

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs404-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.5 ICSP[™] Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB[®] REAL ICETM.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0** "**Oscillator Configuration**" for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV, and PLLFBD to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT	0048						2	XS<15:1>									0	xxxx
XMODEND	004A						2	XE<15:1>									1	xxxx
YMODSRT	004C						`	YS<15:1>									0	xxxx
YMODEND	004E						`	YE<15:1>									1	xxxx
XBREV	0050	BREN	XB14	XB13	XB12	XB11	XB10	XB9	XB8	XB7	XB6	XB5	XB4	XB3	XB2	XB1	XB0	xxxx
DISICNT	0052	_	_					Disable	Interrupts Co	unter Re	gister							xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dspic33FJ06GS101

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	—	—		_	—	_	_		CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	—	—		_	_	_	_	_	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3:CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402 AND
dsPIC33FJ16GS502

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

NOTES:

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

One row of program Flash memory can be programmed at a time. To achieve this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP<3:0> bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP<3:0> bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to the NVMKEY register.
 - c) Write 0xAA to the NVMKEY register.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat Steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in the TBLPAG register, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for the NVMKEY register must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase o	operation
MOV #0x4042, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASE	ED
MOV #tblpage(PROG_ADDR	R), WO ;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_AD	DDR), W0 ; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	_	INT2IF	_	—	—	—	
bit 15		•					bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
		(adu Danadara ()	.1				
Dit 15-14		ted: Read as 1)' =				
bit 13	IN 12IF: Exter	nal Interrupt 2	-lag Status bi	t			
	$\perp = \text{Interrupt r}$ 0 = Interrupt r	equest has occ	occurred				
bit 12-5	Unimplemen	ted: Read as ')'				
bit 4	INT1IF: Exter	nal Interrupt 1	Flag Status bi	t			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 3	CNIF: Input C	hange Notifica	tion Interrupt	Flag Status bit			
	1 = Interrupt r	equest has occ	curred				
1	0 = Interrupt r	equest has not	occurred				
bit 2	AC1IF: Analo	g Comparator	I Interrupt Fla	ig Status bit			
	$\perp = \text{Interrupt r}$ 0 = Interrupt r	equest has occ	occurred				
bit 1	MI2C1IF: 12C	1 Master Even	s Interrupt Fla	ag Status bit			
	1 = Interrupt r	equest has occ	urred	5			
	0 = Interrupt r	equest has not	occurred				
bit 0	SI2C1IF: 12C	1 Slave Events	Interrupt Flag	status bit			
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

10.6 Peripheral Pin Select

Peripheral Pin Select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

10.6.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 30 pins. The number of available pins depends on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and another one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.6.2.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-14). Each register contains sets of 6-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0
F							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14 bit 13-8	Unimplemen U1CTSR<5:0 111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp • • •	ted: Read as ' >: Assign UAR but tied to Vss but tied to RP35 but tied to RP32 but tied to RP32 but tied to RP32 tied to RP32	0' T1 Clear-to-S	end (U1CTS) t	to the Correspo	nding RPn Pin	bits
bit 7-6 bit 5-0	Unimplemen U1RXR<5:0> 111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp	ted: Read as : Assign UART but tied to Vss but tied to RP35 but tied to RP32 but tied to RP32 but tied to RP32 but tied to RP32	0' 1 Receive (U' 5 4 2	IRX) to the Co	rresponding RF	Pn Pin bits	
		•					

REGISTER 10-6: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

15.0 HIGH-SPEED PWM

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70323) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed PWM module on the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction (PFC)
- Uninterruptible Power Supply (UPS)
- Inverters
- Battery Chargers
- Digital Lighting

15.1 Features Overview

The high-speed PWM module incorporates the following features:

- 2-4 PWM generators with 4-8 outputs
- Individual time base and duty cycle for each of the eight PWM outputs
- Dead time for rising and falling edges:
- Duty cycle resolution of 1.04 ns
- Dead-time resolution of 1.04 ns
- Phase-shift resolution of 1.04 ns
- Frequency resolution of 1.04 ns
- PWM modes supported:
- Standard Edge-Aligned
- True Independent Output
- Complementary
- Center-Aligned
- Push-Pull
- Multiphase
- Variable Phase
- Fixed Off-Time
- Current Reset
- Current-Limit

- Independent Fault/Current-Limit inputs for each of the eight PWM outputs
- Output override control
- Special Event Trigger
- PWM capture feature
- Prescaler for input clock
- Dual trigger from PWM to ADC
- PWMxH, PWMxL output pin swapping
- PWM4H, PWM4L pins remappable
- On-the-fly PWM frequency, duty cycle and phase-shift changes
- Disabling of Individual PWM generators to reduce power consumption
- Leading-Edge Blanking (LEB) functionality

Figure 15-1 conceptualizes the PWM module in a simplified block diagram. Figure 15-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode. Each functional unit of the PWM module is discussed in subsequent sections.

The PWM module contains four PWM generators. The module has up to eight PWM output pins: PWM1H, PWM1L, PWM2H, PWM2L, PWM3H, PWM3L, PWM4H and PWM4L. For complementary outputs, these eight I/O pins are grouped into H/L pairs.

Note: Duty cycle, dead time, phase shift and frequency resolution is 8.32 ns in Center-Aligned PWM mode.

REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

- FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits^(2,3) bit 7-3 11111 = Reserved01000 = Reserved 00111 = Fault 8 00110 = Fault 7 00101 = Fault 6 00100 = Fault 5 00011 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1 FLTPOL: Fault Polarity for PWM Generator # bit⁽¹⁾ bit 2 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high bit 1-0 FLTMOD<1:0>: Fault Mode for PWM Generator # bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH and PWMxL pins to FLTDAT values (cycle) 00 = The selected Fault source forces the PWMxH and PWMxL pins to FLTDAT values (latched condition) Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
 - 3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70206) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters and so on. The SPI module is compatible with SPI and SIOP from Motorola[®].

The SPI module consists of a 16-bit shift register, SPIxSR (where x = 1), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of the following four pins:

- SDIx (Serial Data Input)
- SDOx (Serial Data Output)
- SCKx (Shift Clock Input Or Output)
- SSx (Active-Low Slave Select).

In Master mode operation, SCK is a clock output; in Slave mode, it is a clock input.

FIGURE 16-1: SPIX MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0
ADON	—	ADSIDL	SLOWCLK ⁽¹⁾	_	GSWTRG	—	FORM ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1
EIE ⁽¹⁾	ORDER ^(1,2)	SEQSAMP ^(1,2)	ASYNCSAMP ⁽¹⁾		ADCS2 ⁽¹⁾	ADCS1 ⁽¹⁾	ADCS0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable bi	it	U = Unimplei	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ADON: Analo	og-to-Digital Ope	erating Mode bit				
	1 = Analog-to	o-Digital Convert	er (ADC) module	is operating			
		iverter is oπ	,				
DIC 14		nteo: Read as U	ada hit				
DIL 13	1 - Discontin		ode bit	o ontore Idlo i	modo		
	1 = Discontinue 0 = Continue	s module operat	tion in Idle mode		noue		
bit 12	SLOWCLK:	Enable The Slov	v Clock Divider bit	(1)			
	1 = ADC is c	clocked by the a	uxiliary PLL (ACL)	<)			
	0 = ADC is c	clock by the prim	ary PLL (Fvco)				
bit 11	Unimplemer	nted: Read as '0	,				
bit 10	GSWTRG: G	Blobal Software	Frigger bit				
	When this bi	t is set by the us	ser, it will trigger o	onversions if	selected by the	e TRGSRC<4:(0> bits in the
	ADCPCx reg	isters. This bit m	iust be cleared by	the user prior	to initiating and	other global trig	ger (i.e., this
hit Q	Unimplement	oted: Read as 'n	,				
bit 8	FORM: Data	Output Format I					
DIT O	1 = Fractiona	al (Dout = dddd	1 dddd dd00 00	00)			
	0 = Integer ([DOUT = 0000 00	Odd dddd dddd)				
bit 7	EIE: Early Int	terrupt Enable b	it(1)				
	1 = Interrupt	is generated after	er first conversion	is completed			
	0 = Interrupt	is generated after	er second convers	ion is comple	ted		
bit 6	ORDER: Cor	nversion Order b	_{bit} (1,2)				
	1 = Odd num	bered analog in	put is converted fi	rst, followed b	y conversion of	f even numbere	ed input
hit E		Sequential Semi	alo Epoblo hit(1,2)	list, lollowed l	by conversion o		eu input
DILO	1 - Shared	Sequential Samp		is sampled a	at the start of	the second (conversion if
	ORDER	= 0. If ORDER =	= 1, then the share	ed S&H is san	npled at the sta	art of the first co	onversion.
	0 = Shared S	S&H is sampled	at the same time	the dedicated	S&H is sampl	ed if the share	d S&H is not
	currently	busy with an e	existing conversion	n process. If	the shared S&	&H is busy at	the time the
	ueaicate	u sample	a, men me snarec	I SAM WIII SAM	iple at the start		reision cycle.
Note 1: T	hese control b	its can only be c	hanged while AD	C is disabled ((ADON = 0).		

REGISTER 19-1: ADCON: ANALOG-TO-DIGITAL CONTROL REGISTER

2: These bits are only available on devices with one SAR.

20.0 HIGH-SPEED ANALOG COMPARATOR

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator" (DS70296) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33F SMPS comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview

The SMPS comparator module contains the following major features:

- 16 selectable comparator inputs
- Up to four analog comparators
- 10-bit DAC for each analog comparator

- Programmable output polarity
- Interrupt generation capability
- DACOUT pin to provide DAC output
- DAC has three ranges of operation:
 AVDD/2
 - Internal Reference (INTREF)
 - External Reference (EXTREF)
- ADC sample and convert trigger capability
- Disable capability reduces power consumption
- Functional support for PWM module:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

20.2 Module Description

Figure 20-1 shows a functional block diagram of one analog comparator from the SMPS comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of ± 5 mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

FIGURE 20-1: HIGH-SPEED ANALOG COMPARATOR MODULE BLOCK DIAGRAM

21.4 Watchdog Timer (WDT)

For the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

21.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC<2:0> bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 21-2: WDT BLOCK DIAGRAM

21.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP bit (RCON<3>) or IDLE bit (RCON<2>) will need to be cleared in software after the device wakes up.

21.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

TABLE 24-26: INPUT CAPTURE x TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	Standard Operat (unless otherwis Operating temper	ing Conditions: : e stated) ature -40°C ≤ T/ -40°C ≤ T/	3.0V to 3.6V A ≤ +85°C fo A ≤ +125°C	/ or Industr for Exten	ial ded	
Param No.	Symbol	Characte	ristic ⁽¹⁾ Min Max Units Con					
IC10	TccL	ICx Input Low Time	No prescaler	0.5 TCY + 20		ns		
			With prescaler	10		ns		
IC11	TccH	ICx Input High Time	No prescaler	0.5 Tcy + 20		ns		
			With prescaler	10		ns		
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = Prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

TABLE 24-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

АС СНА	ARACTER	ISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions			
OC10	TccF	OCx Output Fall Time	—	—	—	ns	See Parameter DO32			
OC11	TccR	OCx Output Rise Time	— — ns See Parameter DO31							

Note 1: These parameters are characterized but not tested in manufacturing.

^{© 2008-2014} Microchip Technology Inc.

AC CHA	RACTERIST	īCS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP10	TscP	Maximum SCKx Frequency	—	—	15	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	—		ns	See Parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—		ns	See Parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See Parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	_			ns	See Parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30		_	ns			

TABLE 24-31: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N	44		
Number of Terminals per Side	ND	12		
Number of Terminals per Side	NE	10		
Pitch	е	0.50 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	4.40	4.55	4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.20	0.25	0.30
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157D Sheet 2 of 2

Section Name	Update Description
Section 8.0 "Oscillator Configuration"	Added Note 2 to the Oscillator System Diagram (see Figure 8-1).
	Added a paragraph regarding FRC accuracy at the end of Section 8.1.1 "System Clock Sources".
	Added Note 1 and Note 2 to the OSCON register (see Register).
	Added Note 1 to the OSCTUN register (see Register 8-4).
	Added Note 3 to Section 8.4.2 "Oscillator Switching Sequence".
Section 10.0 "I/O Ports"	Removed Table 9-1 and added reference to pin diagrams for I/O pin availability and functionality.
	Added paragraph on ADPCFG register default values to Section 10.3 "Configuring Analog Port Pins".
	Added Note box regarding PPS functionality with input mapping to Section 10.6.2.1 "Input Mapping" .
Section 15.0 "High-Speed PWM"	Updated Note 2 in the PTCON register (see Register 15-1).
	Added Note 4 to the PWMCONx register (see Register 15-6).
	Updated Notes for the PHASEx and SPHASEx registers (see Register 15-9 and Register 15-10, respectively).
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and Note 3 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal	Updated the Notes in the UxMode register (see Register 18-1).
(UART)"	Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 18-2).
Section 19.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Updated the SLOWCLK and ADCS<2:0> bit settings and updated Note 1in the ADCON register (see Register 19-1).
	Removed all notes in the ADPCFG register and replaced them with a single note (see Register 19-4).
	Updated the SWTRGx bit settings in the ADCPCx registers (see Register 19-5, Register 19-6, Register 19-7, and Register 19-8).

Section Name	Update Description	
Section 24.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 24-3).	
	Updated Min and Max values for Parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 24-4).	
	Updated Characteristics for I/O Pin Input Specifications (see Table 24-9).	
	Added ISOURCE to I/O Pin Output Specifications (see Table 24-10).	
	Updated Program Memory values for Parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added Parameters 136b, 137b, and 138b, and added Note 2 (see Table 24-12).	
	Added Parameter OS42 (GM) to the External Clock Timing Requirements (see Table 24-16).	
	Updated Conditions for symbol TPDLY (Tap Delay) and added symbol ACLK (PWM Input Clock) to the High-Speed PWM Module Timing Requirements (see Table 24-29).	
	Updated Parameters AD01 and AD02 in the 10-bit High-Speed Analog-to- Digital Module Specifications (see Table 24-36).	
	Updated Parameters AD50b, AD55b, and AD56b, and removed Parameters AD57b and AD60b from the 10-bit High-Speed Analog-to-Digital Module Timing Requirements (see Table 24-37).	

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)