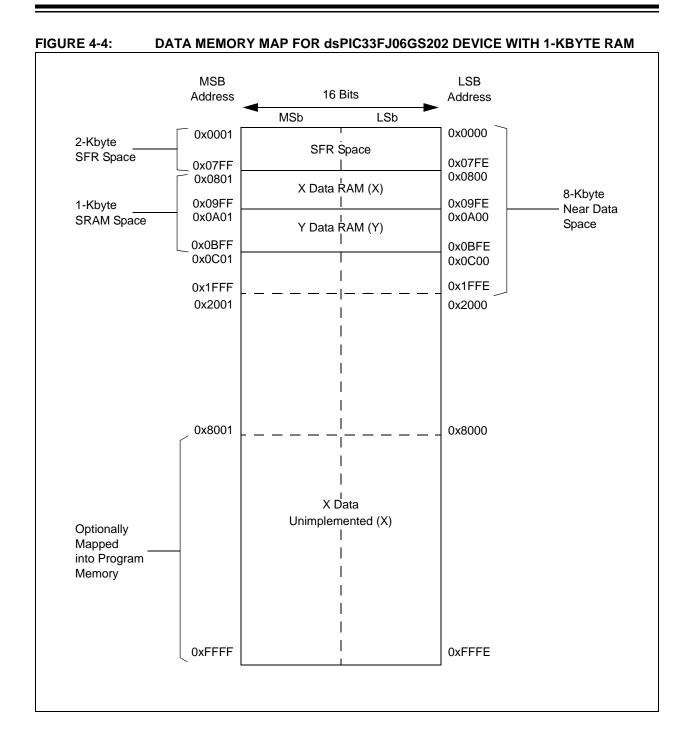


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs402-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000							Working Regi	ster 0									0000
WREG1	0002							Working Regi	ster 1									0000
WREG2	0004							Working Regi	ster 2									0000
WREG3	0006							Working Regi	ster 3									0000
WREG4	8000							Working Regi	ster 4									0000
WREG5	000A							Working Regi	ster 5									0000
WREG6	000C							Working Regi	ster 6									0000
WREG7	000E							Working Regi	ster 7									0000
WREG8	0010							Working Regi	ster 8									0000
WREG9	0012							Working Regi	ster 9									0000
WREG10	0014							Working Regis	ter 10									0000
WREG11	0016							Working Regis	ster 11									0000
WREG12	0018							Working Regis	ter 12									0000
WREG13	001A							Working Regis	ter 13									0000
WREG14	001C							Working Regis	ter 14									0000
WREG15	001E							Working Regis	ter 15									0800
SPLIM	0020						Sta	ck Pointer Limi	t Register									xxxx
ACCAL	0022							ACCAL										xxxx
ACCAH	0024							ACCAH										xxxx
ACCAU	0026	ACCA<39>	ACCA<39>				ACCA	AU				xxxx						
ACCBL	0028							ACCBL										xxxx
ACCBH	002A					-		ACCBH										xxxx
ACCBU	002C	ACCB<39>	ACCB<39>				ACCE	BU				XXXX						
PCL	002E						Program	Counter Low	Word Regist	er								0000
PCH	0030	_	_		—	—	—	_	_			Program	Counter H	igh Byte I	Register			0000
TBLPAG	0032	_		_	_	_	_	_	_			Table Pa	ge Address	8 Pointer	Register			0000
PSVPAG	0034	_	—	-	-	_	—	-	—		Program	Memory \	/isibility Pag	ge Addres	ss Pointe	r Register	r	0000
RCOUNT	0036						REPE	AT Loop Coun	ter Register									xxxx
DCOUNT	0038							DCOUNT<1	5:0>								-	xxxx
DOSTARTL	003A						DOS	STARTL<15:1:	>								0	xxxx
DOSTARTH	003C	_	_	_	_	_	_	_	_	_	_		D	OSTART	FH<5:0>			00xx
DOENDL	003E						DC	ENDL<15:1>									0	xxxx
DOENDH	0040	_	-		_	—	_	—	_	—	_			DOEN	IDH		-	00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	_	_	_	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000

TABLE 4-1: CPU CORE REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: TIMER REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 Re	egister								0000
PR1	0102								Period Re	gister 1								FFFF
T1CON	0104	TON	—	TSIDL	—	_	—	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2 Re	egister								0000
PR2	010C								Period Re	gister 2								FFFF
T2CON	0110	TON	_	TSIDL	_	—	_	_	—	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: TIMER REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ16GSX04

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 Re	egister								0000
PR1	0102								Period Reg	gister 1								FFFF
T1CON	0104	TON	_	TSIDL	_	-	_	_	_	-	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106		5												0000			
TMR3HLD	0108						Timer3	Holding Re	gister (for 3	2-bit timer o	perations o	nly)						xxxx
TMR3	010A								Timer3 Re	egister								0000
PR2	010C								Period Reg	gister 2								FFFF
PR3	010E								Period Reg	gister 3								FFFF
T2CON	0110	TON		TSIDL	_	_	_		—	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_		_	_	TGATE	TCKPS1	TCKPS0		-	TCS	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ06GS202

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140							Inpu	ut Capture	1 Register								xxxx
IC1CON	0142	_	—	ICSIDL	_		_	_		ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	—	GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	—	_	_		_	—	_	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	-	—	_	_		_	—	_	P6RDY	_	_	_	P2RDY	P1RDY	PORDY	0000
ADBASE	0308								ADBASE<1	5:1>							—	0000
ADCPC0	030A	IRQEN1	VI PENDI SWTRGI TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0 TRGSRC04 TRGSRC03 TRGSRC02 TRGSRC01 T												TRGSRC00	0000		
ADCPC1	030C	_	-	—	_	_		_	—	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC3	0310	_													TRGSRC60	0000		
ADCBUF0	0320								ADC E	Data Buffer	0							xxxx
ADCBUF1	0322								ADC E	Data Buffer	[.] 1							xxxx
ADCBUF2	0324								ADC E	Data Buffer	2							xxxx
ADCBUF3	0326								ADC E	Data Buffer	3							xxxx
ADCBUF4	0328								ADC E	Data Buffer	4							xxxx
ADCBUF5	032A								ADC E	Data Buffer	5							xxxx
ADCBUF12	0338								ADC D	ata Buffer	12							xxxx
ADCBUF13	033A								ADC D	Data Buffer	13							xxxx

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-28: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS402/404 DEVICES ONLY

	-				-							-						
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	_	GSWTRG	_	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	-	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	_	_	_	—	_	_	_	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	_	_	_	—	_	_	_	_	_	_	_	P3RDY	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308								ADBASE<15	:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCBUF0	0320								ADC D	ata Buffer	0							xxxx
ADCBUF1	0322								ADC D	ata Buffer	1							xxxx
ADCBUF2	0324								ADC D	ata Buffer	2							xxxx
ADCBUF3	0326								ADC D	ata Buffer	3							xxxx
ADCBUF4	0328								ADC D	ata Buffer	4							xxxx
ADCBUF5	032A								ADC D	ata Buffer	5							xxxx
ADCBUF6	032C		ADC Data Buffer 6															xxxx
ADCBUF7	032E								ADC D	ata Buffer	7							xxxx
Legend:	x =	unknown	value on	Reset, — =	unimplement	ed, read as '0'	. Reset value	s are shown i	n hexadecima	al.								

TABLE 4-31: ANALOG COMPARATOR CONTROL REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY

File Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	0540	CMPON		CMPSIDL	—	_	_		DACOE	INSEL1	INSEL0	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC1	0542	_	_	_	—		-					CMREF	<9:0>					0000
CMPCON2	0544	CMPON	_	CMPSIDL	—		-	_	DACOE	INSEL1	INSEL0	EXTREF		CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC2	0546	_	—	_	—	_	_	- CMREF<9:0>										0000

TABLE 4-32: ANALOG COMPARATOR CONTROL REGISTER MAP dsPIC33FJ16GS502/504 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	0540	CMPON	_	CMPSIDL	—	_	_	_	DACOE	INSEL1	INSEL0	EXTREF	—	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC1	0542	_	_	_	—		-					CMREF	-<9:0>					0000
CMPCON2	0544	CMPON	_	CMPSIDL	—		-	_	DACOE	INSEL1	INSEL0	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC2	0546	_	_	_	—		-					CMREF	-<9:0>					0000
CMPCON3	0548	CMPON	_	CMPSIDL	—		-	_	DACOE	INSEL1	INSEL0	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC3	054A	_	_	_	—		-					CMREF	-<9:0>					0000
CMPCON4	054C	CMPON	_	CMPSIDL	—		-	_	DACOE	INSEL1	INSEL0	EXTREF	_	CMPSTAT	_	CMPPOL	RANGE	0000
CMPDAC4	054E	_	_	_	—	_	—					CMREF	<9:0>					0000

TABLE 4-45: PMD REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	_	T2MD	T1MD	—	PWMMD	—	I2C1MD	-	U1MD		SPI1MD	—		ADCMD	0000
PMD2	0772	_	—	_	—	_	—	—	IC1MD	—		_	_	_	—		OC1MD	0000
PMD3	0774	_	—	_	—	_	CMPMD	—	_	—		_	_	_	—		—	0000
PMD4	0776	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	—	0000
PMD6	077A	_	_	_	_	_	_	PWM2MD	PWM1MD	_	_	_	_	_	_	_	—	0000
PMD7	077C	_	_	_	_	_	_	CMP2MD	CMP1MD	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-46: PMD REGISTER MAP FOR dsPIC33FJ16GS402 AND dsPIC33FJ16GS404 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_		T3MD	T2MD	T1MD	_	PWMMD	—	I2C1MD	_	U1MD		SPI1MD	_	_	ADCMD	0000
PMD2	0772			_	_	_	_	IC2MD	IC1MD	_	_	_	_	_	-	OC2MD	OC1MD	0000
PMD3	0774			_	_	_	_	_	_	_	_	_	_	_	-	_	—	0000
PMD4	0776			_	_	_	_	_	_	_	_	_	_	REFOMD	-	_	—	0000
PMD6	077A			_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	-	_	—	0000
PMD7	077C			_	_	_	_	_	_	_	_	_	_	_	-	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PMD REGISTER MAP FOR dsPIC33FJ16GS502 AND dsPIC33FJ16GS504 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	-	_	T3MD	T2MD	T1MD	_	PWMMD	—	I2C1MD	_	U1MD	_	SPI1MD	_	—	ADCMD	0000
PMD2	0772	_	_	_		_	_	IC2MD	IC1MD	_		—	_	_	_	OC2MD	OC1MD	0000
PMD3	0774	-	_				CMPMD			_		_	—				—	0000
PMD4	0776	-	_							_		_	—	REFOMD			—	0000
PMD6	077A	_	_	_		PWM4MD	PWM3MD	PWM2MD	PWM1MD	_		_	_	_	_	_	—	0000
PMD7	077C	_	_			CMP4MD	CMP3MD	CMP2MD	CMP1MD	_		_	_	_			_	0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

The address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. If an application attempts to do
	so, Bit-Reversed Addressing will assume
	priority when active for the X WAGU and X
	WAGU; Modulo Addressing will be dis-
	abled. However, Modulo Addressing will
	continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

OA OB SA SB OAB SAB DA DC bit 15								
bit 15 R/W-0 ⁽³⁾ R/W-0 ⁽³⁾ R/W-0 ⁽³⁾ R-0 R/W-0 R/W-0 R/W-0 R/W IPL2 ⁽²⁾ IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z C bit 7	R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
R/W-0 ⁽³⁾ R/W-0 ⁽³⁾ R-0 R/W-0 R/W-0 R/W IPL2 ⁽²⁾ IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z C bit 7 </td <td>OA</td> <td>OB</td> <td>SA</td> <td>SB</td> <td>OAB</td> <td>SAB</td> <td>DA</td> <td>DC</td>	OA	OB	SA	SB	OAB	SAB	DA	DC
IPL2 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z C bit 7	bit 15							bit 8
IPL2 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z C bit 7								
bit 7	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	C
Legend: C = Clearable bit	bit 7				•			bit 0
Legend: C = Clearable bit								
	Legend:		C = Clearable	bit				

REGISTER 7-1: SR: CPU S	STATUS REGISTER ⁽¹⁾
-------------------------	--------------------------------

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0	
—	—	—	US	EDT	DL2	DL1	DL0	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0	
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF	
bit 7							bit 0	
Legend:		C = Clearable	bit					
R = Readable bit W = Writable		W = Writable	bit -n = Value at P		POR	'1' = Bit is set		
0' = Bit is cleared 'x = Bit is unknown			nown	U = Unimplemented bit, read as '0'				
							,	

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

1 = CPU Interrupt Priority Level is greater than 7
 0 = CPU Interrupt Priority Level is 7 or less

IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

bit 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—		_	—	_	_					
oit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	AC4IP2	AC4IP1	AC4IP0		AC3IP2	AC3IP1	AC3IP0				
bit 7							bit				
Legend: R = Readat	le bit	W = Writable	hit	II – Unimplen	nented bit, rea	d as '0'					
-n = Value a		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$		x = Bit is unkr					
					aleu		100011				
bit 15-7	Unimplomon	tod: Pood os '	0'								
	-	Unimplemented: Read as '0'									
bit 6-4		AC4IP<2:0>: Analog Comparator 4 Interrupt Priority bits									
	⊥⊥⊥ = Interru	111 = Interrupt is Priority 7 (highest priority)									
	•										
	•										
	•										
	• 001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled								
bit 3	000 = Interru										
bit 3 bit 2-0	000 = Interru Unimplemen	pt source is dis ted: Read as '	0'	upt Priority bits							
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as ' Analog Comp	0' arator 3 Interr	upt Priority bits ty)							
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as '	0' arator 3 Interr								
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as ' Analog Comp	0' arator 3 Interr								
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as ' Analog Comp	0' arator 3 Interr								
	000 = Interru Unimplemen AC3IP<2:0>:	pt source is dis ted: Read as ' Analog Compa pt is Priority 7 (0' arator 3 Interr								

REGISTER 7-31: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0						
bit 15							bit 8						
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
0-0	0-0	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0						
bit 7		UTIVILU	01101104	0110010	OTIVITZ	UIIXI	bit (
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15-14	Unimplement	ted. Dood oo '	<u>,</u>										
	-	ted: Read as '											
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits												
				111111 = Input tied to Vss									
	111111 = I np												
	111111 = Inp 100011 = Inp	ut tied to RP35											
	111111 = Inp 100011 = Inp 100010 = Inp	ut tied to RP35 ut tied to RP34	ŀ										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32	L 3										
bit 7-6	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp • • • • 00000 = Inpu	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0	4 3 2										
bit 7-6 bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplemen	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '(L 3 2	IRX) to the Co	rresponding RF	Pn Pin bits							
bit 7-6 bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplement U1RXR<5:0>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART	L 3 2	IRX) to the Co	rresponding RF	n Pin bits							
	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplement U1RXR<5:0> 111111 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART)) 1 Receive (U ⁷	IRX) to the Co	rresponding RF	n Pin bits							
	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplement U1RXR<5:0> 111111 = Inp 100011 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss	1 2 1 Receive (U ⁷	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	Pn Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	'n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	Pn Pin bits							

REGISTER 10-6: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

REGISTER 1	1-1: T1CO	N: TIMER1 C	ONTROL RE	GISTER						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON	—	TSIDL	—	—	—	—				
bit 15							bit 8			
	D 4 4 4				5444.6	D b b c c				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own			
bit 15	TON: Timer1	On bit								
	1 = Starts 16-	bit Timer1								
	0 = Stops 16-	bit Timer1								
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	TSIDL: Timer	TSIDL: Timer1 Stop in Idle Mode bit								
		ues module op s module opera			dle mode					
bit 12-7		ted: Read as '								
bit 6	-			n Enable bit						
bit 0	TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1:									
	This bit is igno									
	When TCS =	0:								
		e accumulation								
bit E 1		e accumulation		- Coloct hito						
bit 5-4	TCKPS<1:0> Timer1 Input Clock Prescale Select bits									
	11 = 1:256 10 = 1:64									
	01 = 1:8									
	00 = 1:1									
bit 3	Unimplemen	ted: Read as '	0'							
bit 2	TSYNC: Time	er1 External Clo	ock Input Synd	chronization Se	elect bit					
	When TCS =									
		izes external c		aput						
	When TCS =	synchronize e>	Riemai Ciuck II	iput						
	This bit is igno									
bit 1	•	Clock Source S	Select bit							
		clock from T1C		rising edge)						
	0 = Internal cl									

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

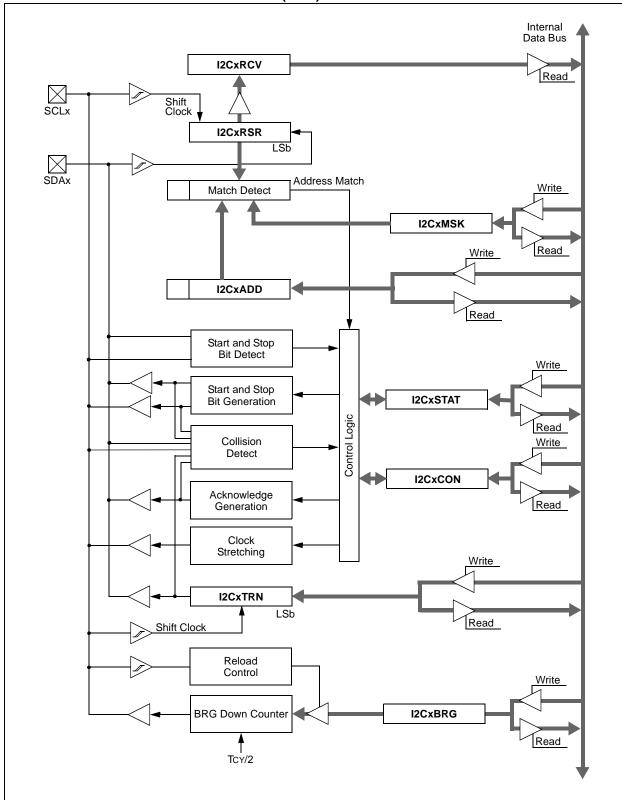
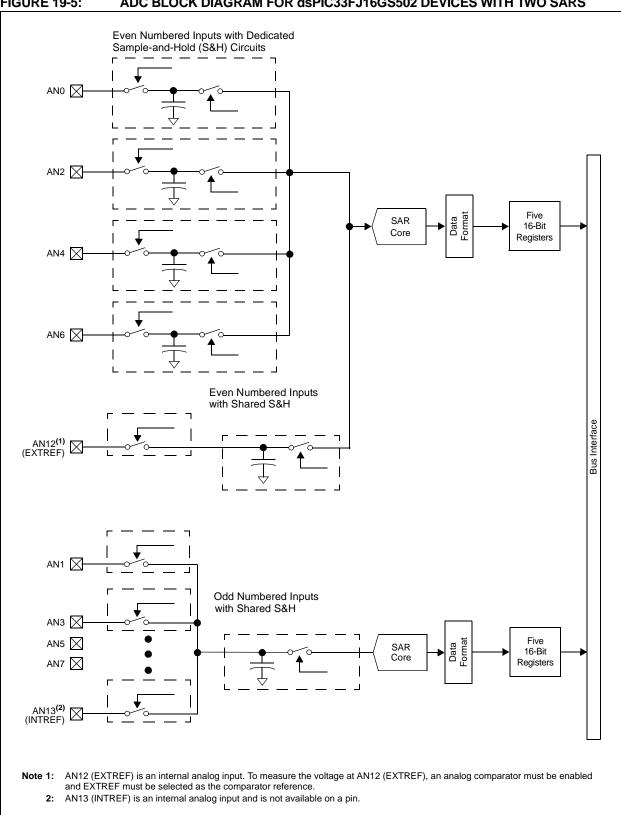



FIGURE 17-1: I2Cx BLOCK DIAGRAM (x = 1)

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40
bit 7							bit 0

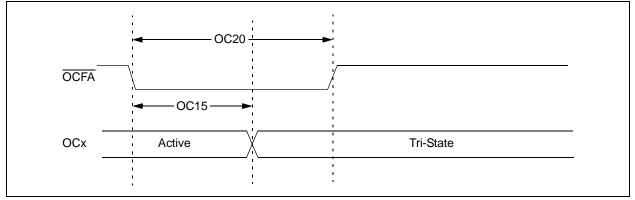
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN5: Interrupt Request Enable 5 bit
	 1 = Enables IRQ generation when requested conversion of Channels AN11 and AN10 is completed 0 = IRQ is not generated
bit 14	PEND5: Pending Conversion Status 5 bit
	 1 = Conversion of Channels AN11 and AN10 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG5: Software Trigger 5 bit
	1 = Starts conversion of AN11 and AN10 (if selected by the TRGSRCx bits) ⁽²⁾
	This bit is automatically cleared by hardware when the PEND5 bit is set.
	0 = Conversion has not started
Note 1:	This register is only implemented in the dsPIC33FJ16GS504 devices.

2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

Bit Field	Register	RTSP Effect	Description
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection bit
			1 = Boot segment can be written
			0 = Boot segment is write-protected
BSS<2:0>	FBS	Immediate	Boot Segment Program Flash Code Protection Size bits
			x11 = No boot program Flash segment
			Boot Space is 256 Instruction Words (except interrupt vectors): 110 = Standard security; boot program Flash segment ends at 0x0003FE
			010 = High security; boot program Flash segment ends at 0x0003FE
			Boot Space is 768 Instruction Words (except interrupt vectors):
			101 = Standard security; boot program Flash segment ends at 0x0007FE
			001 = High security; boot program Flash segment ends at 0x0007FE
			Boot Space is 1792 Instruction Words (except interrupt vectors): 100 = Standard security; boot program Flash segment ends at 0x000FFE
			000 = High security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bits
			11 = User program memory is not code-protected
			10 = Standard security
014/00			0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit
			 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	Two-speed Oscillator Start-up Enable bit
			1 = Start-up device with FRC, then automatically switch to the
			user-selected oscillator source when ready
			0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch	Initial Oscillator Source Selection bits
		is enabled, RTSP effect	111 = Internal Fast RC (FRC) Oscillator with Postscaler
		is on any	110 = Internal Fast RC (FRC) Oscillator with Divide-by-16 101 = LPRC Oscillator
		device Reset;	100 = Reserved
		otherwise,	011 = Primary (XT, HS, EC) Oscillator with PLL
		Immediate	010 = Primary (XT, HS, EC) Oscillator
			001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits
		minodiato	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
			01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration bit
			1 = Allows only one reconfiguration
			0 = Allows multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes)
			1 = OSC2 is the clock output
			0 = OSC2 is the general purpose digital I/O pin

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION

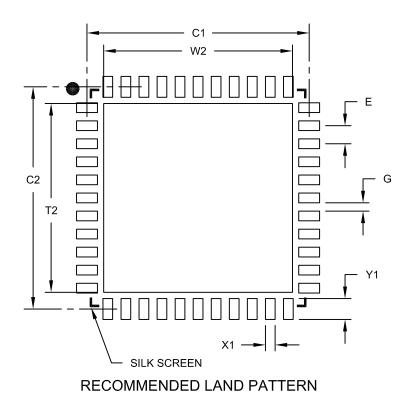

TABLE 24-22:	RESET, WATCHDOG TIMER,	OSCILLATOR START-UP TIMER,	POWER-UP TIMER
	TIMING REQUIREMENTS		

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Conditions			
SY10	ТмсL	MCLR Pulse Width (low)	2	_	—	μS	-40°C to +85°C	
SY11	TPWRT	Power-up Timer Period		2 4 8 16 32 64 128	_	ms	-40°C to +85°C, User programmable	
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS		
SY20	Twdt1	Watchdog Timer Time-out Period				ms	See Section 21.4 "Watch- dog Timer (WDT) " and LPRC Parameter F21a (Table 24-20)	
SY30	Tost	Oscillator Start-up Time		1024 Tosc	—	—	Tosc = OSC1 period	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 24-8: OCx/PWMx MODULE TIMING CHARACTERISTICS


TABLE 24-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				35°C for Industrial	
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions				
OC15	Tfd	Fault Input to PWMx I/O Change	_	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	_	—	ns	

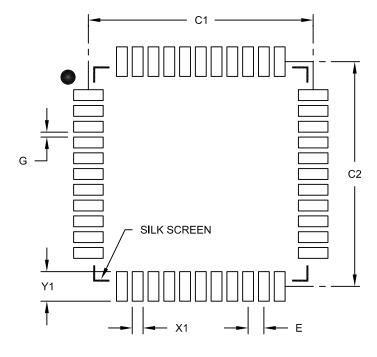
Note 1: These parameters are characterized but not tested in manufacturing.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

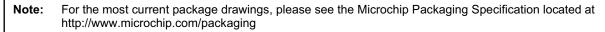
Microchip Technology Drawing No. C04-2103B

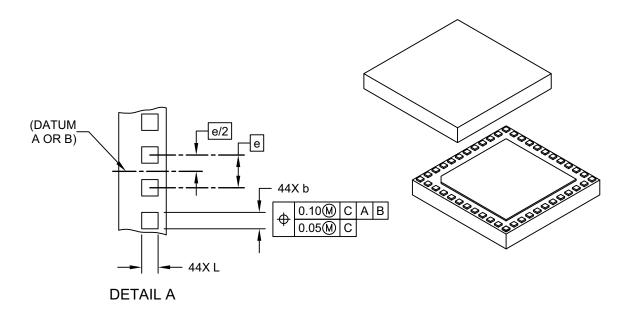
44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX			
Contact Pitch	E	0.80 BSC					
Contact Pad Spacing	C1	11.40					
Contact Pad Spacing	C2		11.40				
Contact Pad Width (X44)	X1			0.55			
Contact Pad Length (X44)	Y1			1.50			
Distance Between Pads	G	0.25					


Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	N	44			
Number of Terminals per Side	ND		12		
Number of Terminals per Side	NE		10		
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	4.40	4.55	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70	
Terminal Width	b	0.20	0.25	0.30	
Terminal Length	L	0.20	0.25	0.30	
Terminal-to-Exposed Pad	К	0.20			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157D Sheet 2 of 2