

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detuils	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs404-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

TABLE 1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CONTROLLER FAMILIES

		(si				Rer	napp	able I	Perip	herals						ADC			
Device	Pins	Program Flash Memory (Kbytes)	RAM (Bytes)	Remappable Pins	16-Bit Timer	Input Capture	Output Compare	UART	SPI	PWM ⁽²⁾	Analog Comparator	External Interrupts ⁽³⁾	DAC Output	I²C™	SARs	Sample-and-Hold (S&H) Circuit	Analog-to-Digital Inputs	I/O Pins	Packages
dsPIC33FJ06GS101	18	6	256	8	2	0	1	1	1	2x2 ⁽¹⁾	0	3	0	1	1	3	6	13	SOIC
dsPIC33FJ06GS102	28	6	256	16	2	0	1	1	1	2x2	0	3	0	1	1	3	6	21	SPDIP, SOIC, QFN-S
dsPIC33FJ06GS202	28	6	1K	16	2	1	1	1	1	2x2	2	3	1	1	1	3	6	21	SPDIP, SOIC, QFN-S
dsPIC33FJ16GS402	28	16	2K	16	3	2	2	1	1	3x2	0	3	0	1	1	4	8	21	SPDIP, SOIC, QFN-S
dsPIC33FJ16GS404	44	16	2K	30	3	2	2	1	1	3x2	0	3	0	1	1	4	8	35	QFN, TQFP, VTLA
dsPIC33FJ16GS502	28	16	2K	16	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	8	21	SPDIP, SOIC, QFN-S, UQFN
dsPIC33FJ16GS504	44	16	2K	30	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	12	35	QFN, TQFP, VTLA

Note 1: The PWM4H:PWM4L pins are remappable.

2: The PWM Fault pins and PWM synchronization pins are remappable.

3: Only two out of three interrupts are remappable.

FIGURE 2-9: INTERLEAVED PFC

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

					11.0		11.0			
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	—	INT2IF	—	—	—	—				
bit 15							bit			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	= Bit is unknown			
bit 15-14	Unimplemer	nted: Read as '	0'							
bit 13	INT2IF: Exte	INT2IF: External Interrupt 2 Flag Status bit								
		1 = Interrupt request has occurred								
	0 = Interrupt	0 = Interrupt request has not occurred								
bit 12-5	Unimplemer	nted: Read as '	0'							
bit 4	INT1IF: Exte	rnal Interrupt 1	Flag Status bi	t						
		request has oc								
	0 = Interrupt	request has no	t occurred							
bit 3	CNIF: Input (Change Notifica	ation Interrupt	Flag Status bit						
		request has oc								
	•	request has no								
bit 2	AC1IF: Analo	og Comparator	1 Interrupt Fla	g Status bit						
		request has oc								
	•	request has no								
bit 1		C1 Master Even	•	ag Status bit						
		request has oc								
		request has no								
bit 0		1 Slave Events		Status bit						
		request has oc								
	0 = Interrupt	request has no	t occurred							

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
PWM2IF	PWM1IF	—	_	_	—	_	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15	PWM2IF: PW	M2 Interrupt FI	ag Status bit					
	•	request has occ						
	0 = Interrupt	request has not	occurred					
bit 14	PWM1IF: PV	VM1 Interrupt FI	ag Status bit					
	1 = Interrupt request has occurred							
	0 = Interrupt	request has not	occurred					
bit 13-0	Unimplemer	nted: Read as '0	כ'					

REGISTER 7-9: IFS5: INTERRUPT FLAG STATUS REGISTER 5

11.0	11.0						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	0-0	T1IE	OC1IE	IC1IE	INTOIE
bit 7	OOZIL	IOZIL		1112	OOTIL	IOTIL	bit
							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea		x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as	ʻ0'				
bit 13	ADIE: ADC1	Conversion C	omplete Interru	upt Enable bit			
		request enable					
	•	request not en					
bit 12			er Interrupt Ena	able bit			
		request enable request not en					
bit 11	-	-	Interrupt Enabl	e bit			
		request enable	=				
	0 = Interrupt	request not en	abled				
bit 10	SPI1IE: SPI1	Event Interrup	ot Enable bit				
		request enable					
bit 9	-	request not en I1 Event Interr					
DIL 9		request enable	•				
		request not en					
bit 8	T3IE: Timer3	Interrupt Enat	ole bit				
		request enable					
	-	request not en					
bit 7		Interrupt Enat					
	•	request enable request not en					
bit 6	-	-	hannel 2 Interr	upt Enable bit			
	-	request enable					
		request not en					
bit 5	IC2IE: Input (Capture Chanr	nel 2 Interrupt I	Enable bit			
		request enable					
L:4	-	request not en					
bit 4	-	ted: Read as					
bit 3		Interrupt Enat					
		request enable					
bit 2	-	-	hannel 1 Interr	upt Enable bit			
	-	request enable					

DECISTED 7-12 IECO INTERRIET ENABLE CONTROL DECISTER O

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	_	_	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	R-0						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-12	Unimplen	nented: Read as '0'		
	•		(Loval bita	
bit 11-8		New CPU Interrupt Priority		
	1111 = C	PU Interrupt Priority Level is	s 15	
	•			
	•			
	•		- 4	
		PU Interrupt Priority Level is		
		PU Interrupt Priority Level i	50	
bit 7	Unimplen	nented: Read as '0'		
bit 6-0	VECNUM	<6:0>: Vector Number of P	ending Interrupt bits	
	0111111	= Interrupt vector pending i	is Number 135	
	•			
	•			
	•			
	0000001	= Interrupt vector pending i	is Number 9	
	0000000	= Interrupt vector pending i	is Number 8	

FIGURE 12-3: 32-BIT TIMER BLOCK DIAGRAM

19.4 ADC Control Registers

The ADC module uses the following control and status registers:

- ADCON: Analog-to-Digital Control Register
- ADSTAT: Analog-to-Digital Status Register
- ADBASE: Analog-to-Digital Base Register(1,2)
- ADPCFG: Analog-to-Digital Port Configuration Register
- ADCPC0: Analog-to-Digital Convert Pair Control Register 0
- ADCPC1: Analog-to-Digital Convert Pair Control Register 1
- ADCPC2: Analog-to-Digital Convert Pair Control Register 2(1)
- ADCPC3: Analog-to-Digital Convert Pair Control Register 3(1)

The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG registers configure the port pins as analog inputs or as digital I/O. The ADCPCx registers control the triggering of the ADC conversions. See Register 19-1 through Register 19-8 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual Sample-and-Hold circuits can be triggered independently of each other.

REGISTER 19-1: ADCON: ANALOG-TO-DIGITAL CONTROL REGISTER (CONTINUED)

bit 4 ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit⁽¹⁾

- 1 = The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger pulse is detected
- 0 = The dedicated S&H starts sampling when the trigger event is detected and completes the sampling process in two ADC clock cycles
- bit 3 Unimplemented: Read as '0'
- bit 2-0 ADCS<2:0>: Analog-to-Digital Conversion Clock Divider Select bits⁽¹⁾
 - 111 = FADC/8
 - 110 = FADC/7
 - 101 = FADC/6
 - 100 = FADC/5
 - 011 = FADC/4 (default)
 - 010 = FADC/3
 - 001 = FADC/2
 - 000 = FADC/1
- Note 1: These control bits can only be changed while ADC is disabled (ADON = 0).
 - 2: These bits are only available on devices with one SAR.

REGISTER 19-6: ADCPC1: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN3 ⁽¹⁾	PEND3 ⁽¹⁾	SWTRG3 ⁽¹⁾	TRGSRC34 ⁽¹⁾	TRGSRC33 ⁽¹⁾	TRGSRC32 ⁽¹⁾	TRGSRC31 ⁽¹⁾	TRGSRC30 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN2 ⁽²⁾	PEND2 ⁽²⁾	SWTRG2(2)	TRGSRC24(2)	TRGSRC23 ⁽²⁾	TRGSRC22 ⁽²⁾	TRGSRC21 ⁽²⁾	TRGSRC20 ⁽²⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, reac	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN3: Interrupt Request Enable 3 bit ⁽¹⁾ 1 = Enables IRQ generation when requested conversion of Channels AN7 and AN6 is completed 0 = IRQ is not generated
bit 14	PEND3: Pending Conversion Status 3 bit ⁽¹⁾
	 1 = Conversion of Channels AN7 and AN6 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG3: Software Trigger 3 bit ⁽¹⁾
	 1 = Starts conversion of AN7 and AN6 (if selected by the TRGSRCx bits)⁽³⁾ This bit is automatically cleared by hardware when the PEND3 bit is set. 0 = Conversion has not started
Note 1:	These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.

- 2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
- **3:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

						D 444 a	5444.0	
r-0	r-0	r-0	r-0	r-0	r-0	R/W-0	R/W-0	
r	r	r	r	r	r	CMRE	F<9:8>	
bit 15							bit 8	
D M A	DAM 0	DAMA		D 444 0	DANIO	DANA	D 444 o	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CMRE	EF<7:0>				
bit 7							bit C	
Legend:		r = Reserved	bit					
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-10	Reserved: Re	ead as '0'						
bit 9-0	CMREF<9:0>	Comparator	Reference Vo	Itage Select bit	s			
		•		•	 REF<9:0> * (AV	הה/2)/1024) vc	lte depending	
		•		, ,	XTREF/1024) if	, ,		
	•				XIIXEI / 1024) II		L	
	•							
	•							
	0000000000	= 0.0 volts						

REGISTER 20-2: CMPDACx: COMPARATOR DAC x CONTROL REGISTER

24.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 AC characteristics and timing parameters.

TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V						
	(unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
	-40°C \leq TA \leq +125°C for Extended						
	Operating voltage VDD range as described in Table 24-1.						

FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2 Pin		_	15	-	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 2): 3.0V and 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		I	Device S	Supply			•	
AD01	AVdd	Module VDD Supply	_	_	_	_	AVDD is internally connected to VDD; see Parameter DC10 in Table 24-4	
AD02	AVss	Module Vss Supply	_	_		-	AVss is internally connected to Vss	
			Analog	Input				
AD10	VINH-VINL	Full-Scale Input Span	Vss	—	Vdd	V		
AD11	Vin	Absolute Input Voltage	AVss	—	AVdd	V		
AD12	IAD	Operating Current	_	8		mA		
AD13	—	Leakage Current	—	±0.6		μA	VINL = AVSS = 0V, AVDD = 3.3V Source Impedance = 100Ω	
AD17	Rin	Recommended Impedance Of Analog Voltage Source	_		100	Ω		
			curacy	@ 1.5 Msp				
AD20A		Resolution		10 Data	Bits	-		
AD21A		Integral Nonlinearity	-0.5	-0.3/+0.5	+1.2	LSb		
AD22A		Differential Nonlinearity	-0.9	±0.6	+0.9	LSb		
AD23A		Gain Error	13	15	22	LSb		
AD24A	EOFF	Offset Error	6	7	8	LSb		
AD25A	—	Monotonicity ⁽¹⁾	—	—	—	—	Guaranteed	
	1		curacy	@ 1.7 Msp				
AD20B		Resolution		10 Data				
AD21B		Integral Nonlinearity	-0.5	-0.4/+1.1	+1.8	LSb		
AD22B		Differential Nonlinearity	-1.0	±1.0	+1.5	LSb		
AD23B		Gain Error	13	15	22	LSb		
AD24B	EOFF	Offset Error	6	7	8	LSb		
AD25B		Monotonicity ⁽¹⁾		—	—	—	Guaranteed	
			curacy	@ 2.0 Msp			1	
AD20C		Resolution		10 Data		1		
AD21C		Integral Nonlinearity	-0.8	-0.5/+1.8	+2.8	LSb		
AD22C		Differential Nonlinearity	-1.0	-1.0/+1.8	+2.8	LSb		
AD23C		Gain Error	14	16	23	LSb		
AD24C	EOFF	Offset Error	6	7	8	LSb		
AD25C	—	Monotonicity ⁽¹⁾			_	-	Guaranteed	
1000		-	amic Pe	rformance		40		
AD30	THD	Total Harmonic Distortion		-73		dB		
AD31	SINAD	Signal to Noise and Distortion	—	58		dB		
AD32	SFDR	Spurious Free Dynamic Range		-73		dB		
AD33	FNYQ	Input Signal Bandwidth	—	—	1	MHz		
AD34	ENOB	Effective Number of Bits alog-to-Digital conversion result r	—	9.4		bits	1	

TABLE 24-40: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS

Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage, and has no missing codes.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

			Standard Operating Conditions (see Note 1): 3.0V to 3.6V Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param. No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments	
DA10	RLOAD	Resistive Output Load Impedance	ЗК	_	—	Ω		
DA11	CLOAD	Output Load Capacitance	—	20	35	pF		
DA12	Ιουτ	Output Current Drive Strength	-1740	±1400	+1770	μA	Sink and source	
DA13	VRANGE	Full Output Drive Strength Voltage Range	AVss + 250 mV		AVDD – 900 mV	V		
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 μA	AVss + 50 mV	_	AVDD – 500 mV	V		
DA15	IDD	Current Consumed when Module is Enabled, High-Power Mode	369	626	948	μΑ	Module will always consume this current even if no load is connected to the output	
DA16	ROUTON	Output Impedance when Module is Enabled	—	1200	—	Ω		

TABLE 24-44: DAC OUTPUT BUFFER DC SPECIFICATIONS

Note 1: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

	RACTER	ISTICS	(unless	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)				
			Operating temperature			-40°C ⊴ Tempe	≤ TA ≤ +150°C for High rature	
Param. Symbol		Characteristic	Min.	Тур.	Max.	Units	Conditions	
		Output Low Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	_	_	0.4	V	Io∟ ≤ 3.6 mA, VDD = 3.3V See Note 1	
DO10	Vol	Output Low Voltage I/O Pins: 8x Sink Driver Pins – RC0, RC3-RC8, RC11-RC13	_	_	0.4	V	$\begin{array}{l} \text{IOL} \leq 6 \text{ mA, VDD} = 3.3 \text{V} \\ \text{See } \textbf{Note 1} \end{array}$	
		Output Low Voltage I/O Pins: 16x Sink Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	_	_	0.4	V	$\label{eq:IDL} \begin{array}{l} \text{IOL} \leq 12 \text{ mA}, \text{ VDD} = 3.3\text{V} \\ \text{See } \textbf{Note 1} \end{array}$	
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5- RB10, RB15, RC1, RC2, RC9, RC10	2.4	_	_	~	IoL ≥ -4 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins – RC0, RC3-RC8, RC11-RC13	2.4	_	_	V	IOL ≥ -8 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14	2.4	_	_	V	Io∟≥ -16 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins:	1.5	_	—		$\label{eq:IOH} \begin{array}{l} \mbox{IOH} \geq -3.9 \mbox{ mA, VDD} = 3.3 \mbox{V} \\ \mbox{See } \mbox{Note 1} \end{array}$	
		4x Source Driver Pins – RA0-RA2, RB0-RB2, RB5-	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1	
		RB10, RB15, RC1, RC2, RC9, RC10	3.0	—	—		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins:	1.5	_	_		$\begin{array}{l} \text{IOH} \geq \text{-7.5 mA, VDD} = 3.3\text{V} \\ \text{See Note 1} \end{array}$	
DO20A	Voh1	8x Source Driver Pins – RC0, RC3-RC8, RC11-RC13	2.0	_	_	V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins:	1.5	_	_		IOH ≥ -15 mA, VDD = 3.3V See Note 1	
		16x Source Driver Pins – RA3, RA4, RB3, RB4, RB11-RB14		_	_	V	IOH ≥ -14 mA, VDD = 3.3V See Note 1	
			3.0	_	_		ІОн ≥ -7 mA, VDD = 3.3V See Note 1	

TABLE 25-5: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

TABLE 26-3: DC CHARACTERISTICS: IDLE CURRENT (lidle)

DC CHARACT	ERISTICS		(unless oth	ard Operating Conditions: 3.0V to 3.6V s otherwise stated) ing temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical	Мах	Units	Conditions					
Idle Current (II	Idle Current (IIDLE): Core Off, Clock On Base Current ⁽¹⁾								
MDC45d	64	105	mA	-40°C					
MDC45a	64	105	mA	+25°C	3.3V 50 MIPS				
MDC45b	64	105	mA	+85°C					

Note 1: Base Idle current (IIDLE) is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- JTAG is disabled

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-157D Sheet 1 of 2

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2008-2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-63276-216-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.