

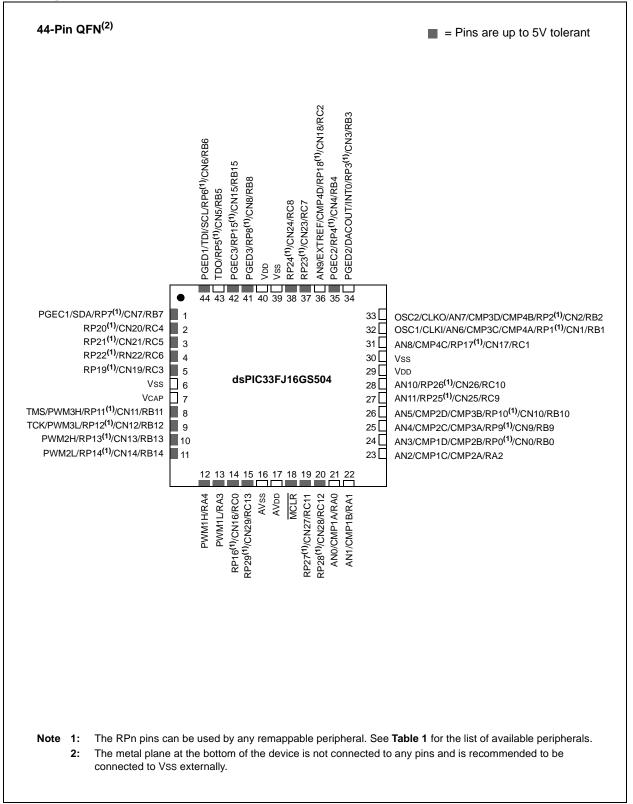
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs402t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

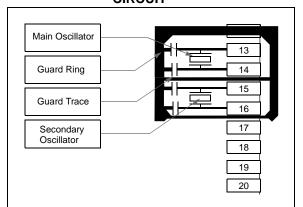
2.5 ICSP[™] Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB[®] REAL ICETM.

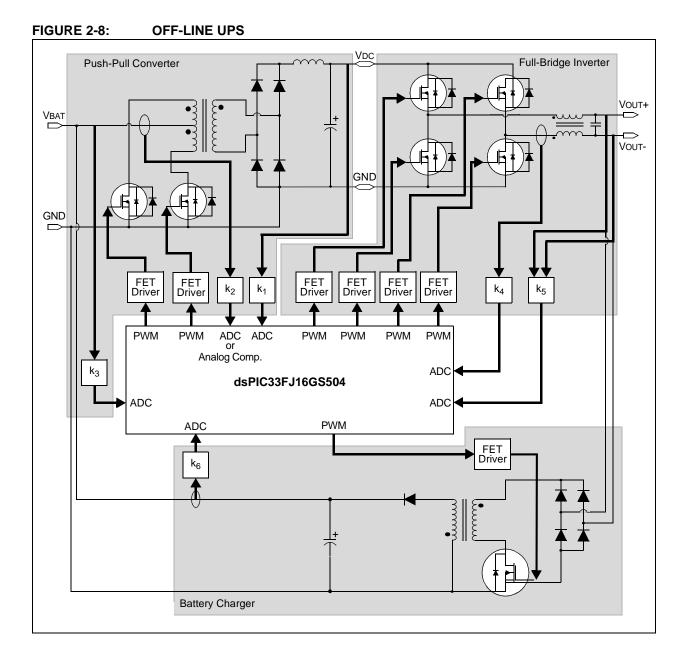
For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.


FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV, and PLLFBD to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

© 2008-2014 Microchip Technology Inc.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

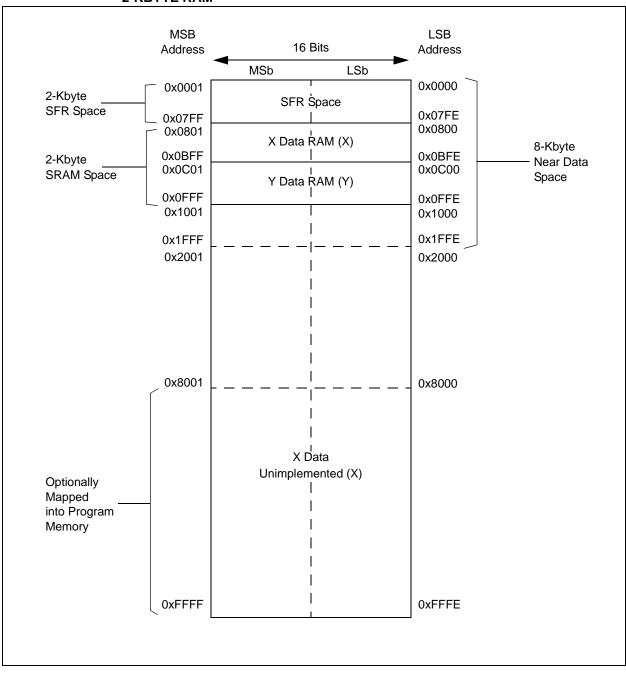
3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.


If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJ16GS402/404/502/504 DEVICES WITH 2-KBYTE RAM

dsPIC33FJ06GS101/X02
01/X02 and dsPIC33FJ1
PIC33FJ16GS
116GSX02/X04

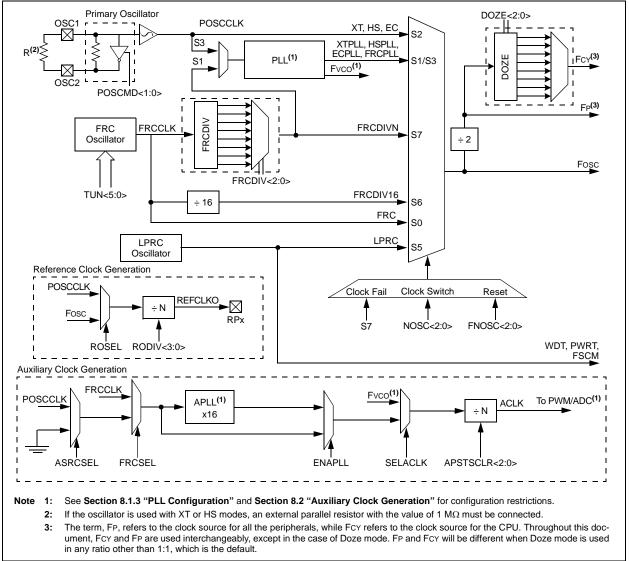
TABLE 4-18: HIGH-SPEED PWM GENERATOR 1 REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0420	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	—	—	—	CAM	XPRES	IUE	0000
IOCON1	0422	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	0000
FCLCON1	0424	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC1	0426		PDC1<15:0> 0000									0000						
PHASE1	0428								P	HASE1<15:	0>							0000
DTR1	042A		_		DTR1<13:0> 000							0000						
ALTDTR1	042C		_							AL	TDTR1<13:0)>						0000
SDC1	042E								;	SDC1<15:0:	>							0000
SPHASE1	0430								SF	PHASE1<15	:0>							0000
TRIG1	0432						٦	rrgcmp<	15:3>						—	_	_	0000
TRGCON1	0434	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	—	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG1	0436						S	TRGCMP<	<15:3>						-	_		0000
PWMCAP1	0438						Р	WMCAP1<	<15:3>						_	_		0000
LEBCON1	043A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB6	LEB5	LEB4	LEB3	LEB2	LEB1	LEB0				0000
Legend:	x = U	nknown val	wn value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.															

TABLE 4-19: HIGH-SPEED PWM GENERATOR 2 REGISTER MAP FOR dsPIC33FJ06GS102/202 AND dsPIC33FJ16GSX02/X04 DEVICES ONLY

	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0440	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0		_	_	CAM	XPRES	IUE	0000
IOCON2	0442	PENH	I PENL POLH POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC 0000															
FCLCON2	0444	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	0000
PDC2	0446		PDC2<15:0> 0000															
PHASE2	0448		PHASE2<15:0> 0000															
DTR2	044A	_	— — DTR2<13:0> 0000															
ALTDTR2	044C	_	_							AL	.TDTR2<13:0)>						0000
SDC2	044E									SDC2<15:0	>							0000
SPHASE2	0450								SI	PHASE2<15	:0>							0000
TRIG2	0452							TRGCMP<	:15:3>						_	_	—	0000
TRGCON2	0454	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	—	_	_	DTM	_	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG2	0456						5	STRGCMP	<15:3>						_	—	_	0000
PWMCAP2	0458						F	WMCAP2	<15:3>							_	_	0000
LEBCON2	045A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB6	LEB5	LEB4	LEB3	LEB2	LEB1	LEB0	-	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection
- Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: OSCILLATOR SYSTEM DIAGRAM

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0
bit 15	•						bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	כ'				
	100010 = Inp 100001 = Inp	t tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32 t tied to RP32	3				
bit 7-6	Unimplemen	ted: Read as '	י'				
bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	•	; ; ;	FLT4) to the Co	orresponding R	Pn Pin bits	

REGISTER 10-11: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	SYNCI1R5	SYNCI1R4	SYNCI1R3	SYNCI1R2	SYNCI1R1	SYNCI1R0
bit 15							bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0
bit 7							bit
Legend:					6 11 K		
R = Readab		W = Writable		-	nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			- 1				
bit 15-14	=	ted: Read as '					
bit 13-8)>: Assign PW g RPn Pin bits	M Master Time	e Base Externa	al Synchronizat	ion Signal to th	е
	1111111 = Inp	-					
		ut tied to RP35	5				
		ut tied to RP34					
	100001 - Inn						
		ut tied to RP33					
		ut tied to RP33 ut tied to RP32					
	100000 = Inp • •	ut tied to RP32					
		ut tied to RP32					
bit 7-6	100000 = Inp • • 00000 = Inpu	ut tied to RP32	2				
bit 7-6 bit 5-0	100000 = Inp • • 00000 = Inpu Unimplemen	ut tied to RP32 t tied to RP0 ted: Read as '(2 0'	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • 00000 = Inpu Unimplemen FLT8R<5:0>: 111111 = Inp	ut tied to RP32 t tied to RP0 ted: Read as 'd Assign PWM F ut tied to Vss	2 ₀ ' Fault Input 8 (I	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • 00000 = Inpu Unimplemen FLT8R<5:0>: 111111 = Inp 100011 = Inp	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35	2 ₀ ' Fault Input 8 (I	⁻ LT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • 00000 = Inpu Unimplement FLT8R<5:0>: 11111 = Inp 100011 = Inp 100010 = Inp	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34	2 0' Fault Input 8 (I 5	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33	2 0' Fault Input 8 (I 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34	2 0' Fault Input 8 (I 5 4 3	⁻ LT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33	2 0' Fault Input 8 (I 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '0 Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33	2 0' Fault Input 8 (I 5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100000 = Inpu • • • • • • • • • • • • • • • • • • •	ut tied to RP32 t tied to RP0 ted: Read as '(Assign PWM F ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32	2 0' Fault Input 8 (I 5 4 3	⁻ LT8) to the Co	orresponding R	Pn Pin bits	

REGISTER 10-13: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0

REGISTER 10-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP3R<5:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP2R<5:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP5R5	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP5R<5:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-2 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP4R<5:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 0

REGISTER 14-1:	OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	—	_	—	—
bit 15							bit 8

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Output Compare x
	0 = Timer2 is the clock source for Output Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin is enabled
	110 = PWM mode on OCx, Fault pin is disabled
	101 = Initializes OCx pin low, generates continuous output pulses on OCx pin
	100 = Initializes OCx pin low, generates single output pulse on OCx pin
	 011 = Compare event toggles OCx pin 010 = Initializes OCx pin high, compare event forces OCx pin low
	001 = Initializes OCx pin low, compare event forces OCx pin low
	000 = Output compare channel is disabled

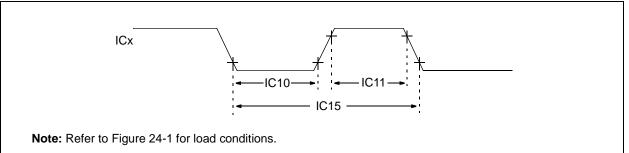
R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7			/				bit (
Legend:			mented bit, re	ad as 'O'			
R = Readable	hit	W = Writable			re Clearable bit		
-n = Value at F		'1' = Bit is se		0' = Bit is clear		x = Bit is unkno	nwn
bit 15	12CEN: 120	Cx Enable bit					
	-		odule, and cor	nfigures the SE	Ax and SCLx pir	ns as serial port r	oins
					trolled by port fur		
bit 14	Unimplem	ented: Read	as '0'				
bit 13	I2CSIDL:	2Cx Stop in Ic	lle Mode bit				
		tinues module ues module o	•		ers an Idle mode		
bit 12	SCLREL:	SCLx Release	e Control bit (\	when operating	as l ² C slave)		
		ses SCLx cloc SCLx clock lo		ch)			
	If STREN =		,	,			
		•			h and write '1' to	,	Hardware clea
	-	-	nsmission. Ha	ardware clear a	t end of slave ree	ception.	
	If STREN =		can only wri	te '1' to releas	se clock). Hardw	are clear at heri	nning of slav
	transmissio	•	can only wi			are clear at begi	Thing of Slave
bit 11	IPMIEN: In	ntelligent Perip	heral Manage	ement Interface	e (IPMI) Enable b	bit	
	1 = IPMI m	node is enable	d; all address	es are Acknow	. ,		
		node is disable					
bit 10		Bit Slave Add		_			
		DD is a 10-bit DD is a 7-bit s		5			
bit 9		Disable Slew I		oit			
		ate control is o					
		ate control is e					
bit 8	SMEN: SM	Bus Input Le	vels bit				
		es I/O pin three es SMBus inp		ant with SMBu	s specification		
bit 7	GCEN: Ge	eneral Call Ena	able bit (when	operating as I	² C slave)		
	1 = Enable recept		nen a general	call address is	received in the la	2CxRSR (module	e is enabled fo
		al call addres	s is disabled				
bit 6	STREN: S	CLx Clock Str	etch Enable b	oit (when opera	ting as I ² C slave)	
		njunction with					
		es software or		-			
	v = v sable	es sonware of	receive clock	stretching			

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

NOTES:

REGISTER 19-1: ADCON: ANALOG-TO-DIGITAL CONTROL REGISTER (CONTINUED)

bit 4 ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit⁽¹⁾


- 1 = The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger pulse is detected
- 0 = The dedicated S&H starts sampling when the trigger event is detected and completes the sampling process in two ADC clock cycles
- bit 3 Unimplemented: Read as '0'
- bit 2-0 ADCS<2:0>: Analog-to-Digital Conversion Clock Divider Select bits⁽¹⁾
 - 111 = FADC/8
 - 110 = FADC/7
 - 101 = FADC/6
 - 100 = FADC/5
 - 011 = FADC/4 (default)
 - 010 = FADC/3
 - 001 = FADC/2
 - 000 = FADC/1
- Note 1: These control bits can only be changed while ADC is disabled (ADON = 0).
 - 2: These bits are only available on devices with one SAR.

REGISTER 19-8: ADCPC3: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 3⁽¹⁾

bit 4-0	TRGSRC6<4:0>: Trigger 6 Source Selection bits Selects trigger source for conversion of Analog Channels AN13 and AN12. 11111 = Timer2 period match
	00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected

- Note 1: This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as global software trigger prior to setting this bit to '1'. If other conversions are in progress, conversion will be performed when the conversion resources are available.

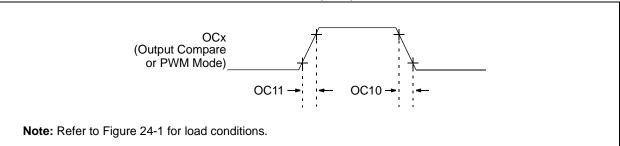


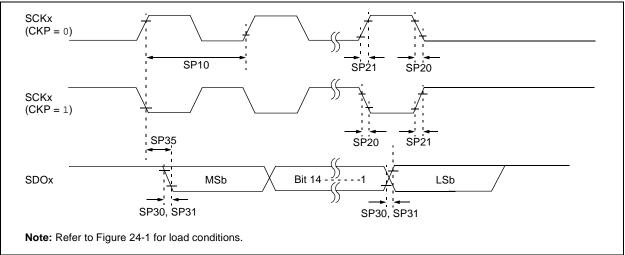
TABLE 24-26: INPUT CAPTURE x TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No. Symbol Character			ristic ⁽¹⁾	Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time	No prescaler	0.5 Tcy + 20	_	ns	
			With prescaler	10	—	ns	
IC11	TccH	ICx Input High Time	No prescaler	0.5 TCY + 20	—	ns	
			With prescaler	10	—	ns	
IC15	TccP	ICx Input Period		(Tcy + 40)/N	—	ns	N = Prescale value (1, 4, 16)

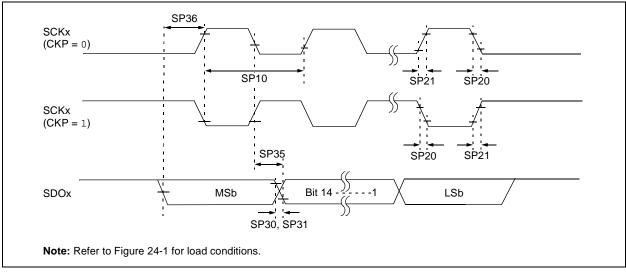
Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 24-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
OC10	TccF	OCx Output Fall Time	—	—		ns	See Parameter DO32	
OC11	TccR	OCx Output Rise Time	_	_	_	ns	See Parameter DO31	

Note 1: These parameters are characterized but not tested in manufacturing.


^{© 2008-2014} Microchip Technology Inc.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extend} \end{array}$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 24-31	—	—	0,1	0,1	0,1		
9 MHz	—	Table 24-32	—	1	0,1	1		
9 MHz	—	Table 24-33	—	0	0,1	1		
15 MHz	—	—	Table 24-34	1	0	0		
11 MHz	—	—	Table 24-35	1	1	0		
15 MHz	—	—	Table 24-36	0	1	0		
11 MHz	_	—	Table 24-37	0	0	0		

FIGURE 24-11: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING **CHARACTERISTICS**

SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING FIGURE 24-12: **CHARACTERISTICS**

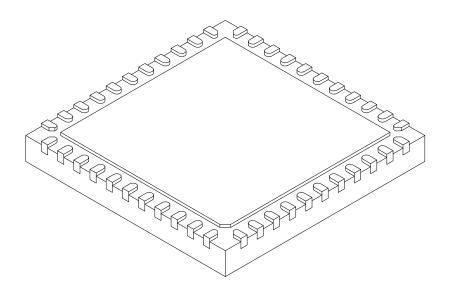

			Standard Operating Conditions (see Note 1): 3.0V to 3.6V Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments	
DA10	RLOAD	Resistive Output Load Impedance	ЗК	_	—	Ω		
DA11	CLOAD	Output Load Capacitance	—	20	35	pF		
DA12	Ιουτ	Output Current Drive Strength	-1740	±1400	+1770	μA	Sink and source	
DA13	VRANGE	Full Output Drive Strength Voltage Range	AVss + 250 mV		AVDD – 900 mV	V		
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 μA	AVss + 50 mV	_	AVDD – 500 mV	V		
DA15	IDD	Current Consumed when Module is Enabled, High-Power Mode	369	626	948	μΑ	Module will always consume this current even if no load is connected to the output	
DA16	ROUTON	Output Impedance when Module is Enabled	—	1200	—	Ω		

TABLE 24-44: DAC OUTPUT BUFFER DC SPECIFICATIONS

Note 1: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

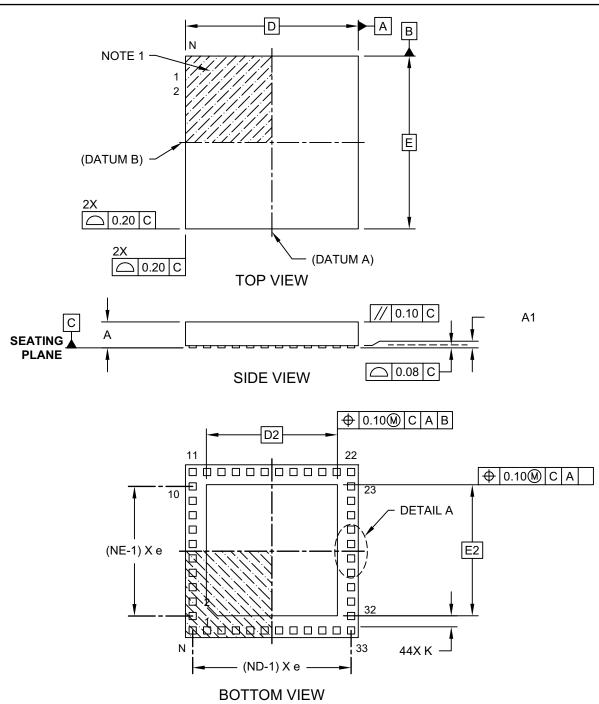
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimension	MIN	NOM	MAX		
Number of Pins	Ν		44		
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157D Sheet 1 of 2