

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs404-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

Note:	To access the documents listed below, browse to the documentation section of the dsPIC33FJ16GS504 product page of the Microchip web site (www.microchip.com).
	In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70197)
- "CPU" (DS70204)
- "Data Memory" (DS70202)
- "Program Memory" (DS70203)
- "Flash Programming" (DS70191)
- "Reset" (DS70192)
- "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196)
- "I/O Ports" (DS70193)
- "Timers" (DS70205)
- "Input Capture" (DS70198)
- "Output Compare" (DS70005157)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70188)
- "Serial Peripheral Interface (SPI)" (DS70206)
- "Inter-Integrated Circuit™ (I²C™)" (DS70000195)
- "CodeGuard™ Security (DS70199)
- "Programming and Diagnostics" (DS70207)
- "Device Configuration" (DS70194)
- "Interrupts (Part IV)" (DS70300)
- "Oscillator (Part IV)" (DS70307)
- "High- Speed PWM Module" (DS70000323)
- "High-Speed 10-Bit ADC" (DS70000321)
- "High-Speed Analog Comparator" (DS70296)
- "Oscillator (Part VI)" (DS70644)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR		MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI	-	_	_		_		-	_		_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF		T2IF	_		-	T1IF	OC1IF	_	INT0IF	0000
IFS1	0086	_	_	INT2IF	_	_		_		-	_		INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS3	008A	_	_	_	_	_	_	PSEMIF	_	_	_	_	_	_			_	0000
IFS4	008C	—	_	_	_	_	-	—	_	_	—	_	_	_	—	U1EIF	_	0000
IFS5	008E	—	PWM1IF	_	_	_	-	—	_	_	—	_	_	_	—	_	_	0000
IFS6	0090	ADCP1IF	ADCP0IF	_	_	_	_	—	_	_	—	_	_	_	—	PWM4IF	_	0000
IFS7	0092		_	_	_		_	_	_	_	—	_	_	-	-	ADCP3IF	_	0000
IEC0	0094		_	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	_	T2IE	_	_	_	T1IE	OC1IE		INT0IE	0000
IEC1	0096	_	_	INT2IE	—	_	_	—	_		—		INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_		—	_	_	—	_		—		_	_	_	_		0000
IEC3	009A	_			—	_		PSEMIE			_			_	_	_		0000
IEC4	009C	_			—	_		_			_			_	_	U1EIE		0000
IEC5	009E	-	PWM1IE		—	_		-			_			_	_	_		0000
IEC6	00A0	ADCP1IE	ADCP0IE	_	—	_	-	—	-	-	—	-	—	—	_	PWM4IE	_	0000
IEC7	00A2	_	—	_	—	_	-	—	-	-	—	-	—	—	_	ADCP3IE	_	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	-	—	-	—	—	INT0IP2	INT0IP1	INT0IP2	4404
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	-	—	-	-	—	-	—	—	_	_	_	4000
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	—	_	_	4440
IPC3	00AA	—	_	_	—	—	_	—	_		ADIP2	ADIP1	ADIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	—	_	—	_	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4044
IPC5	00AE	—	_	_	—	—	_	—	_	_	—	_	_	_	INT1IP2	INT1IP21	INT1IP0	0004
IPC7	00B2	—	—	_	—	—		—	_	_	INT2IP2	INT2IP1	INT2IP0	—	—	—	_	0040
IPC14	00C0	—	—	_	—	—		—	_	_	PSEMIP2	PSEMIP1	PSEMIP0	—	—	—	_	0040
IPC16	00C4	—	—	_	—	—		—	_	_	U1EIP2	U1EIP1	U1EIP0	—	—	—	_	0400
IPC23	00D2	—	—	_	—	—	PWM1IP2	PWM1IP1	PWM1IP0	_	—	_	—	—	—	—	_	0040
IPC24	00D4	—	—	—	—	—	—	—	—	_	PWM4IP2	PWM4IP1	PWM4IP0	—	—	—	_	4400
IPC27	00DA	—	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0	_	—	_	—	_	—	_	_	0040
IPC28	00DC	_			—	_		—			ADCP3IP2	ADCP3IP1	ADCP3IP0	_	_	_	_	0000
INTTREG	00E0		_	_	_	ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ06GS101 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ16GSX04

SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0140							Inpu	t Capture 1	Register								xxxx
0142			ICSIDL	_	-	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
0144							Inpu	t Capture 2	Register								xxxx
0146			ICSIDL	_	-	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
_	Addr 0140 0142 0144	Addr Bit 15 0140	Addr Bit 15 Bit 14 0140	Addr Bit 15 Bit 14 Bit 13 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 30 0140 0142 - - IcSIDL - - - - - - - - - - 0144 Input Input Input Input - <t< td=""><td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 3 0140 </td><td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0140 0142 - - Input Capture 1 Register 0142 - - ICSIDL - - - ICTMR 0144 - - - - - 2 Register</td><td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0140 </td><td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0140 </td><td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0140 </td><td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0140 </td><td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0140 </td><td>Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0140 </td><td>Addr Bit 13 Bit 13 Bit 12 Bit 11 Bit 10 Bit 20 Bit 30 Bit 2 Bit 12 Bit 10 0140 </td></t<>	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 3 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0140 0142 - - Input Capture 1 Register 0142 - - ICSIDL - - - ICTMR 0144 - - - - - 2 Register	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 10 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0140	Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0140	Addr Bit 13 Bit 13 Bit 12 Bit 11 Bit 10 Bit 20 Bit 30 Bit 2 Bit 12 Bit 10 0140

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02

	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Con	npare 1 Sec	ondary Reg	gister							xxxx
OC1R	0182							Outpu	It Compare	1 Register								xxxx
OC1CON	0184	—	_	OCSIDL	—	_	_	_	_	—	—	—	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
		—	—	OCSIDL	—	—					_	_	OCFLT	OCTSEL	OCM2	OCM1		OCM0

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ06GSX04

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Co	mpare 1 Se	condary Re	egister							xxxx
OC1R	0182							Outp	ut Compare	1 Register	r							xxxx
OC1CON	0184	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000
OC2RS	0186							Output Co	mpare 2 Se	condary Re	egister							xxxx
OC2R	0188							Outp	ut Compare	2 Register	r							xxxxx
OC2CON	018A	_	_	OCSIDL	_	_	_		_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	OCM0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: HIGH-SPEED PWM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0400	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	_	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0402		_	_		_		_	_	-	_	_	_	_	PCLKDIV2	PCLKDIV1	PCLKDIV0	0000
PTPER	0404														FFF8			
SEVTCMP	0406							SEVTC	MP<15:3>						_	_	_	0000
MDC	040A									MDC<15:0)>							0000

© 2008-2014 Microchip Technology Inc.

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	—	GSWTRG	_	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	—	_	_		_	—	_	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	-	—	_	_		_	—	_	P6RDY	_	_	_	P2RDY	P1RDY	PORDY	0000
ADBASE	0308								ADBASE<1	5:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	_	-	—	_	_		_	—	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC3	0310	_		—	_	_	_	—	—	IRQEN6	PEND6	SWTRG6	TRGSRC64	TRGSRC63	TRGSRC62	TRGSRC61	TRGSRC60	0000
ADCBUF0	0320								ADC E	Data Buffer	0							xxxx
ADCBUF1	0322								ADC E	Data Buffer	[.] 1							xxxx
ADCBUF2	0324								ADC E	Data Buffer	2							xxxx
ADCBUF3	0326								ADC E	Data Buffer	3							xxxx
ADCBUF4	0328								ADC E	Data Buffer	4							xxxx
ADCBUF5	032A								ADC E	Data Buffer	5							xxxx
ADCBUF12	0338								ADC D	ata Buffer	12							xxxx
ADCBUF13	033A								ADC D	Data Buffer	13							xxxx

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-28: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS402/404 DEVICES ONLY

	-				-							-						
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	_	GSWTRG	_	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	-	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	_	_	_	—	_	_	_	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	_	_	_	—	_	_	_	_	_	_	_	P3RDY	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308								ADBASE<15	:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCBUF0	0320								ADC D	ata Buffer	0							xxxx
ADCBUF1	0322								ADC D	ata Buffer	1							xxxx
ADCBUF2	0324								ADC D	ata Buffer	2							xxxx
ADCBUF3	0326								ADC D	ata Buffer	3							xxxx
ADCBUF4	0328								ADC D	ata Buffer	4							xxxx
ADCBUF5	032A								ADC D	ata Buffer	5							xxxx
ADCBUF6	032C								ADC D	ata Buffer	6							xxxx
ADCBUF7	032E								ADC D	ata Buffer	7							xxxx
Legend:	x =	unknown	value on	Reset, — =	unimplement	ed, read as '0'	. Reset value	s are shown i	n hexadecima	al.								

					11.0		11.0
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	—	INT2IF	—	—	—	—	
bit 15							bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	_	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemer	nted: Read as '	0'				
bit 13	INT2IF: Exte	rnal Interrupt 2	Flag Status bi	t			
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 12-5	Unimplemer	nted: Read as '	0'				
bit 4	INT1IF: Exte	rnal Interrupt 1	Flag Status bi	t			
		request has oc					
	0 = Interrupt	request has no	t occurred				
bit 3	CNIF: Input (Change Notifica	ation Interrupt	Flag Status bit			
		request has oc					
	•	request has no					
bit 2	AC1IF: Analo	og Comparator	1 Interrupt Fla	g Status bit			
		request has oc					
	•	request has no					
bit 1		C1 Master Even	•	ag Status bit			
		request has oc					
		request has no					
bit 0		1 Slave Events		Status bit			
		request has oc					
	0 = Interrupt	request has no	t occurred				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	_	_	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	R-0						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:										
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	, read as '0'						
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-12	Unimplen	nented: Read as '0'								
	•		(Loval bita							
bit 11-8		New CPU Interrupt Priority								
	1111 = C	1111 = CPU Interrupt Priority Level is 15								
	•									
	•									
	•	• Operation of the second seco								
		PU Interrupt Priority Level is								
		PU Interrupt Priority Level i	50							
bit 7	Unimplen	nented: Read as '0'								
bit 6-0	VECNUM<6:0>: Vector Number of Pending Interrupt bits									
	0111111 = Interrupt vector pending is Number 135									
	•									
	•									
	•									
	0000001	= Interrupt vector pending i	is Number 9							
	0000000	= Interrupt vector pending i	is Number 8							

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
—	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0						
bit 15							bit 8						
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
0-0	0-0	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0						
bit 7		UTIVILU	01101104	0110010	OTIVITZ	UIIXI	bit (
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15-14	Unimplement	ted. Dood oo '	<u>,</u>										
	-	ted: Read as '											
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits												
				111111 = Input tied to Vss									
	111111 = I np												
	111111 = Inp 100011 = Inp	ut tied to RP35											
	111111 = Inp 100011 = Inp 100010 = Inp	ut tied to RP35 ut tied to RP34	ŀ										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33	L 3										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32	L 3										
bit 7-6	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp • • • • 00000 = Inpu	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0	4 3 2										
bit 7-6 bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplemen	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '(L 3 2	IRX) to the Co	rresponding RF	Pn Pin bits							
bit 7-6 bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplement U1RXR<5:0>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART	L 3 2	IRX) to the Co	rresponding RF	n Pin bits							
	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplement U1RXR<5:0> 111111 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART)) 1 Receive (U ⁷	IRX) to the Co	rresponding RF	n Pin bits							
	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplement U1RXR<5:0> 111111 = Inp 100011 = Inp	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss	1 2 1 Receive (U ⁷	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	Pn Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	'n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	n Pin bits							
	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu • • • • • • • • • • • • • • • • • • •</pre>	ut tied to RP35 ut tied to RP34 ut tied to RP33 ut tied to RP32 t tied to RP0 ted: Read as '0 : Assign UART ut tied to Vss ut tied to RP35 ut tied to RP34 ut tied to RP33)) 1 Receive (U ² 5	IRX) to the Co	rresponding RF	Pn Pin bits							

REGISTER 10-6: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8
11.0	11.0						

REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	= Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0
Legend:							
D Doodoblob	:+		h:+		nonted hit read	oo 'O'	

REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	-					•	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—	_	_	P	CLKDIV<2:0>(1)
bit 7			•				bit 0

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

Γ.

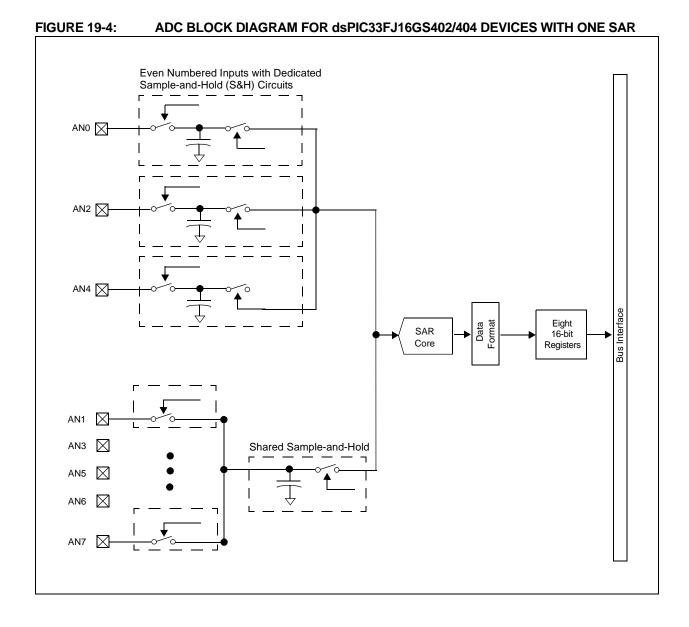
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will vield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown


bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHAS	SEx<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'		d as '0'		
-n = Value at POR '1' = Bit is set			0' = Bit is cleared $x = B$		x = Bit is unkr	nown	

bit 15-0 SPHASEx<15:0>: Secondary Phase Offset for PWMxL Output Pin bits (used in Independent PWM mode only)

- **Note 1:** If PWMCONx<ITB> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<PMOD> = 11); PHASEx<15:0> = Phase-shift value for PWMxL only
 - **2:** If PWMCONx<ITB> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<PMOD> = 00, 01, or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (PMOD<1:0> (IOCONx<11:10>) = 11); PHASEx<15:0> = Independent Time Base period value for PWMxL only

© 2008-2014 Microchip Technology Inc.

REGISTER 19-5: ADCPC0: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

```
bit 4-0
               TRGSRC0<4:0>: Trigger 0 Source Selection bits
               Selects trigger source for conversion of Analog Channels AN1 and AN0.
               11111 = Timer2 period match
               11011 = Reserved
               11010 = PWM Generator 4 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               10111 = PWM Generator 1 current-limit ADC trigger
               10110 = \text{Reserved}
               10010 = Reserved
               10001 = PWM Generator 4 secondary trigger is selected
               10000 = PWM Generator 3 secondary trigger is selected
               01111 = PWM Generator 2 secondary trigger is selected
               01110 = PWM Generator 1 secondary trigger is selected
               01101 = Reserved
               01100 = Timer1 period match
               01000 = Reserved
               00111 = PWM Generator 4 primary trigger is selected
               00110 = PWM Generator 3 primary trigger is selected
               00101 = PWM Generator 2 primary trigger is selected
               00100 = PWM Generator 1 primary trigger is selected
               00011 = PWM Special Event Trigger is selected
               00010 = Global software trigger is selected
               00001 = Individual software trigger is selected
               00000 = No conversion is enabled
```

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

21.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F/PIC24H Family Reference Manual" sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

21.1 Configuration Bits

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices provide nonvolatile memory implementations for device Configuration bits. Refer to **"Device Configuration"** (DS70194) in the *"dsPIC33F/PIC24H Family Reference Manual"* for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 21-2.

Note that address, 0xF80000, is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFF), which can only be accessed using Table Reads and Table Writes.

The device Configuration register map is shown in Table 21-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	—	_		_	BSS2	BSS1	BSS0	BWRP
0xF80002	Reserved	—		_	—	—	_	_	—
0xF80004	FGS	—	_	—			GSS1	GSS0	GWRP
0xF80006	FOSCSEL	IESO	_	—		-	FNOSC2	FNOSC1	FNOSC0
0xF80008	FOSC	FCKSM1	FCKSM0	IOL1WAY			OSCIOFNC	POSCMD1	POSCMD0
0xF8000A	FWDT	FWDTEN	WINDIS	—	WDTPRE	WDTPOST3	WDTPOST2	WDTPOST1	WDTPOST0
0xF8000C	FPOR	—	_	—		Reserved ⁽²⁾	FPWRT2	FPWRT1	FPWRT0
0xF8000E	FICD	Reserved ⁽¹⁾ JT		JTAGEN			_	ICS1	ICS0
0xF80010	FUID0	User Unit ID Byte 0							
0xF80012	FUID1		User Unit ID Byte 1						

TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: These bits are reserved for use by development tools and must be programmed to '1'.

2: This bit reads the current programmed value.

Bit Field	Register	RTSP Effect	Description
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	FWDT	Immediate	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
JTAGEN	FICD	Immediate	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select Enable bits 11 = Communicates on PGEC1 and PGED1 10 = Communicates on PGEC2 and PGED2 01 = Communicates on PGEC3 and PGED3 00 = Reserved, do not use.

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] Digital Signal Controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

23.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

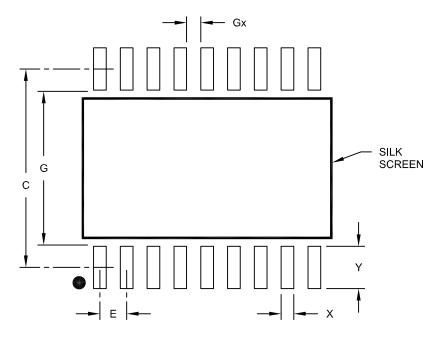
- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (see Note 3): 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					ndustrial	
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low BOR Event is Tied to VDD Core Voltage Decrease		2.55		2.79	V	See Note 2


Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The device will operate as normal until the VDDMIN threshold is reached.

3: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules such as the ADC, etc., will function but with degraded performance below VDDMIN.

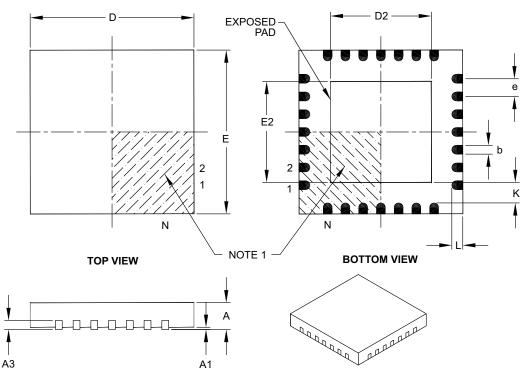
18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimens	ion Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	Е		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70	
Contact Width	b	0.23	0.38	0.43	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

TABLE A-2:	MAJOR SECTION UPDATES (CONTINUED)
------------	-----------------------------------

Section Name	Update Description
Section 8.0 "Oscillator	Added Note 2 to the Oscillator System Diagram (see Figure 8-1).
Configuration"	Added a paragraph regarding FRC accuracy at the end of Section 8.1.1 "System Clock Sources".
	Added Note 1 and Note 2 to the OSCON register (see Register).
	Added Note 1 to the OSCTUN register (see Register 8-4).
	Added Note 3 to Section 8.4.2 "Oscillator Switching Sequence".
Section 10.0 "I/O Ports"	Removed Table 9-1 and added reference to pin diagrams for I/O pin availability and functionality.
	Added paragraph on ADPCFG register default values to Section 10.3 " Configuring Analog Port Pins ".
	Added Note box regarding PPS functionality with input mapping to Section 10.6.2.1 "Input Mapping" .
Section 15.0 "High-Speed PWM"	Updated Note 2 in the PTCON register (see Register 15-1).
	Added Note 4 to the PWMCONx register (see Register 15-6).
	Updated Notes for the PHASEx and SPHASEx registers (see Register 15-9 and Register 15-10, respectively).
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and Note 3 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal	Updated the Notes in the UxMode register (see Register 18-1).
Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 18-2).
Section 19.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Updated the SLOWCLK and ADCS<2:0> bit settings and updated Note 1in the ADCON register (see Register 19-1).
	Removed all notes in the ADPCFG register and replaced them with a single note (see Register 19-4).
	Updated the SWTRGx bit settings in the ADCPCx registers (see Register 19-5, Register 19-6, Register 19-7, and Register 19-8).