

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs402t-50i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	—	—	_	—	—	—	_	_	_	—	—	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	—	—	INT2IF	_	_	—	—	—	_	_	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS3	008A	—	_	_	_	_	_	PSEMIF	_	_	_	_	_	_	_	_	_	0000
IFS4	008C	—	_	_	_	_	_	_	_	_	_	_	_	_	_	U1EIF	_	0000
IFS5	008E	PWM2IF	PWM1IF	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	AC4IF	AC3IF	AC2IF	_	_	_	_	_	PWM4IF	PWM3IF	0000
IFS7	0092	—	_	_	_	_	_	_	_	_	_	_	ADCP6IF	_	_	ADCP3IF	ADCP2IF	0000
IEC0	0094	—	_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	—	_	INT2IE	_	—		—	—	_	—	—	INT1IE	CNIE	AC1IE	MI2C1IE	SI2C1IE	0000
IEC3	009A	_	_		—	—		PSEMIE	_	_	—	—	_	_	_	_	_	0000
IEC4	009C	_	_		—	—		_	_	_	—	—	_	_	_	U1EIE	_	0000
IEC5	009E	PWM2IE	PWM1IE		—	—		_	_	_	—	—	_	_	_	_	_	0000
IEC6	00A0	ADCP1IE	ADCP0IE		—	—		AC4IE	AC3IE	AC2IE	—	—	_	_	_	PWM4IE	PWM3IE	0000
IEC7	00A2	_	_		—	—		_	_	_	—	—	ADCP6IE	_	_	ADCP3IE	ADCP2IE	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP2	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0		_	_	_	4440
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_		—	—		_	_	-	ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	—	AC1IP2	AC1IP1	AC1IP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_		—	—		_	_	_	—	—	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC7	00B2	_	_		—	—		_	_	_	INT2IP2	INT2IP1	INT2IP0	_	_	_	_	0040
IPC14	00C0	_	_			_		_	_	—	PSEMIP2	PSEMIP1	PSEMIP0	_	_	—	—	0040
IPC16	00C4	—	—	_	—	_	—	—	—	—	U1EIP2	U1EIP1	U1EIP0	—	_	—	—	0040
IPC23	00D2	—	PWM2IP2	PWM2IP1	PWM2IP0	—	PWM1IP2	PWM1IP1	PWM1IP0	—	_	—	—	—	_	—	—	4400
IPC24	00D4	—	—	_	—	_	—	—	—	—	PWM4IP2	PWM4IP1	PWM4IP0	—	PWM3IP2	PWM3IP1	PWM3IP0	0044
IPC25	00D6	_	AC2IP2	AC2IP1	AC2IP0	—		_	_	_	—	—	_	_	_	_	_	4000
IPC26	00D8	—	—	_	—	_	—	—	—	—	AC4IP2	AC4IP1	AC4IP0	—	AC3IP2	AC3IP1	AC3IP0	0044
IPC27	00DA	—	ADCP1IP2	ADCP1IP1	ADCP1IP0	—	ADCP0IP2	ADCP0IP1	ADCP0IP0		—	_	—	—	—	_	—	4400
IPC28	00DC	—	—	—	_	_	—	—	—	-	ADCP3IP2	ADCP3IP1	ADCP3IP0	—	ADCP2IP2	ADCP2IP1	ADCP2IP0	0044
IPC29	00DE	—	—	—	_	_	—	—	—	-	—	_	—	—	ADCP6IP2	ADCP6IP1	ADCP6IP0	0004
INTTREG	00E0	_	_		_	ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-9: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ16GS502 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

TABLE 4-35: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402 AND dsPIC33FJ16GS502

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0			RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_		RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06D2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0		_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06D4	_		RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	_		RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06D6	_		RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_		RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06D8			RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	-		RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06DA			RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	-		RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06DC			RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	-		RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06DE			RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	-		RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR16	06F0			RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	-		RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR17	06F2	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-36: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0	—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	_		RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06D2	_	_	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	_	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06D4	_	_	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06D6	—	—	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_		RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06D8	—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_		RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06DA	_	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06DC	_	_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	_	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06DE	_	_	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	_	_	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06E0	_	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	_	_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06E2	_	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	_	_	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06E4	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06E6	_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06E8	_	_	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06EA	_	_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06EC	_	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0	_	_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR16	06F0	_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR17	06F2	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ06GS101/ X02 and dsPIC33FJ16GSX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. The application can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-50 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

	Access	Program Space Address									
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>					
Instruction Access	User	0		0							
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0									
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>							
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xx	xxxx xxxx xxxx						
	Configuration	TB	LPAG<7:0>	Data EA<15:0>							
		1	xxx xxxx								
Program Space Visibility	User	0	PSVPAG<7	7:0> Data EA<14:0> ⁽¹⁾							
(Block Remap/Read)		0	XXXX XXXX	x xxx xxxx xxxx xxxx							

TABLE 4-50: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

6.8.2 UNINITIALIZED W REGISTER RESET

Any attempt to use the Uninitialized W register as an Address Pointer will reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (boot and secure segment), that operation will cause a Security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an interrupt or trap vector.

Refer to Section 21.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the Reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or Uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	_

TABLE 6-3: RESET FLAG BIT OPERATION

Note: All Reset flag bits can be set or cleared by user software.

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note:	At a devic	e Rese	et, the	PC	Cx reg	isters are
	initialized	such	that	all	user	interrupt
	sources a	re assi	gned	to P	riority	Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value 0xE0 with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of 7
	or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

8.4 Oscillator Control Registers

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,2)

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—	COSC2	COSC1	COSC0	—	NOSC2 ⁽³⁾	NOSC1 ⁽³⁾	NOSC0 ⁽³⁾
bit 15							bit 8
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	U-0	R/W-0
CLKLOCK	IOLOCK	LOCK	_	CF		_	OSWEN
bit 7							bit 0

Legend:	y = Value set from Configuration bits on POR								
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 15	Unimplemented: Read as '0'
bit 14-12	2 COSC<2:0>: Current Oscillator Selection bits (read-only)
	111 = Fast RC oscillator (FRC) with divide-by-n
	110 = Fast RC oscillator (FRC) with divide-by-16
	101 = Low-Power RC oscillator (LPRC)
	100 = Reserved
	011 = Primary oscillator (XT, HS, EC) with PLL
	010 = Primary oscillator (XI, HS, EC)
	001 = Fast RC oscillator (FRC) with PLL
L:1.44	000 = Fast RC Oscillator (FRC)
DICTI	Unimplemented: Read as 0
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ^(*)
	111 = Fast RC oscillator (FRC) with divide-by-n
	110 = Fast RC oscillator (FRC) with divide-by-16
	101 = Low-Fower RC Oscillator (LFRC)
	011 = Primary oscillator (XT HS EC) with PU
	010 = Primary oscillator (XT, HS, EC)
	001 = Fast RC oscillator (FRC) with PLL
	000 = Fast RC oscillator (FRC)
bit 7	CLKLOCK: Clock Lock Enable bit
	If Clock Switching is Enabled and FSCM is Disabled, (FOSC <fcksm> = 0b01):</fcksm>
	1 = Clock switching is disabled, system clock source is locked
	0 = Clock switching is enabled, system clock source can be modified by clock switching
bit 6	IOLOCK: Peripheral Pin Select Lock bit
	1 = Peripheral Pin Select is locked, write to Peripheral Pin Select registers not allowed
	0 = Peripheral Pin Select is not locked, write to Peripheral Pin Select registers allowed
bit 5	LOCK: PLL Lock Status bit (read-only)
	1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied
	0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled
bit 4	Unimplemented: Read as '0'
Note 1:	Writes to this register require an unlock sequence. Refer to "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip web site) for details.
2:	This register is reset only on a Power-on Reset (POR).
3:	Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC

mode as a transition clock source between the two PLL modes.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	SCK1R<5:0>	: Assign SPI1	Clock Input (S	CK1IN) to the	Corresponding	RPn Pin bits	
	111111 = Inp	out tied to Vss					
	100011 = Inp	out tied to RP3	5				
	100010 = Inp	out tied to RP34	1				
	100001 = Inp	out fied to RP3	3				
	100000 = inp	but tied to RP32	2				
	•						
	•						
	• 00000 – Inpu	it tied to RP0					
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	SDI1R<5:0>	Assian SPI1 F	∘)ata Innut (SD	11) to the Corre	esponding RPn	Pin hits	
	111111 - Inn	vit tied to Vss			coportaing rentri		
	100011 = lnp	out tied to RP3!	5				
	$100011 = \ln p$	out tied to RP34	1				
	100001 = Inp	out tied to RP33	3				
	100000 = Inp	out tied to RP32	2				
	•						
	•						
	•						
	00000 = Inpu	It tied to RP0					
	·						

REGISTER 10-7: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	SYNCI1R5	SYNCI1R4	SYNCI1R3	SYNCI1R2	SYNCI1R1	SYNCI1R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	SYNCI1R<5:0	0>: Assign PW a RPn Pin hits	M Master Time	e Base Extern	al Synchronizat	ion Signal to th	e
	1111111 = Inn	out tied to Vss					
	100011 = Inp	out tied to RP35	5				
	100010 = Inp	out tied to RP34	1				
	100001 = Inp 100000 = Inp	but fied to RP33	5				
	•		-				
	•						
	•						
	00000 = Inpu	It tied to RP0					
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	FLT8R<5:0>:	Assign PWM I	ault Input 8 (F	FLT8) to the C	orresponding R	Pn Pin bits	
	111111 = Inp	out tied to Vss					
	100011 = Inp	but fied to RP35	5				
	100010 = Inp 100001 = Inp	out tied to RP32	}				
	100000 = Inp	out tied to RP32	2				
	•						
	•						
	•						
	00000 = Inpu	it tied to RP0					

REGISTER 10-13: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

NOTES:

REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER (CONTINUED)

bit 3-2	CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMODE is Enabled bits ⁽²⁾
	FCLCONx <ifltmod> = 0: Normal Fault mode:</ifltmod>
	If current-limit is active, then CLDAT<1> provides the state for PWMxH
	If current-limit is active, then CLDAT<0> provides the state for PWMxL
	FCLCONx <ifltmod> = 1: Independent Fault mode:</ifltmod>
	CLDAT<1:0> bits are ignored.
bit 1	SWAP<1:0>: Swap PWMxH and PWMxL pins
	1 = PWMxH output signal is connected to the PWMxL pin and the PWMxL signal is connected to the PWMxH pins
	0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit
	1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
	0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
Note 1:	These bits should be changed only when PTEN = 0. Changing the clock selection during operation will

- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 2: The state represents the active/inactive state of the PWM module depending on the POLH and POLL bit settings.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMO	D CLSRC4 ^(2,3)	CLSRC3 ^(2,3)	CLSRC2(2,3)	CLSRC1 ^(2,3)	CLSRC0 ^(2,3)	CLPOL ⁽¹⁾	CLMOD
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSRC4	^(2,3) FLTSRC3 ^(2,3)	FLTSRC2 ^(2,3)	FLTSRC1 ^(2,3)	FLTSRC0 ^(2,3)	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown
bit 15	IFLTMOD: Inc	dependent Fau	It Mode Enable	e bit			
	1 = Independ	lent Fault mode	: Current-limit	input maps FLT	TDAT1 to PWM	xH output and	the Fault inp
	maps FL	TDAT0 to the P	WMxL output.	The CLDAT<1	:0> bits are not	used for overr	ide functions
	0 = Normal F	ault mode: Cu	Irrent-limit feat	ture maps CLE	DAT<1:0> bits t	to the PWMxH	I and PWMx
hit 1 1 1 0			Control Signo	FLIDAI<1.0>		and PVVIVIXL C	ouipuis. a)
DIL 14-10	11111 - Boo	Current-Limit	Control Signa	I Source Select	l IOI PWW # Ge	nerator bits -,-	,
	•	erveu					
	•						
	•						
	01000 = Rese	erved					
	00111 = Faul	t 8 + 7					
	00110 = Faul	t 6					
	00100 = Faul	t 5					
	00011 = Faul	t 4					
	00010 = Faul	t 3					
	00001 = Faul	t 2					
	00000 = Faul	t 1		(1)	,		
bit 9	CLPOL: Curre	ent-Limit Polari	ty for PWM Ge	enerator # bit("	,		
	1 = The selec 0 = The selec	ted current-lim	it source is act	ive-low ive-high			
bit 8	CLMOD: Curr	ent-Limit Mode	e Enable bit for	r PWM Genera	tor # bit		
	1 = Current-lir	mit function is e	enabled				
	0 = Current-lir	mit function is o	lisabled				
Note 1:	These bits should I	be changed on	ly when PTEN	= 0. Changing	the clock selec	tion during op	eration will
-	yield unpredictable	results.					, .
2:	vvnen Independent	t Fault mode is	enabled (IFLT	MOD = 1, and $NOD = 1$		a for Current-Li	imit mode
	Fault source to pre	vent Fault 1 fr	m disabling b	oth the PWMvI	and PWMxH c		to an unuse

DWAR FALL TOURDENT LINE CONTROL DECISTER

3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

REGISTER 15-16:	TRIGx: PWMx PRIMARY	TRIGGER COMPARE	VALUE REGISTER
REGISTER 15-16:	TRIGX: PWMx PRIMARY	TRIGGER COMPARE	VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGCI	MP<15:8>			
bit 15							bit 8
DAVA	D M A	DAMA		DAMO			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	0-0	0-0	0-0
		TRGCMP<7:3>			—	_	_
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15-3	TRGCMP<	15:3>: Trigger Co	ontrol Value b	oits			

When primary PWM functions in the local time base, this register contains the compare values that can trigger the ADC module.
 bit 2-0
 Unimplemented: Read as '0'

REGISTER 15-17: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STRGCM	/IP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0

10,00 0	10/00 0	10/00 0	10/00/0	10/00 0	00	00	00
	S	TRGCMP<7:3>	•		—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 **STRGCMP<15:3>:** Secondary Trigger Control Value bits When secondary PWM functions in the local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	_	GSWTRG	—	FORM ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ^(1,2)	SEQSAMP ^(1,2)	ASYNCSAMP ⁽¹⁾		ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bi	it	U = Unimplei	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ADON: Analo	og-to-Digital Ope	erating Mode bit				
	1 = Analog-to	o-Digital Convert	er (ADC) module	is operating			
		iverter is oπ	,				
DIC 14		nteo: Read as U	ada hit				
DIL 13	1 - Discontin		ode bit	o ontore Idlo i	modo		
	1 = Discontinue 0 = Continue	s module operat	tion in Idle mode		noue		
bit 12	SLOWCLK:	Enable The Slov	v Clock Divider bit	(1)			
	1 = ADC is c	clocked by the a	uxiliary PLL (ACL)	<)			
	0 = ADC is c	clock by the prim	ary PLL (Fvco)				
bit 11	Unimplemer	nted: Read as '0	,				
bit 10	GSWTRG: G	Blobal Software	Frigger bit				
	When this bi	t is set by the us	ser, it will trigger o	onversions if	selected by the	e TRGSRC<4:(0> bits in the
	ADCPCx reg	isters. This bit m	iust be cleared by	the user prior	to initiating and	other global trig	ger (i.e., this
hit Q	Unimplement	oted: Read as 'n	,				
bit 8	FORM: Data	Output Format I					
DIT O	1 = Fractiona	al (Dout = dddd	1 dddd dd00 00	00)			
	0 = Integer ([DOUT = 0000 00	Odd dddd dddd)				
bit 7	EIE: Early Int	terrupt Enable b	it(1)				
	1 = Interrupt	is generated after	er first conversion	is completed			
	0 = Interrupt	is generated after	er second convers	ion is comple	ted		
bit 6	ORDER: Cor	nversion Order b	_{bit} (1,2)				
	1 = Odd num	bered analog in	put is converted fi	rst, followed b	y conversion of	f even numbere	ed input
hit E		Sequential Semi	alo Epoblo hit(1,2)	list, lollowed l	by conversion o		eu input
DILO	1 - Shared	Sequential Samp		is sampled a	at the start of	the second (conversion if
	ORDER	= 0. If ORDER =	= 1, then the share	ed S&H is san	npled at the sta	art of the first co	onversion.
	0 = Shared S	S&H is sampled	at the same time	the dedicated	S&H is sampl	ed if the share	d S&H is not
	currently	busy with an e	existing conversion	n process. If	the shared S&	&H is busy at	the time the
	ueaicate	u sample	a, men me snarec	I SAM WIII SAM	iple at the start		reision cycle.
Note 1: T	hese control b	its can only be c	hanged while AD	C is disabled ((ADON = 0).		

REGISTER 19-1: ADCON: ANALOG-TO-DIGITAL CONTROL REGISTER

2: These bits are only available on devices with one SAR.

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN5: Interrupt Request Enable 5 bit					
	 1 = Enables IRQ generation when requested conversion of Channels AN11 and AN10 is completed 0 = IRQ is not generated 					
bit 14	PEND5: Pending Conversion Status 5 bit					
	 1 = Conversion of Channels AN11 and AN10 is pending; set when selected trigger is asserted 0 = Conversion is complete 					
bit 13	SWTRG5: Software Trigger 5 bit					
	 1 = Starts conversion of AN11 and AN10 (if selected by the TRGSRCx bits)⁽²⁾ This bit is automatically cleared by hardware when the PEND5 bit is set. 0 = Conversion has not started 					

- **Note 1:** This register is only implemented in the dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Мах	Units	Conditions
BO10	VBOR	BOR Event on VDD Tra High-to-Low BOR Event is Tied to \ Voltage Decrease	ansition /DD Core	2.55	_	2.79	V	See Note 2

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The device will operate as normal until the VDDMIN threshold is reached.

3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN.

TABLE 24-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	—	Ι	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—			ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	Ι	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	Ι	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

25.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

Note: Programming of the Flash memory is not allowed above +125°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 24.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 24.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

40°C to +150°C
65°C to +160°C
0.3V to +4.0V
0.3V to (VDD + 0.3V)
0.3V to (VDD + 0.3V)
0.3V to 5.6V
60 mA
60 mA
+155°C
4 mA
8 mA
16 mA
180 mA
180 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2).
 - **3:** AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 4: Refer to the "Pin Diagrams" section for 5V tolerant pins.