

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs402-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0			
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC			
bit 15							bit 8			
R/W-0 ⁽³) R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С			
bit 7							bit 0			
]			
Legend:		C = Clearable	e bit							
R = Reada	ble bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set				
0' = Bit is c	leared	'x = Bit is unk	nown	U = Unimpler	mented bit, read	l as '0'				
1.1.45										
bit 15		ator A Overflow	v Status bit							
	0 = Accumulator A has not overflowed									
bit 14	OB: Accumulator B Overflow Status bit									
	1 = Accumulator B has overflowed									
	0 = Accumulator B has not overflowed									
bit 13	SA: Accumula	ator A Saturation	on 'Sticky' Stat	tus bit ⁽¹⁾						
	1 = Accumula	tor A is satura	ted or has bee	en saturated at	some time					
h:+ 40		ator A Is not sat	turated							
DIT 12		ator B is saturation	on Sticky Stat	US DIL on saturated at	some time					
	0 = Accumula	ator B is not sat	turated		some time					
bit 11	0AB: OA O	B Combined A	ccumulator O	verflow Status	bit					
	1 = Accumula	tor A or B has	overflowed							
	0 = Neither A	ccumulator A c	or B has overfl	owed						
bit 10	SAB: SA SI	B Combined A	ccumulator 'St	icky' Status bit	(1,4)					
	1 = Accumula	ator A or B is sa	aturated or has	s been saturat	ed at some time	in the past				
hit 9		Active hit		ⁱ u						
bit 0	1 = DO loop in	progress								
	0 = DO loop n	ot in progress								
bit 8	DC: MCU AL	U Half Carry/B	orrow bit							
	1 = A carry-o	ut from the 4th	low-order bit (for byte-sized of	data) or 8th low-	order bit (for wo	ord-sized data)			
	of the res	sult occurred	th low-order h	vit (for byte-siz	ed data) or 8th	low-order bit (f	or word-sized			
	data) of t	he result occur	red							
Note 1:	This bit can be rea	d or cleared (n	ot set).							
2:	The IPL<2:0> bits	are concatena	ted with the IP	L<3> bit (COF	RCON<3>) to for	rm the CPU Inte	errupt Priority			
	Level (IPL). The va	alue in parenth	eses indicates	the IPL if IPL	<3> = 1. Úser in	terrupts are dis	sabled when			

- IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
- 4: Clearing this bit will clear SA and SB.

TABLE 4-45: PMD REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770		—		T2MD	T1MD	—	PWMMD	—	I2C1MD	-	U1MD		SPI1MD	—		ADCMD	0000
PMD2	0772	—	_	_	_	_	_	_	IC1MD	_	_	_	_	_	_	_	OC1MD	0000
PMD3	0774	—	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	_	—	0000
PMD4	0776	—	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	—	0000
PMD6	077A	—	_	_	_	_	_	PWM2MD	PWM1MD	_	_	_	_	_	_	_	—	0000
PMD7	077C	_	_	_	_	_	-	CMP2MD	CMP1MD	-	_		_	_		_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-46: PMD REGISTER MAP FOR dsPIC33FJ16GS402 AND dsPIC33FJ16GS404 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	T3MD	T2MD	T1MD	—	PWMMD	_	I2C1MD	_	U1MD		SPI1MD	_	—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	_	_	_	_	_		OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	_	_	_	—	_	_	_	_		_	_	0000
PMD4	0776	_	_	_	_	_	_	_	_	—	_	_	_	REFOMD		_	_	0000
PMD6	077A	_	_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_		_	_	0000
PMD7	077C	_	—	_	—	_	_	—	—	—	—	—	_	_	_	—	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PMD REGISTER MAP FOR dsPIC33FJ16GS502 AND dsPIC33FJ16GS504 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	-	—	T3MD	T2MD	T1MD	—	PWMMD	—	I2C1MD	_	U1MD	-	SPI1MD	_	—	ADCMD	0000
PMD2	0772	_	_	_	_	_	_	IC2MD	IC1MD	_	_		_	_		OC2MD	OC1MD	0000
PMD3	0774	_		—		_	CMPMD	—	—	—	-	_		_		_	_	0000
PMD4	0776			_			—	_	—	—		_		REFOMD	_	—		0000
PMD6	077A			_		PWM4MD	PWM3MD	PWM2MD	PWM1MD	—		_		_	-	—		0000
PMD7	077C	_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	—	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

The address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo	Address	sing a	ind B	it-Reversed
	Addressi	ng sho	ould n	not b	e enabled
	together.	If an a	oplicatio	on atte	empts to do
	so, Bit-R	leversed	Addres	ssing	will assume
	priority w	hen activ	ve for th	ne X W	AGU and X
	WAGU;	Modulo	Addres	ssing	will be dis-
	abled. H	lowever,	Modul	o Add	ressing wil
	continue	to function	on in th	e X R/	AGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

	-3. 111160				.ix I		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
DANO		11.0		DAMO		DAM 0	
R/W-U		0-0				R/W-U	0-0
SFIACERR	DIVUERR	_	MATHERR	ADDRERR	SIKERR	OSCFAIL	—
DIL 7							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit. read	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is clea	red	x = Bit is unkn	iown
	-						-
bit 15	NSTDIS: Inte	errupt Nesting I	Disable bit				
	1 = Interrupt	nesting is disa	bled				
	0 = Interrupt	nesting is enab	bled				
bit 14	OVAERR: Ac	cumulator A C	verflow Trap F	lag bit			
	1 = Trap was	caused by ove	erflow of Accur	nulator A			
hit 13		cumulator B C	verflow Trap F	Log bit			
DIL 13	1 = Trap was	caused by ove	erflow of Accur	nulator B			
	0 = Trap was	not caused by	overflow of A	ccumulator B			
bit 12	COVAERR: A	Accumulator A	Catastrophic C	Overflow Trap Fl	ag bit		
	1 = Trap was	caused by cat	astrophic over	flow of Accumul	ator A		
	0 = Trap was	not caused by	catastrophic o	overflow of Accu	imulator A		
bit 11	COVBERR: /	Accumulator B	Catastrophic (Overflow Trap Fl	lag bit		
	1 = Trap was 0 = Trap was	not caused by cat	astrophic over	now of Accumul	ator B Imulator B		
bit 10	OVATE: Accu	umulator A Ove	erflow Trap En	able bit			
	1 = Trap over	rflow of Accum	ulator A				
	0 = Trap is di	sabled					
bit 9	OVBTE: Acc	umulator B Ov	erflow Trap En	able bit			
	1 = I rap over	rflow of Accum	ulator B				
bit 8	COVTE: Cat	astrophic Over	flow Trap Enat	ole bit			
Sit O	1 = Trap on c	atastrophic ov	erflow of Accu	mulator A or B e	enabled		
	0 = Trap is di	sabled					
bit 7	SFTACERR:	Shift Accumul	ator Error Statu	us bit			
	1 = Math erro	or trap was cau	sed by an inva	alid accumulator	shift		
hit C	0 = Math error	or trap was not	Caused by an	Invalid accumula	ator shift		
DILO	1 - Math erro	ntran was cau	Sidius Dii Ised by a dividi	e-by-zero			
	0 = Math error	or trap was cat	caused by a divid	livide-by-zero			
bit 5	Unimplemen	ted: Read as	ʻ0'				
bit 4	MATHERR: A	Arithmetic Erro	r Status bit				
	1 = Math erro	or trap has occ	urred				
	0 = Math erro	or trap has not	occurred				
bit 3		Address Error	I rap Status bit				
	$\perp = Address = 0$ 0 = Address = 0	error trap has (error trap has i	not occurred				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—		—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—	ADCP6IE	ADCP5IE	ADCP4IE	ADCP3IE	ADCP2IE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4	ADCP6IE: AI	DC Pair 6 Conv	ersion Done I	nterrupt Enable	e bit		
	1 = Interrupt	request is enab	oled				
	0 = Interrupt	request is not e	enabled				
bit 3	ADCP5IE: AI	DC Pair 5 Conv	ersion Done I	nterrupt Enable	e bit		
	1 = Interrupt	request is enab	bled				
hit 2		DC Poir 4 Con		ntorrupt Enable	o hit		
DIL 2	1 - Interrupt	DC Fail 4 Conv		menupi Enable	e bit		
	0 = Interrupt	request is enac	enabled				
bit 1	ADCP3IE: AI	DC Pair 3 Conv	ersion Done I	nterrupt Enable	e bit		
	1 = Interrupt	request is enab	oled	•			
	0 = Interrupt	request is not e	enabled				
bit 0	ADCP2IE: AI	DC Pair 2 Conv	version Done I	nterrupt Enable	e bit		
	1 = Interrupt	request is enab	oled				
	0 = Interrupt	request is not e	enabled				

REGISTER 7-18: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4, or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by Equation 8-2.

EQUATION 8-2: Fosc CALCULATION

Fosc = Fin *
$$\left(\frac{M}{N1*N2}\right)$$

For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 8-3).

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 8-3: XT WITH PLL MODE EXAMPLE

FIGURE 8-2: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 PLL BLOCK DIAGRAM

_	-								
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	_	—			_	_		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	ROON: Refe	rence Oscillato	r Output Enab	ole bit					
	1 = Referenc	e oscillator out	out is enabled	on the REFCL	.K0 pin ⁽²⁾				
	0 = Referenc	e oscillator out	out is disabled	b					
bit 14	t 14 Unimplemented: Read as '0'								
bit 13	ROSSLP: Reference Oscillator Run in Sleep bit								
	1 = Referenc	e oscillator outp	out continues	to run in Sleep					
	0 = Referenc	e oscillator out	out is disabled	d in Sleep					
bit 12	ROSEL: Ref	erence Oscillato	or Source Sel	ect bit					
	1 = Oscillator $0 = System c$	r crystal is used clock is used as	as the reference	ence clock e clock					
bit 11-8	RODIV<3:0>	Reference Os	cillator Divide	er bits ⁽¹⁾					
	1111 = Refe	rence clock divi	ded by 32.76	8					
	1110 = Refe	rence clock divi	ded by 16,38	4					
	1101 = Refe	rence clock divi	ded by 8,192						
	1100 = Refe	rence clock divi	ded by 4,096						
	1011 = Refe	rence clock divi	ded by 2,048						
	1010 = Refe	rence clock divi	ded by 1,024 ded by 512						
	1000 = Refe	rence clock divi	ded by 256						
	0111 = Refe	rence clock divi	ded by 128						
	0110 = Refe	rence clock divi	ded by 64						
	0101 = Refe	rence clock divi	ded by 32						
	0100 = Refe	rence clock divi	ded by 16						
	0011 = Refe	rence clock divi	ded by 0 ded by 4						
	0001 = Refe	rence clock divi	ded by 2						
	0000 = Refe	rence clock	-						
bit 7-0	Unimplemer	nted: Read as '	0'						

REGISTER 8-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. Refer to Section 10.6 "Peripheral Pin Select" for more information.

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
Timer1 External Clock	T1CK	RPINR2	T1CKR<5:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Input Capture 2	IC2	RPINR7	IC2R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<5:0>
SPI Data Input 1	SDI1	RPINR20	SDI1R<5:0>
SPI Clock Input 1	SCK1	RPINR20	SCK1R<5:0>
SPI Slave Select Input 1	SS1	RPINR21	SS1R<5:0>
PWM Fault Input PWM1	FLT1	RPINR29	FLT1R<5:0>
PWM Fault Input PWM2	FLT2	RPINR30	FLT2R<5:0>
PWM Fault Input PWM3	FLT3	RPINR30	FLT3R<5:0>
PWM Fault Input PWM4	FLT4	RPINR31	FLT4R<5:0>
PWM Fault Input PWM5	FLT5	RPINR31	FLT5R<5:0>
PWM Fault Input PWM6	FLT6	RPINR32	FLT6R<5:0>
PWM Fault Input PWM7	FLT7	RPINR32	FLT7R<5:0>
PWM Fault Input PWM8	FLT8	RPINR33	FLT8R<5:0>
External Synchronization signal to PWM Master Time Base	SYNCI1	RPINR33	SYNCI1R<5:0>
External Synchronization signal to PWM Master Time Base	SYNCI2	RPINR34	SYNCI2R<5:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

10.6.2.3 Virtual Pins

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices support four virtual RPn pins (RP32, RP33, RP34 and RP35), which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See the MPLAB C30 Help files for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent many write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0				
bit 15							bit 8				
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	—	SDI1R5	SDI1R4	SDI1R3	SDI1R0						
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-14	-14 Unimplemented: Read as '0'										
bit 13-8	SCK1R<5:0>	: Assign SPI1	Clock Input (S	CK1IN) to the	Corresponding	RPn Pin bits					
	111111 = Inp	111111 = Input tied to Vss									
	100011 = Inp	100011 = Input tied to RP35									
	100010 = Inp	100010 = Input tied to RP34									
	100001 = Inp	out fied to RP3	3								
	100000 = inp	but tied to RP32	2								
	•										
	•										
	• 00000 – Inpu	it tied to RP0									
bit 7-6	Unimplemen	ted: Read as '	0'								
bit 5-0	SDI1R<5:0>	Assian SPI1 F	∘)ata Innut (SD	11) to the Corre	esponding RPn	Pin hits					
	111111 - Inn	אוועכס Assign Serri Data input (SDIT) to the Corresponding KPh Pin bits									
	100011 = lnp	100011 = Input tied to RP35									
	100010 = Input tied to RP34										
	100001 = Input tied to RP33										
	100000 = Inp	out tied to RP32	2								
	•										
	•										
	•										
	00000 = Inpu	It tied to RP0									

REGISTER 10-7: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER 14-1:	OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Output Compare x
	0 = Timer2 is the clock source for Output Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin is enabled
	110 = PWM mode on OCx, Fault pin is disabled
	101 = Initializes OCx pin low, generates continuous output pulses on OCx pin
	100 = Initializes OCx pin low, generates single output pulse on OCx pin
	011 = Compare event toggles OCx pin
	010 = Initializes OCx pin high, compare event forces OCx pin low
	001 = Initializes OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

NOTES:

DC CHA	DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions					
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP and RB5	
DI60b	Іісн	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB5 and digital 5V-tolerant designated pins	
DI60c	∑ lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 24-26: INPUT CAPTURE x TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operat (unless otherwis Operating temper	ing Conditions: 3 e stated) ature -40°C ≤ T/ -40°C ≤ T/	3.0V to 3.6V A ≤ +85°C fo A ≤ +125°C	/ or Industr for Exten	ial ded
Param No.	Param No. Symbol Characteristic ⁽¹⁾			Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time	No prescaler	0.5 TCY + 20		ns	
			With prescaler	10		ns	
IC11	TccH	ICx Input High Time	No prescaler	0.5 Tcy + 20		ns	
	With prescaler		With prescaler	10		ns	
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = Prescale value (1, 4, 16)

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 24-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions						
OC10	TccF	OCx Output Fall Time	—	—	—	ns	See Parameter DO32		
OC11	TccR	OCx Output Rise Time	— — — ns See Parameter DO31						

Note 1: These parameters are characterized but not tested in manufacturing.

^{© 2008-2014} Microchip Technology Inc.

DC CHARACTERISTICS				lard Oper ating temp	ating Condit erature: -40° -40°0	t ions (s C ≤ Ta : C ≤ Ta :	see Note 2): 3.0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param. No.	Symbol	Characteristic	Min	Тур	Typ Max		Comments
CM10	VIOFF	Input Offset Voltage	-58	+14/-40	66	mV	
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVDD - 1.5	V	
CM12	VGAIN	Open Loop Gain ⁽¹⁾	90	—	—	db	
CM13	CMRR	Common-Mode Rejection Ratio ⁽¹⁾	70	—	—	db	
CM14	TRESP	Large Signal Response	21	30	49	ns	V+ input step of 100 mv while V- input held at AVDD/2. Delay measured from analog input pin to PWM output pin.

TABLE 24-42: COMPARATOR MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

AC and DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 3.0V to 3.6V} \\ \mbox{Operating temperature: } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristic	Min Typ Max			Units	Comments	
DA01	EXTREF	External Voltage Reference ⁽¹⁾	0		AVDD - 1.6	V		
DA08	INTREF	Internal Voltage Reference ⁽¹⁾	1.25	1.32	1.41	V		
DA02	CVRES	Resolution	10			Bits		
DA03	INL	Integral Nonlinearity Error	-7	-1	+7	LSB	AVDD = 3.3V, DACREF = (AVDD/2)V	
DA04	DNL	Differential Nonlinearity Error	-5	-0.5	+5	LSB		
DA05	EOFF	Offset Error	0.4	-0.8	2.6	%		
DA06	EG	Gain Error	0.4	-1.8	5.2	%		
DA07	TSET	Settling Time ⁽¹⁾	711	1551	2100	nsec	Measured when range = 1 (high range), and CMREF<9:0> transitions from 0x1FF to 0x300.	

TABLE 24-43: DAC MODULE SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

AC CHARA	CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	10	25	ns			
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—	—	ns			
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35	—	—	ns			

TABLE 25-9: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 25-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	10	25	ns	
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35			ns	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	_	ns	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	

Note 1: These parameters are characterized but not tested in manufacturing.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-63276-216-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.