

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs402-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

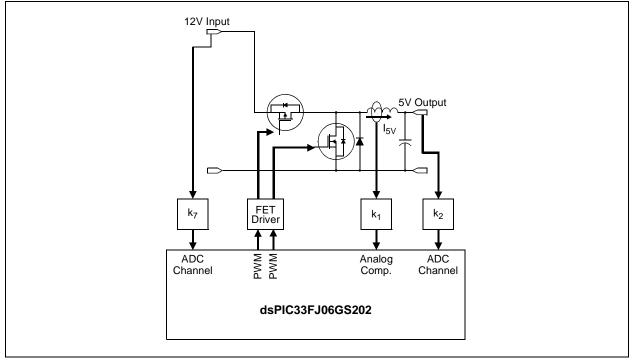
2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

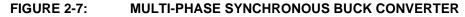
- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "*dsPIC33F/PIC24H Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

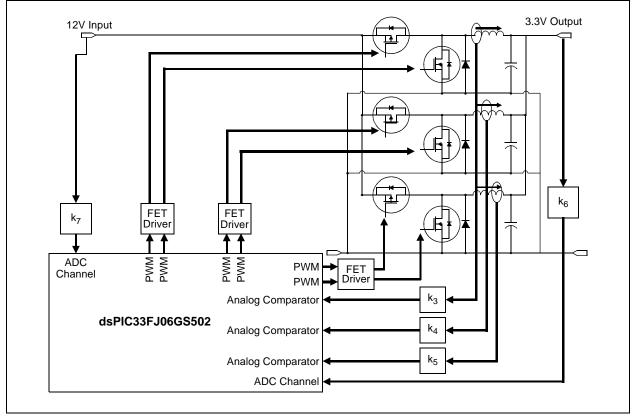
2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")VCAP
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP[™] Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")


2.2 Decoupling Capacitors


The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.


Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu$ F to $0.001 \ \mu$ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \ \mu$ F in parallel with $0.001 \ \mu$ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-6: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- Signed or Unsigned DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- Automatic Saturation On/Off for ACCA (SATA)
- Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF), including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS Register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

~

or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

• SB: ACCB saturated (bit 31 overflow and saturation)

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain.

TABLE 4-22: I2C1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_		_	_	—	—	- I2C1 Receive Register						0000			
I2C1TRN	0202	_		_	_		_	_	I2C1 Transmit Register						OOFF			
I2C1BRG	0204	_		_	_		_	_	Baud Rate Generator Register						0000			
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_		BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_		_	—		I2C1 Address Register						0000			
I2C1MSK	020C	—	_		_	_	_	AMSK<9:0>						0000				

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: UART1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	—	_				UART1	Transmit Re	egister				xxxx
U1RXREG	0226	_	_	_	_	_	—	_	UART1 Receive Register						0000			
U1BRG	0228	Baud Rate Generator Prescaler 00									0000							

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: SPI1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN		SPISIDL	—		—		_	_	SPIROV	_	_			SPITBF	SPIRBF	0000
SPI1CON1	0242	—	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	—	_	_	_	_	_	_	_	_	_	_	FRMDLY	—	0000
SPI1BUF	0248		SPI1 Transmit and Receive Buffer Register 0000								0000							

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
_	_	INT2IE	_	_	_	_	_				
bit 15		1					bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	_		INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE				
bit 7	•			1 1			bit C				
Legend:											
R = Readabl	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-14	Unimplemen	ted: Read as 'd)'								
bit 13	INT2IE: External Interrupt 2 Enable bit										
	1 = Interrupt request enabled										
	-	0 = Interrupt request not enabled									
bit 12-5	•	ted: Read as '0									
bit 4		nal Interrupt 1									
		equest enableo									
bit 3	•	change Notifica		Enable bit							
DIT 3	-	request enabled	•								
		equest not ena									
bit 2	AC1IE: Analo	g Comparator	1 Interrupt En	able bit							
	1 = Interrupt r	equest enabled	k								
	0 = Interrupt r	equest not ena	bled								
bit 1	MI2C1IE: I2C	1 Master Event	ts Interrupt Er	nable bit							
	1 = Interrupt request enabled										
	-	equest not ena									
	SI2C1IE: I2C1 Slave Events Interrupt Enable bit										
bit 0		1 Slave Events equest enabled									

R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1
ENAPLL	APLLCK	SELACLK	_	—	APSTSCLR2	APSTSCLR1	APSTSCLR
bit 15	•					•	bit 0
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ASRCSEL	FRCSEL	_			_	_	_
bit 7							
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimple	emented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		ʻ0' = Bit is c	leared	x = Bit is unkn	own
bit 15	ENAPLL: Au 1 = APLL is e 0 = APLL is d		ole bit				
bit 14	1 = Indicates	PLL Locked Statu that auxiliary PL that auxiliary PL	L is in lock				
bit 13	1 = Auxiliary	oscillators provi	des the sou	rce clock for a	Clock Divider bi auxiliary clock div auxiliary clock dir	rider	
bit 12-11	•	ited: Read as '0				Vider	
bit 10-8	-	:2:0>: Auxiliary (ıt Dividar hits			
	111 = Divideo 110 = Divideo 101 = Divideo 100 = Divideo 011 = Divideo 010 = Divideo 001 = Divideo 001 = Divideo	d by 1 d by 2 d by 4 d by 8 d by 16 d by 32 d by 64					
bit 7	1 = Primary o	Select Reference oscillator is the c input is selected	lock source		ry Clock bit		
bit 6		lect Reference (RC clock for aux		e for Auxiliary	PLL bit		
	0 = Input cloc	k source is dete		ASRCSEL bit	setting		

REGISTER 8-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROON	_	ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	_	—		—	—	—	—				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown				
bit 15	ROON: Refer	ence Oscillator	r Output Enab	ole bit							
				on the REFCL	.K0 pin ⁽²⁾						
		e oscillator outp		ł							
bit 14	Unimplemen	Unimplemented: Read as '0'									
bit 13	ROSSLP: Reference Oscillator Run in Sleep bit										
	 1 = Reference oscillator output continues to run in Sleep 0 = Reference oscillator output is disabled in Sleep 										
bit 12	ROSEL: Reference Oscillator Source Select bit										
	1 = Oscillator	crystal is used	as the refere	nce clock							
	•	lock is used as									
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾							
		ence clock divi	•								
		ence clock divi	•	4							
		ence clock divi ence clock divi									
		ence clock divi	-								
		ence clock divi	•								
		ence clock divi									
		ence clock divi	-								
	0111 = Refer	ence clock divi	ded by 128								
		ence clock divi	-								
		ence clock divi									
		ence clock divi									
		ence clock divi	-								
		ence clock divi ence clock divi	-								
	000T = Velet										
	0000 = Refer										

REGISTER 8-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. Refer to Section 10.6 "Peripheral Pin Select" for more information.

10.7 Peripheral Pin Select Registers

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices implement 34 registers for remappable peripheral configuration:

- 15 Input Remappable Peripheral Registers
- 17 Output Remappable Peripheral Registers

Note: Input and output register values can only be changed if OSCCON<IOLOCK> = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence. Not all output remappable peripheral registers are implemented on all devices. See the specific register description for further details.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:

=ogonan				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8

bit 7-0

INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss
100011 = Input tied to RP35
100010 = Input tied to RP34
100000 = Input tied to RP32
.
.
00000 = Input tied to RP0
Unimplemented: Read as '0'

© 2008-2014 Microchip Technology Inc.

REGISTER 15-7: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	\$x<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			d as '0'				
-n = Value at P	Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknown				nown		

bit 15-0 PDCx<15:0>: PWM Generator # Duty Cycle Value bits

- **Note 1:** In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	it U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown

bit 15-0 **SDCx<15:0>:** Secondary Duty Cycle for PWMxL Output Pin bits

- **Note 1:** The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0009, while the maximum pulse width generated corresponds to a value of Period-0x0008.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSBs.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDAT1	OVRDAT0	FLTDAT1 ⁽²⁾	FLTDAT0 ⁽²⁾	CLDAT1 ⁽²⁾	CLDAT0 ⁽²⁾	SWAP	OSYNC
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	PENH: PWN	/H Output Pin	Ownership bit				
		dule controls th	-				
	0 = GPIO mo	dule controls th	ne PWMxH pin	1			
bit 14		IL Output Pin C	=				
		dule controls th					
L:1 40		dule controls th					
bit 13		/H Output Pin	•				
		oin is active-low oin is active-hig					
bit 12	-	_ Output Pin Po					
		in is active-low	•				
	•	in is active-hig					
bit 11-10	PMOD<1:0>:	PWM # I/O P	in Mode bits ⁽¹)			
	11 = PWM I/0	D pin pair is in t	he True Indep	endent Output	t mode		
		D pin pair is in t		•			
		D pin pair is in t D pin pair is in t					
		Override Enabl	•		noue		
bit 9	-	<1> provides d					
		erator provides d			n pin		
bit 8	•	verride Enable					
		<0> provides d			pin		
		erator provides			- P		
bit 7-6	OVRDAT<1:0	>: Data for P	WMxH and PV	VMxL Pins if C	Override is Enab	led bits	
	If OVERENH	= 1, then OVR	DAT<1> provid	des data for P\	WМхН		
		= 1, then OVR	-				
bit 5-4	FLTDAT<1:0	State for P\	WMxH and PW	VMxL Pins if Fl	LTMOD is Enab	led bits ⁽²⁾	
		LTMOD> = 0:					
		ve, then FLTDA ve, then FLTDA	•				
		TLTMOD > = 1:	•				
		t is active, then			or PWMxH		
			P		PWMxL		

REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER

yield unpredictable results.

2: The state represents the active/inactive state of the PWM module depending on the POLH and POLL bit settings.

17.0 INTER-INTEGRATED CIRCUIT (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit (I²C[™])" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (l^2C) module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface, where:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

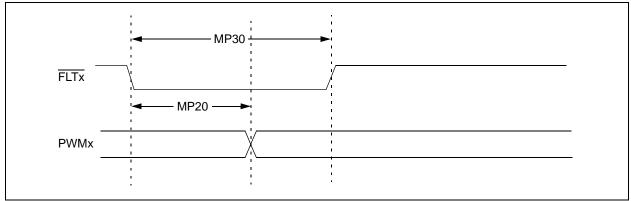
- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

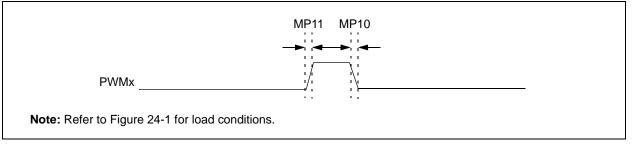
The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:


- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

REGISTER 19-8: ADCPC3: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 3⁽¹⁾

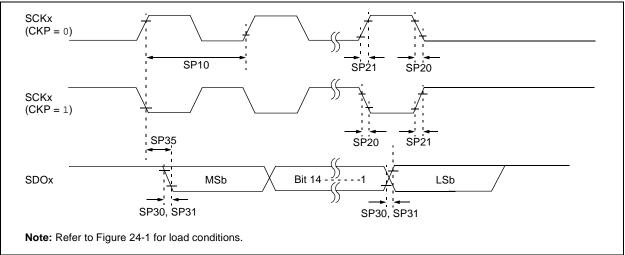

bit 4-0	TRGSRC6<4:0>: Trigger 6 Source Selection bits Selects trigger source for conversion of Analog Channels AN13 and AN12. 11111 = Timer2 period match
	00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected

- Note 1: This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

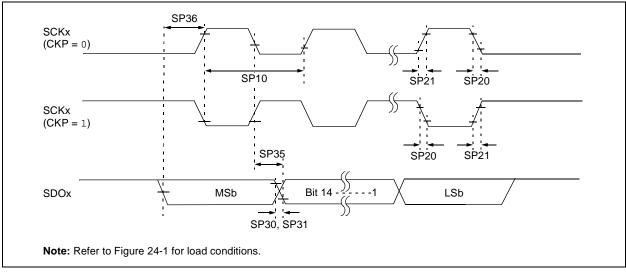
FIGURE 24-9: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS

FIGURE 24-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 24-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time	—	2.5	—	ns	
MP11	TRPWM	PWMx Output Rise Time	—	2.5	—	ns	
MP20	Tfd	Fault Input ↓ to PWM I/O Change	—		15	ns	
MP30	Тғн	Minimum PWMx Fault Pulse Width	8	_	—	ns	DTC<1:0> = 10
MP31	TPDLY	Tap Delay	1.04	—	—	ns	Аськ = 120 MHz
MP32	ACLK	PWMx Input Clock		_	120	MHz	See Note 2

Note 1: These parameters are characterized but not tested in manufacturing.


2: This parameter is a maximum allowed input clock for the PWMx module.

AC CHARA	CTERISTICS		Standard Operating (unless otherwise s Operating temperation	stated) ure -40°C ≤		
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP
15 MHz	Table 24-31	—	—	0,1	0,1	0,1
9 MHz	—	Table 24-32	—	1	0,1	1
9 MHz	—	Table 24-33	—	0	0,1	1
15 MHz	—	—	Table 24-34	1	0	0
11 MHz	—	—	Table 24-35	1	1	0
15 MHz	—	—	Table 24-36	0	1	0
11 MHz		—	Table 24-37	0	0	0

FIGURE 24-11: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING **CHARACTERISTICS**

SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING FIGURE 24-12: **CHARACTERISTICS**

25.1 High-Temperature DC Characteristics

TABLE 25-1: OPERATING MIPS VS. VOLTAGE

	VDD Range	Temperature Range	Max MIPS	
Characteristic	(in Volts)	(in °C)	dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04	
—	3.0V to 3.6V ⁽¹⁾	-40°C to +150°C	20	

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN. Refer to Parameter BO10 in Table 24-11 for BOR values.

TABLE 25-2: THERMAL OPERATING CONDITIONS

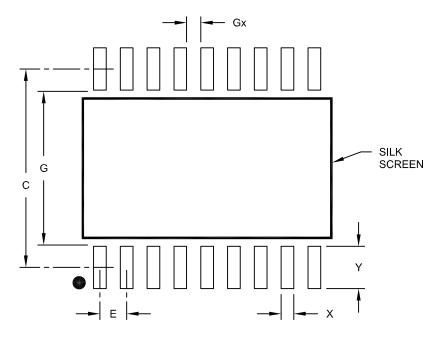

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		PINT + PI/c)	W
Maximum Allowed Power Dissipation	Pdmax	(TJ - TA)/θJ	A	W

TABLE 25-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	CTERISTIC	S	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature						
Parameter No.	Symbol	Characteristic	Min Typ Max Units Conditions						
Operating V	Voltage								
HDC10	Supply Vo	Itage							
	Vdd	—	3.0	3.3	3.6	V	-40°C to +150°C		

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	S		
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width	Х			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

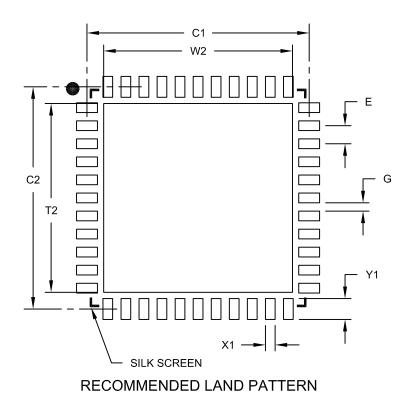
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units				
Dimension	Dimension Limits			MAX	
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	X			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S		
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2	6.60			
Optional Center Pad Length	T2	6.60			
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B