

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs404t-50i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
TRAPR	IOPUWR					СМ	VREGS			
bit 15							bit 8			
DAMO	DAVO	DANO	DAMO	DAMO	D/M/ O					
R/W-0	R/W-0	R/W-0 SWDTEN ⁽²⁾	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1			
EXTR bit 7	SWR	SWDIEN	WDTO	SLEEP	IDLE	BOR	POR bit (
Legend:										
R = Readable	e bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown			
bit 15	TRAPR: Trap	Reset Flag bit								
	•	onflict Reset has	s occurred							
	0 = A Trap Co	onflict Reset has	s not occurre	d						
bit 14	IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit									
	•	l opcode detec		gal address mo	ode or Uninitia	lized W registe	er used as a			
		Pointer caused I opcode or Unit		egister Reset h	as not occurre	d				
bit 13-10		ted: Read as '0		og.oto: 11000111		-				
bit 9	-	ation Mismatch								
	-	uration Mismatc	-	occurred						
	0 = A Configu	uration Mismatc	h Reset has	NOT occurred						
bit 8	VREGS: Volta	EGS: Voltage Regulator Standby During Sleep bit								
		egulator is activ								
h:+ 7	-	egulator goes in	-	node during Sie	ер					
bit 7	EXTR: External Reset Pin (MCLR) bit 1 = A Master Clear (pin) Reset has occurred									
		Clear (pin) Res								
bit 6		re Reset Flag (
		instruction has								
	0 = A reset	instruction has	not been exe	ecuted						
bit 5	SWDTEN: So	oftware Enable/I	Disable of W	DT bit ⁽²⁾						
	1 = WDT is e 0 = WDT is di									
bit 4		hdog Timer Tim	e-out Flag bi	it						
	1 = WDT time	e-out has occuri e-out has not oc	ed							
bit 3	SLEEP: Wak	e-up from Sleep	Flag bit							
		as been in Sleep	-							
	0 = Device ha	as not been in S	leep mode							
bit 2		up from Idle Fla	g bit							
		as in Idle mode as not in Idle m	ode							
	of the Reset sta use a device Re	atus bits can be		d in software. S	etting one of th	nese bits in soft	ware does no			

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	_	_	—	_	_	PSEMIF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_	—				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared					ared	x = Bit is unkr	nown

REGISTER 7-7: IFS3: INTERRUPT FLAG STATUS REGISTER 3

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIF: PWM Special Event Match Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	—	—	U1EIF	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 U1EIF: UART1 Error Interrupt Flag Status bit

I = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0				
bit 15							bit 8				
				-	D 444 a	D A A A	-				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF				
bit 7 bit 0											
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-5	Unimplemen	ted: Read as '	0'								
bit 4	ADCP6IF: AD	DC Pair 6 Conv	ersion Done li	nterrupt Flag S	tatus bit						
	1 = Interrupt r	equest has oc	curred								
	0 = Interrupt r	equest has not	occurred								
bit 3	ADCP5IF: AD	DC Pair 5 Conv	ersion Done I	nterrupt Flag S	tatus bit						
		equest has oc									
	0 = Interrupt r	equest has not	occurred								
bit 2		DC Pair 4 Conv		nterrupt Flag S	tatus bit						
		equest has oc									
	•	equest has not									
bit 1		DC Pair 3 Conv		nterrupt Flag S	tatus bit						
		equest has oc									
h:1.0	•	equest has not			4 - 4						
bit 0		C Pair 2 Conv		nterrupt Flag S	tatus bit						
		equest has oco equest has not									
		equest has no	occurreu								

REGISTER 7-11: IFS7: INTERRUPT FLAG STATUS REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
—	ADCP1IP2	ADCP1IP1	ADCP1IP0	—	ADCP0IP2	ADCP0IP1	ADCP0IP0	
oit 15			•				bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—		_	
oit 7	·	•					bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	Unimplemen	ted: Read as '	0'					
L 1 4 4 4 0								
DIT 14-12	ADCP1IP<2:0	D>: ADC Pair 1	Conversion E	Oone Interrupt	Priority bits			
Dit 14-12		D>: ADC Pair 1 ot is Priority 7 (•	Priority bits			
dit 14-12				•	Priority bits			
dit 14-12				•	Priority bits			
DIT 14-12		ot is Priority 7 (•	Priority bits			
dit 14-12	111 = Interrup • • 001 = Interrup	ot is Priority 7 (highest priorit	•	Priority bits			
bit 14-12 bit 11	<pre>111 = Interrup</pre>	ot is Priority 7 (ot is Priority 1	highest priorit <u>i</u> abled	•	Priority bits			
	<pre>111 = Interrup</pre>	ot is Priority 7 (ot is Priority 1 ot source is dis	highest priorit <u>;</u> abled 0'	y interrupt)				
pit 11	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as '	highest priority abled 0') Conversion E	y interrupt) Done Interrupt				
pit 11	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ')>: ADC Pair 0	highest priority abled 0') Conversion E	y interrupt) Done Interrupt				
pit 11	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ')>: ADC Pair 0	highest priority abled 0') Conversion E	y interrupt) Done Interrupt				
pit 11	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen ADCP0IP<2:0	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ' D>: ADC Pair 0 ot is Priority 7 (highest priority abled 0') Conversion E	y interrupt) Done Interrupt				
pit 11	<pre>111 = Interrup</pre>	ot is Priority 7 (ot is Priority 1 ot source is dis ted: Read as ' D>: ADC Pair 0 ot is Priority 7 (highest priorit abled o' Conversion E highest priorit	y interrupt) Done Interrupt				

REGISTER 7-32: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27

R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	
ENAPLL	APLLCK	SELACLK	_	—	APSTSCLR2	APSTSCLR1	APSTSCLR	
bit 15	•					•	bit 0	
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
ASRCSEL	FRCSEL	_			_	_	_	
bit 7								
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimple	emented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		ʻ0' = Bit is c	leared	x = Bit is unkn	own	
bit 15	ENAPLL: Au 1 = APLL is e 0 = APLL is d		ole bit					
bit 14	1 = Indicates	PLL Locked Statu that auxiliary PL that auxiliary PL	L is in lock					
bit 13	1 = Auxiliary	oscillators provi	des the sou	rce clock for a	Clock Divider bi auxiliary clock div auxiliary clock dir	rider		
bit 12-11	•	ited: Read as '0				Vider		
bit 10-8	-	:2:0>: Auxiliary (ıt Dividar hits				
	111 = Divideo 110 = Divideo 101 = Divideo 100 = Divideo 011 = Divideo 010 = Divideo 001 = Divideo 001 = Divideo	d by 1 d by 2 d by 4 d by 8 d by 16 d by 32 d by 64						
bit 7	ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit 1 = Primary oscillator is the clock source 0 = No clock input is selected							
bit 6		lect Reference (RC clock for aux		e for Auxiliary	PLL bit			
	0 = Input cloc	k source is dete		ASRCSEL bit	setting			

REGISTER 8-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER⁽¹⁾

Note 1: This register is reset only on a Power-on Reset (POR).

10.2 Open-Drain Configuration

In addition to the PORTx, LATx and TRISx registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

10.3 Configuring Analog Port Pins

The ADPCFG and TRISx registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORTx register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.5 Input Change Notification

The Input Change Notification (ICN) function of the I/O ports allows the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on Change Notification pins should always be disabled when the port pin is configured as a digital output.

EQUATION 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
BTSS	PORTB, #13	;	Next Instruction

10.7 Peripheral Pin Select Registers

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices implement 34 registers for remappable peripheral configuration:

- 15 Input Remappable Peripheral Registers
- 17 Output Remappable Peripheral Registers

Note: Input and output register values can only be changed if OSCCON<IOLOCK> = 0. See Section 10.6.3.1 "Control Register Lock" for a specific command sequence. Not all output remappable peripheral registers are implemented on all devices. See the specific register description for further details.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 7							bit 0

Legend:

=ogonan				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8

bit 7-0

INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss
100011 = Input tied to RP35
100010 = Input tied to RP34
100000 = Input tied to RP32
.
.
00000 = Input tied to RP0
Unimplemented: Read as '0'

© 2008-2014 Microchip Technology Inc.

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source
- Optionally, the external clock input (T1CK) can be synchronized to the internal device clock and the clock synchronization is performed after the prescaler

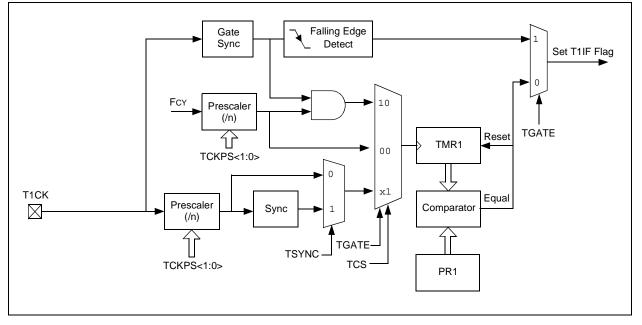
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

The timer control bit settings for different operating modes are given in the Table 11-1.

TABLE 11-1: TIN	ER MODE SETTINGS
-----------------	------------------

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	x	1
Asynchronous Counter	1	x	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

HS/HC-0) HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾
bit 15	ł						bit 8
R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DTC1	DTC0	—	—		CAM ^(2,3)	XPRES ⁽⁴⁾	IUE
bit 7							bit
Legend:		HC = Hardware	Clearable bit	HS = Hardw	are Settable bi	it	
R = Readal	hle hit	W = Writable bit			mented bit, rea		
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unl	nown
		1 – Dit 13 Set			caleu		NIOWII
bit 15	FLTSTAT: F	ault Interrupt Statu	us bit ⁽¹⁾				
		rrupt is pending					
		interrupt is pendin	g; this bit is cle	ared by setting	FLTIEN = 0		
bit 14	CLSTAT: Cu	urrent-Limit Interru	pt Status bit ⁽¹⁾				
		mit interrupt is per nt-limit interrupt is	Q	t is cleared by	setting CLIEN	= 0	
bit 13	TRGSTAT: Tr	rigger Interrupt Sta	itus bit				
		terrupt is pending					
	0 = No trigge	r interrupt is pendi	ng; this bit is cl	eared by settin	g TRGIEN = 0)	
bit 12	FLTIEN: Fai	ult Interrupt Enable	e bit				
		rrupt is enabled					
		rrupt is disabled a		T bit is cleared			
bit 11		rent-Limit Interrupt					
		mit interrupt is ena mit interrupt is dis		CLSTAT bit is c	leared		
bit 10	TRGIEN: Trig	ger Interrupt Enat	ole bit				
		event generates a vent interrupts are			it is cleared		
bit 9	ITB: Indepe	ndent Time Base I	Mode bit ⁽³⁾				
	1 = PHASEx/	/SPHASEx registe egister provides tir	r provides time		r this PWM ge	enerator	
bit 8		ster Duty Cycle Re	-				
		ister provides duty Cx register provid				erator	
bit 7-6		ead-Time Control			lie i till gene		
	11 = Reserve		513				
		ne function is disa	bled				
		e dead time is acti dead time is activ					
bit 5-3		ited: Read as '0'	- ,				
Note 1:	Software must clo	ar the interrupt sta	tue here and th	e correspondir	a IFSy hit in t	he interrupt or	ontroller
2:		Time Base mode (-	-	
3:	-	be changed only v	when PTEN = 0	. Changing the	e clock selectio	on during ope	ration will
		real Dariad Deast	modo confirm				

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER

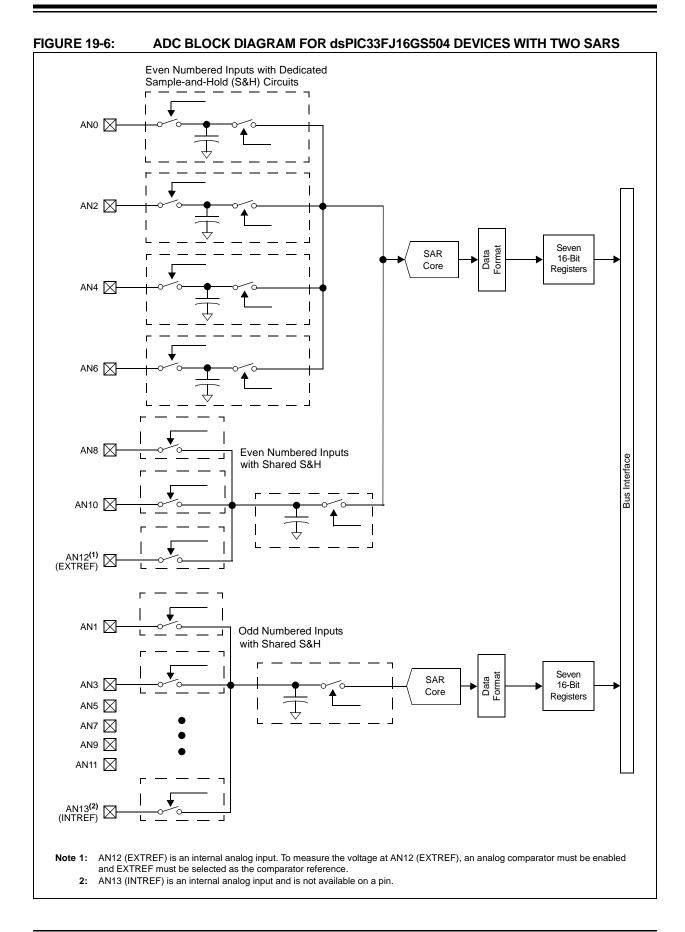
4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0 and PWMCONx<ITB> = 1.

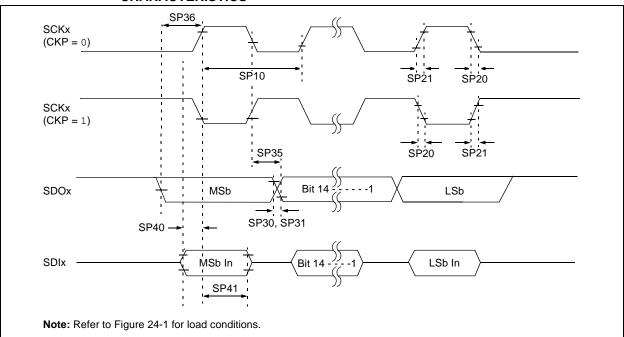
REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			DTR>	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTR	2x<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-14Unimplemented: Read as '0'bit 13-0DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER


U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			ALTDTI	Rx<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ALTD	TR <7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown


bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 1	8-1: UxMO	DE: UARTx N		STER			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0
bit 15	·						bit
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7	EI BROR	//B/(OD	OTOXINV	BROM	TDOLLI	1 DOLLO	bit
			0	•.			
Legend:	1.12	HC = Hardwa					
R = Readable		W = Writable		-	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	UARTEN: UA	ARTx Enable bi	_t (1)				
	1 = UARTx is	s enabled; all U	ARTx pins are	e controlled by	UARTx as defi	ned by UEN<1:	0>
			UARTx pins a	are controlled I	by port latches	, UARTx power	consumptio
bit 14	is minima	ai i ted: Read as 'i	ר'				
bit 13	-	Tx Stop in Idle I					
bit 13		ues module op		device enters	Idle mode		
		s module operation					
bit 12	IREN: IrDA [®]	Encoder and D	ecoder Enable	e bit ⁽²⁾			
	1 = IrDA enc	oder and deco	der are enable	ed			
	0 = IrDA enc	oder and deco	der are disable	ed			
bit 11		le Selection for		it			
		in is in Simple» in is in Flow Co					
bit 10	Unimplemen	ted: Read as '	כ'				
bit 9-8		IARTx Enable b					
	10 = UxTX, L	JxRX, <u>UxCTS</u> a	ind UxRTS pir	ns are enabled	and used	controlled by po	
		nd UxRX pins a				/BCLK pins are	
bit 7	WAKE: Wake	-up on Start bit	Detect During	g Sleep Mode	Enable bit		
		vill continue to s are on the follo			pt is generated	on falling edge,	bit is cleare
		-up is enabled	wing naing eu	ge			
bit 6		RTx Loopback	Mode Select	bit			
		Loopback mod					
		k mode is disat					
bit 5	ABAUD: Auto	o-Baud Enable	bit				
	before ot	aud rate meas her data; cleare e measuremen	ed in hardwar	e upon comple	tion	eception of a Sy	nc field (55
Note 1: Rei						anual" for inform	ation on
	abling the UART				,		
2: Thi	s feature is only	/ available for t	he 16x BRG n	node (BRGH =	= 0).		

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

FIGURE 24-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 24-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHA	RACTERIST	ICS	(unless o	I Operatin otherwise g temperat	stated) ture -40	°C ≤ Ta ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCKx Frequency	—	_	9	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	-	_	ns	See Parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	-	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

AC CHA	ARACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	e stated) iture -40)°C ≤ TA ≤	DV to 3.6V +85°C for Industrial +125°C for Extended	
Param No.	Symbol	Charact	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns		
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	THD:DAT	Data Input	100 kHz mode	0	—	μS		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽²⁾	0.2	—	μS		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated	
IM33	TSU:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns		
		From Clock	400 kHz mode	_	1000	ns		
			1 MHz mode ⁽²⁾	_	400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	—	μs	free before a new	
			1 MHz mode ⁽²⁾	0.5	_	μS	transmission can star	
IM50	Св	Bus Capacitive L	oading	_	400	pF	İ.	
IM51	TPGD	Pulse Gobbler De	elay	65	390	ns	See Note 3	

TABLE 24-38: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (I²C[™])" (DS70000195) in the "dsPIC33/PIC24 Family Reference Manual".

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	mbol Characteristic Min. Typ. Max. Units		Units	Conditions		
		I	Device S	Supply			•
AD01	AVdd	Module VDD Supply	_	_	_	_	AVDD is internally connected to VDD; see Parameter DC10 in Table 24-4
AD02	AVss	Module Vss Supply	—	_		-	AVss is internally connected to Vss
			Analog	Input			
AD10	VINH-VINL	Full-Scale Input Span	Vss		Vdd	V	
AD11	Vin	Absolute Input Voltage	AVss	—	AVdd	V	
AD12	IAD	Operating Current	_	8		mA	
AD13	—	Leakage Current	—	±0.6		μA	VINL = AVSS = 0V, AVDD = 3.3V Source Impedance = 100Ω
AD17	Rin	Recommended Impedance Of Analog Voltage Source	_		100	Ω	
			curacy	@ 1.5 Msp			
AD20A		Resolution		10 Data	Bits	-	
AD21A		Integral Nonlinearity	-0.5	-0.3/+0.5	+1.2	LSb	
AD22A		Differential Nonlinearity	-0.9	±0.6	+0.9	LSb	
AD23A		Gain Error	13	15	22	LSb	
AD24A	EOFF	Offset Error	6	7	8	LSb	
AD25A	—	Monotonicity ⁽¹⁾	—	—	—	—	Guaranteed
	1		curacy	@ 1.7 Msp			
AD20B		Resolution		10 Data			
AD21B		Integral Nonlinearity	-0.5	-0.4/+1.1	+1.8	LSb	
AD22B		Differential Nonlinearity	-1.0	±1.0	+1.5	LSb	
AD23B		Gain Error	13	15	22	LSb	
AD24B	EOFF	Offset Error	6	7	8	LSb	
AD25B		Monotonicity ⁽¹⁾		—	—	—	Guaranteed
			curacy	@ 2.0 Msp			1
AD20C		Resolution		10 Data		1	
AD21C		Integral Nonlinearity	-0.8	-0.5/+1.8	+2.8	LSb	
AD22C		Differential Nonlinearity	-1.0	-1.0/+1.8	+2.8	LSb	
AD23C		Gain Error	14	16	23	LSb	
AD24C	EOFF	Offset Error	6	7	8	LSb	
AD25C	—	Monotonicity ⁽¹⁾			_		Guaranteed
1000		-	amic Pe	rformance		40	
AD30	THD	Total Harmonic Distortion		-73		dB	
AD31	SINAD	Signal to Noise and Distortion	—	58		dB	
AD32	SFDR	Spurious Free Dynamic Range		-73		dB	
AD33	FNYQ	Input Signal Bandwidth	—	—	1	MHz	
AD34	ENOB	Effective Number of Bits alog-to-Digital conversion result r	—	9.4		bits	1

TABLE 24-40: 10-BIT HIGH-SPEED ADC MODULE SPECIFICATIONS

Note 1: The Analog-to-Digital conversion result never decreases with an increase in input voltage, and has no missing codes.

2: Module is functional at VBOR < VDD < VDDMIN, but with degraded performance. Module functionality is tested but not characterized.

26.0 50 MIPS ELECTRICAL CHARACTERISTICS

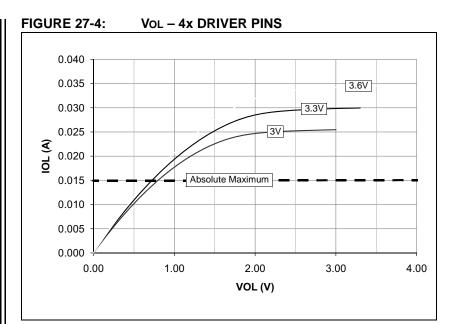
This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics for devices operating at 50 MIPS.

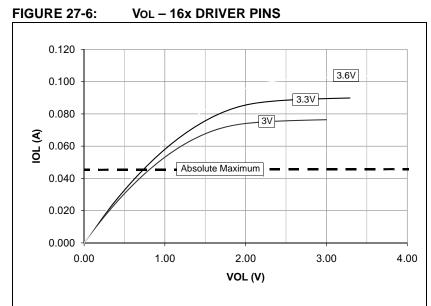
The specifications for 50 MIPS are identical to those shown in **Section 24.0 "Electrical Characteristics"**, with the exception of the parameters listed in this section.

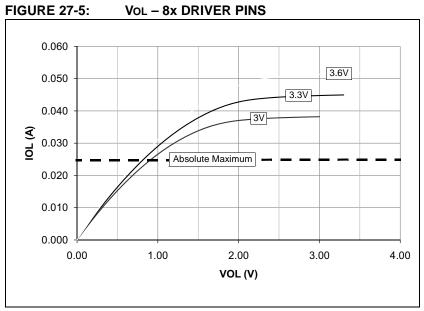
Parameters in this section begin with the letter "M", which denotes 50 MIPS operation. For example, Parameter DC29a in **Section 24.0** "Electrical Characteristics", is the up to 40 MIPS operation equivalent of MDC29a.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 50 MIPS devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

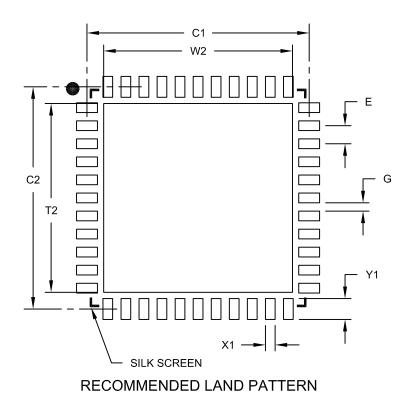
Absolute Maximum Ratings⁽¹⁾


Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	
Voltage on any 5V tolerant pin with respect to Vss, when Vdd $\geq 3.0V^{(3)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss, when $VDD < 3.0V^{(3)}$	
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum current sourced/sunk by any 4x I/O pin	
Maximum current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sourced/sunk by any 16x I/O pin	45 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200mA


Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).

3: See the **"Pin Diagrams"** section for 5V tolerant pins.



44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

NOTES:

NOTES: