ut tied to RP0 hted: Read as f	4 3 2 0'	to the Correspo	onding RPn Pi	n bits	
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3 ut tied to RP0 hted: Read as f	4 3 2 0' apture 1 (IC1) 5 4 3	to the Correspo	onding RPn Pi	n bits	
	100011 = Inp 100010 = Inp 100000 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	but tied to RP3 but tied to RP0 Ited: Read as ' Assign Input Ca but tied to RP3 but tied to RP3 but tied to RP3 but tied to RP3;	4 3 2 0' apture 1 (IC1) 5 4 3	to the Correspo	onding RPn Pi	n bits	

REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
11.0	11.0						

REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0
Legend:							
D Doodoblob	:+		h:+		nonted hit read	oo 'O'	

REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

REGISTER 15-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP <15:8>			
bit 15							bit 8
Г							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	SE	EVTCMP <7:3>	•		—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-3 SEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

REGISTER 15-5: MDC: PWM MASTER DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	C<7:0>			
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

REGISTER 19-5: ADCPC0: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN1: Interrupt Request Enable 1 bit
	 1 = Enables IRQ generation when requested conversion of Channels AN3 and AN2 is completed 0 = IRQ is not generated
bit 14	PEND1: Pending Conversion Status 1 bit
	 1 = Conversion of Channels AN3 and AN2 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG1: Software Trigger 1 bit
	 1 = Starts conversion of AN3 and AN2 (if selected by the TRGSRCx bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND1 bit is set. 0 = Conversion has not started
Note 1:	The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-6: ADCPC1: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN3 ⁽¹⁾	PEND3 ⁽¹⁾	SWTRG3 ⁽¹⁾	TRGSRC34 ⁽¹⁾	TRGSRC33 ⁽¹⁾	TRGSRC32 ⁽¹⁾	TRGSRC31 ⁽¹⁾	TRGSRC30 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN2 ⁽²⁾	PEND2 ⁽²⁾	SWTRG2(2)	TRGSRC24(2)	TRGSRC23 ⁽²⁾	TRGSRC22 ⁽²⁾	TRGSRC21 ⁽²⁾	TRGSRC20 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, reac	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN3: Interrupt Request Enable 3 bit ⁽¹⁾ 1 = Enables IRQ generation when requested conversion of Channels AN7 and AN6 is completed 0 = IRQ is not generated
bit 14	PEND3: Pending Conversion Status 3 bit ⁽¹⁾
	 1 = Conversion of Channels AN7 and AN6 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG3: Software Trigger 3 bit ⁽¹⁾
	 1 = Starts conversion of AN7 and AN6 (if selected by the TRGSRCx bits)⁽³⁾ This bit is automatically cleared by hardware when the PEND3 bit is set. 0 = Conversion has not started
Note 1:	These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.

- 2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
- **3:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾ (CONTINUED)

```
bit 4-0
               TRGSRC4<4:0>: Trigger 4 Source Selection bits
               Selects trigger source for conversion of Analog Channels AN9 and AN8.
               11111 = Timer2 period match
               11011 = Reserved
               11010 = PWM Generator 4 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               10111 = PWM Generator 1 current-limit ADC trigger
               10110 = Reserved
               10010 = Reserved
               10001 = PWM Generator 4 secondary trigger is selected
               10000 = PWM Generator 3 secondary trigger is selected
               01111 = PWM Generator 2 secondary trigger is selected
               01110 = PWM Generator 1 secondary trigger is selected
               01101 = Reserved
               01100 = Timer1 period match
               01000 = Reserved
               00111 = PWM Generator 4 primary trigger is selected
               00110 = PWM Generator 3 primary trigger is selected
               00101 = PWM Generator 2 primary trigger is selected
               00100 = PWM Generator 1 primary trigger is selected
               00011 = PWM Special Event Trigger is selected
               00010 = Global software trigger is selected
               00001 = Individual software trigger is selected
               00000 = No conversion is enabled
```

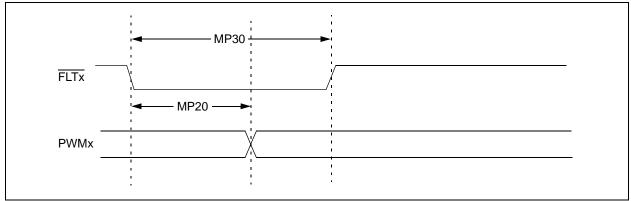
- Note 1: This register is only implemented in the dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-8: ADCPC3: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 3⁽¹⁾

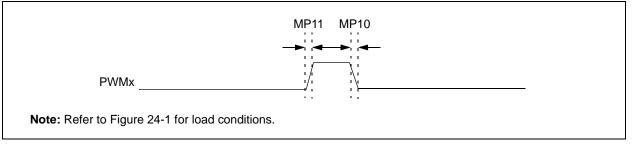
bit 4-0	TRGSRC6<4:0>: Trigger 6 Source Selection bits Selects trigger source for conversion of Analog Channels AN13 and AN12. 11111 = Timer2 period match
	00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected

- Note 1: This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Power-Down	Current (IPD) ⁽	2,4)						
DC60d	125	500	μA	-40°C				
DC60a	135	500	μΑ	+25°C	3.3V	Base Power-Down Current		
DC60b	235	500	μΑ	+85°C	3.3V	Base Power-Down Current		
DC60c	565	950	μΑ	+125°C				
DC61d	40	50	μΑ	-40°C				
DC61a	40	50	μΑ	+25°C	2.21/	Match do a Time of Course at Aburat(3)		
DC61b	40	50	μA	+85°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾		
DC61c	80	90	μA	+125°C				


TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.


2: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
- JTAG disabled
- **3:** The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.

FIGURE 24-9: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS

FIGURE 24-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 24-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time	—	2.5	—	ns	
MP11	TRPWM	PWMx Output Rise Time	—	2.5	—	ns	
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—		15	ns	
MP30	Тғн	Minimum PWMx Fault Pulse Width	8	_	—	ns	DTC<1:0> = 10
MP31	TPDLY	Tap Delay	1.04	—	—	ns	Аськ = 120 MHz
MP32	ACLK	PWMx Input Clock		_	120	MHz	See Note 2

Note 1: These parameters are characterized but not tested in manufacturing.

2: This parameter is a maximum allowed input clock for the PWMx module.

DC CHARACTERISTICS		Standard Operating Conditions (see Note 1): 3.0V to 3.6V Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
DA10	RLOAD	Resistive Output Load Impedance	ЗК	_	—	Ω	
DA11	CLOAD	Output Load Capacitance	—	20	35	pF	
DA12	Ιουτ	Output Current Drive Strength	-1740	±1400	+1770	μA	Sink and source
DA13	VRANGE	Full Output Drive Strength Voltage Range	AVss + 250 mV		AVDD – 900 mV	V	
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 μA	AVss + 50 mV	_	AVDD – 500 mV	V	
DA15	IDD	Current Consumed when Module is Enabled, High-Power Mode	369	626	948	μΑ	Module will always consume this current even if no load is connected to the output
DA16	ROUTON	Output Impedance when Module is Enabled	—	1200	—	Ω	

TABLE 24-44: DAC OUTPUT BUFFER DC SPECIFICATIONS

Note 1: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

28.1 Package Marking Information (Continued)

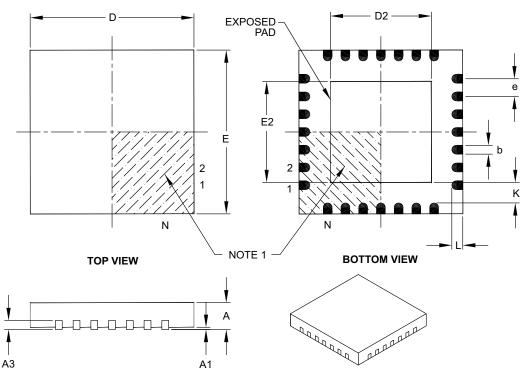
44-Lead QFN

44-Lead TQFP

44-Lead VTLA (TLA)

Example

Example



Example

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimens	Dimension Limits		NOM	MAX		
Number of Pins	Ν	28				
Pitch	е	0.65 BSC				
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	3.65	3.70	4.70		
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70		
Contact Width	b	0.23	0.38	0.43		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	К	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

TABLE A-1:	MAJOR SECTION UPDATES (CONTINUED)
------------	-----------------------------------

Section Name	Update Description
Section 23.0 "Electrical	Updated Typ values for Thermal Packaging Characteristics (Table 23-3).
Characteristics"	Removed Typ value for DC Temperature and Voltage Specifications Parameter DC12 (Table 23-4).
	Updated all Typ values and conditions for DC Characteristics: Operating Current (IDD), updated last sentence in Note 2 (Table 23-5).
	Updated all Typ values for DC Characteristics: Idle Current (IIDLE) (see Table 23-6).
	Updated all Typ values for DC Characteristics: Power Down Current (IPD) (see Table 23-7).
	Updated all Typ values for DC Characteristics: Doze Current (IDOZE) (see Table 23-8).
	Added Note 4 (reference to new table containing digital-only and analog pin information, as well as Current Sink/Source capabilities) in the I/O Pin Input Specifications (Table 23-9).
	Updated Max value for BOR electrical characteristics Parameter BO10 (see Table 23-11).
	Swapped Min and Typ values for Program Memory Parameters D136 and D137 (Table 23-12).
	Updated Typ values for Internal RC Accuracy Parameter F20 and added Extended temperature range to table heading (see Table 23-19).
	Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer Parameter SY20 and updated conditions, which now refers to Section 20.4 "Watchdog Timer (WDT) " and LPRC Parameter F21a (see Table 23-22).
	Added specifications to High-Speed PWM Module Timing Requirements for Tap Delay (Table 23-29).
	Updated Min and Max values for 10-bit High-Speed Analog-to-Digital Module Parameters AD01 and AD11 (see Table 23-36).
	Updated Max value and unit of measure for DAC AC Specification (see Table 23-40).