

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs404t-50i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

Note:	To access the documents listed below, browse to the documentation section of the dsPIC33FJ16GS504 product page of the Microchip web site (www.microchip.com).
	In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70197)
- "CPU" (DS70204)
- "Data Memory" (DS70202)
- "Program Memory" (DS70203)
- "Flash Programming" (DS70191)
- "Reset" (DS70192)
- "Watchdog Timer (WDT) and Power-Saving Modes" (DS70196)
- "I/O Ports" (DS70193)
- "Timers" (DS70205)
- "Input Capture" (DS70198)
- "Output Compare" (DS70005157)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70188)
- "Serial Peripheral Interface (SPI)" (DS70206)
- "Inter-Integrated Circuit™ (I²C™)" (DS70000195)
- "CodeGuard™ Security (DS70199)
- "Programming and Diagnostics" (DS70207)
- "Device Configuration" (DS70194)
- "Interrupts (Part IV)" (DS70300)
- "Oscillator (Part IV)" (DS70307)
- "High- Speed PWM Module" (DS70000323)
- "High-Speed 10-Bit ADC" (DS70000321)
- "High-Speed Analog Comparator" (DS70296)
- "Oscillator (Part VI)" (DS70644)

IADLL 4	- • •																	
File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000							Working Regi	ster 0								<u>.</u>	0000
WREG1	0002							Working Regi	ster 1								,	0000
WREG2	0004							Working Regi	ster 2									0000
WREG3	0006							Working Regi	ster 3									0000
WREG4	0008							Working Regi	ster 4									0000
WREG5	000A							Working Regi	ster 5									0000
WREG6	000C							Working Regi	ster 6									0000
WREG7	000E							Working Regi	ster 7									0000
WREG8	0010							Working Regi	ster 8									0000
WREG9	0012							Working Regi	ster 9									0000
WREG10	0014							Working Regis	ster 10									0000
WREG11	0016							Working Regi	ster 11									0000
WREG12	0018							Working Regis	ster 12									0000
WREG13	001A							Working Regis	ster 13									0000
WREG14	001C							Working Regis	ster 14									0000
WREG15	001E							Working Regis	ster 15									0800
SPLIM	0020						Sta	ck Pointer Lim	it Register									xxxx
ACCAL	0022							ACCAL										xxxx
ACCAH	0024							ACCAH										xxxx
ACCAU	0026	ACCA<39>	ACCA<39>				ACC	AU				xxxx						
ACCBL	0028							ACCBL										xxxx
ACCBH	002A							ACCBH										xxxx
ACCBU	002C	ACCB<39>	ACCB<39>				ACC	BU				xxxx						
PCL	002E					•	Program	Counter Low	Word Regist	er								0000
PCH	0030	_	-	_	-	_	_	-	—			Program	n Counter H	igh Byte F	Register			0000
TBLPAG	0032	_	_	_	-	_	_	_	—			Table Pa	age Address	s Pointer I	Register			0000
PSVPAG	0034	—	-	-	-	_	_	-	_		Program	Memory V	√isibility Pa	ge Addres	s Pointer	r Register	r	0000
RCOUNT	0036						REPE	AT Loop Cour	ter Register									xxxx
DCOUNT	0038							DCOUNT<1	5:0>									xxxx
DOSTARTL	003A		_		_	_	DOS	STARTL<15:1	>	0 2							xxxx	
DOSTARTH	003C	_	-	_	-	_	_	-	_	— — — DOSTARTH<5:0>						00xx		
DOENDL	003E						DC	ENDL<15:1>		0						xxxx		
DOENDH	0040	_	-	_	—	_	—	—	—	DOENDH					00xx			
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	_	—	_	US	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000

TABLE 4-1: CPU CORE REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-1: CPU CORE REGISTER MAP (CONTINUED)

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT	0048						2	XS<15:1>									0	xxxx
XMODEND	004A	XE<15:1>										1	xxxx					
YMODSRT	004C						`	YS<15:1>									0	xxxx
YMODEND	004E						`	YE<15:1>									1	xxxx
XBREV	0050	BREN	XB14	XB13	XB12	XB11	XB10	XB9	XB8	XB7	XB6	XB5	XB4	XB3	XB2	XB1	XB0	xxxx
DISICNT	0052	52 — — Disable Interrupts Counter Register											xxxx					

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dspic33FJ06GS101

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	—	—		_	_	_	_		CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	—	—		_	_	_	_	_	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3:CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402 AND
dsPIC33FJ16GS502

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS504 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	—	ADSIDL	SLOWCLK	_	GSWTRG	_	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	_		PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306			_	_	_	_	_	_	_	P6RDY	P5RDY	P4RDY	P3RDY	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308								ADBASE<15	:1>							—	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC2	030E	IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50	IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40	0000
ADCPC3	0310	I	IRQEN6 PEND6 SWTRG6 TRGSRC64 TRGSRC63 TRGSRC62 TRGSRC61 T										TRGSRC60	0000				
ADCBUF0	0320		ADC Data Buffer 0													xxxx		
ADCBUF1	0322								ADC Da	ata Buffer	1							xxxx
ADCBUF2	0324								ADC Da	ata Buffer	2							xxxx
ADCBUF3	0326								ADC Da	ata Buffer	3							xxxx
ADCBUF4	0328								ADC Da	ata Buffer	4							xxxx
ADCBUF5	032A								ADC Da	ata Buffer	5							xxxx
ADCBUF6	032C								ADC Da	ata Buffer	6							xxxx
ADCBUF7	032E								ADC Da	ata Buffer	7							xxxx
ADCBUF8	0330								ADC Da	ata Buffer	8							xxxx
ADCBUF9	0332	ADC Data Buffer 9 xxx											xxxx					
ADCBUF10	0334								ADC Da	ita Buffer '	10							xxxx
ADCBUF11	0336								ADC Da	ita Buffer	11							xxxx
ADCBUF12	0338								ADC Da	ta Buffer	12							xxxx
ADCBUF13	033A		ADC Data Buffer 13 xxxx															

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred

- 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

11.0	11.0	11.0	11.0		11.0	11.0	11.0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
			—			—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		—	ADCP6IF	ADCP5IF	ADCP4IF	ADCP3IF	ADCP2IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	ared	x = Bit is unkr	iown			
bit 15-5	Unimplemen	ted: Read as '	כי				
bit 4	ADCP6IF: AD	DC Pair 6 Conv	ersion Done Ir	nterrupt Flag S	Status bit		
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 3	ADCP5IF: AD	DC Pair 5 Conv	ersion Done Ir	nterrupt Flag S	Status bit		
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 2	ADCP4IF: AD	DC Pair 4 Conv	ersion Done Ir	nterrupt Flag S	Status bit		
	1 = Interrupt r	equest has occ	curred				
	0 = Interrupt r	equest has not	occurred				
bit 1	ADCP3IF: AD	DC Pair 3 Conv	ersion Done Ir	nterrupt Flag S	Status bit		
	1 = Interrupt r	equest has occ	curred				
		request has not					
U JIQ	ADCP2IF: AL	DC Pair 2 Conv	ersion Done li	nterrupt Flag S	Status bit		
	\perp = Interrupt r	equest has occ	curred				
		Equest has hot	occurreu				

REGISTER 7-11: IFS7: INTERRUPT FLAG STATUS REGISTER 7

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,2) (CONTINUED)

- bit 3 **CF:** Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" (available from the Microchip web site) for details.
 - 2: This register is reset only on a Power-on Reset (POR).
 - 3: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

REGISTER 9	-3: PMD	3: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 3		
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	
—	—	—	—	—	CMPMD	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	_	—	_	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

bit 15-11	Unimplemented: Read as '0'
bit 10	CMPMD: Analog Comparator Module Disable bit
	1 = Analog comparator module is disabled
	0 = Analog comparator module is enabled
bit 9-0	Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0	,'
----------	---------------------------	----

bit 3 **REFOMD**: Reference Clock Generator Module Disable bit

1 = Reference clock generator module is disabled

- 0 = Reference clock generator module is enabled
- bit 2-0 Unimplemented: Read as '0'

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0
bit 7							bit 0
F							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14 bit 13-8	Unimplemen U1CTSR<5:0 111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp • • •	ted: Read as ' >: Assign UAR but tied to Vss but tied to RP35 but tied to RP32 but tied to RP32 but tied to RP32 tied to RP32	0' T1 Clear-to-S	end (U1CTS) t	to the Correspo	nding RPn Pin	bits
bit 7-6 bit 5-0	Unimplemen U1RXR<5:0> 111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp	ted: Read as : Assign UART but tied to Vss but tied to RP35 but tied to RP32 but tied to RP32 but tied to RP32 but tied to RP32	0' 1 Receive (U' 5 4 2	IRX) to the Co	rresponding RF	Pn Pin bits	
		•					

REGISTER 10-6: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		_	—			—	
bit 15							bit 8	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	SYNCI2R5	SYNCI2R4	SYNCI2R3	SYNCI2R2	SYNCI2R1	SYNCI2R0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimpleme				nimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			Iown	
bit 15-6	Unimplemen	ted: Read as '	0'					
bit 5-0	SYNCI2R<5: Correspondin	0>: Assign PW Ig RPn Pin bits	M Master Tim	e Base Extern	al Synchronizati	ion Signal to th	е	
	111111 = Inp	out tied to Vss						
	100011 = Inp	out tied to RP3	5					
	100010 = Inp	out tied to RP34	1					
	100001 = Inp	out fied to RP3	3					
	100000 = Inb		2					
	•							
	•							
	-	it find to DDO						
	00000 = inpu	IL LIEU LO RPU						

REGISTER 10-14: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34

REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	างพท	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-8 RP1R<5:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-2 for peripheral function numbers)								
bit 7-6	Unimplemented: Read as '0'							

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70198) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices support up to two input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of the two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER (CONTINUED)

bit 3-2	CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMODE is Enabled bits ⁽²⁾							
	FCLCONx <ifltmod> = 0: Normal Fault mode:</ifltmod>							
	If current-limit is active, then CLDAT<1> provides the state for PWMxH							
	If current-limit is active, then CLDAT<0> provides the state for PWMxL							
	FCLCONx <ifltmod> = 1: Independent Fault mode:</ifltmod>							
	CLDAT<1:0> bits are ignored.							
bit 1	SWAP<1:0>: Swap PWMxH and PWMxL pins							
	1 = PWMxH output signal is connected to the PWMxL pin and the PWMxL signal is connected to the PWMxH pins							
	0 = PWMxH and PWMxL pins are mapped to their respective pins							
bit 0	OSYNC: Output Override Synchronization bit							
	1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base							
	0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary							
Note 1:	These bits should be changed only when PTEN = 0. Changing the clock selection during operation will							

- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 2: The state represents the active/inactive state of the PWM module depending on the POLH and POLL bit settings.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0
bit 15							bit 8
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7	•	•	l.	1	1	1 I	bit 0
Legend:		HC = Hardwa	re Clearable b	pit			
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkne	own
bit 15	UARTEN: UA 1 = UARTx is 0 = UARTx is	RTx Enable bit enabled; all U disabled: all	(1) ARTx pins are UARTx pins a	e controlled by	VUARTx as defined	ned by UEN<1:(UARTx_power)> consumption
	is minima	al	•		, pon anonoo,	.	
bit 14	Unimplemen	ted: Read as '	כ'				
bit 13	USIDL: UART	Tx Stop in Idle I	Mode bit				
	1 = Discontin	ues module op	eration when	device enters	Idle mode		
	0 = Continue	s module opera	ation in Idle m	ode			
bit 12	IREN: IrDA [®] ∣	Encoder and D	ecoder Enable	e bit ⁽²⁾			
	1 = IrDA ence	oder and decor	der are enable	ed ad			
hit 11	RTSMD: Mod	le Selection for	Uvrrs Pin hi	it			
	$1 = \frac{\text{UxRTS}}{\text{UxRTS}} p$ $0 = \text{UxRTS} p$	in is in Simplex in is in Flow Co	mode				
bit 10	Unimplemen	ted: Read as '	כ'				
bit 9-8	UEN<1:0>: U	ARTx Enable b	oits				
	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U 00 = UxTX an port latc	JxRX and BCLF JxRX, UxCTS a JxRX and UxRT nd UxRX pins a hes	K pin <u>s are e</u> na Ind UxRTS pir TS pins are en are enabled a	bled and used as are enabled abled and use nd used; UxC	d; UxCTS pin is and used ed; UxCTS pin is TS and UxRTS/	controlled by po s controlled by p /BCLK pins are	rt latches ort latches controlled by
bit 7	WAKE: Wake	-up on Start bit	Detect During	g Sleep Mode	Enable bit		
	1 = UARTx w in hardwa 0 = No wake	vill continue to s are on the follow -up is enabled	sample the Ux wing rising edg	RX pin; interru ge	upt is generated	on falling edge,	bit is cleared
bit 6	LPBACK: UA	RTx Loopback	Mode Select	bit			
	1 = Enables 0 = Loopbacl	Loopback mod k mode is disat	e bled				
bit 5	ABAUD: Auto	-Baud Enable	bit				
	1 = Enable b before ot 0 = Baud rate	aud rate meas her data; cleare e measuremen	urement on th ed in hardware t is disabled o	e next charac e upon comple r has complete	ter – requires re etion ed	eception of a Sy	nc field (55h)
Note 1: Ref	er to " UART " (abling the UART	DS70188) in th module for red	e <i>"dsPIC33F/</i> ceive or transr	PIC24H Famili mit operation.	ly Reference Ma	anual" for inform	ation on

DECISTED 10 1. UVMODE, UARTY MODE RECISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] Digital Signal Controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

23.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions
- File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

TABLE 26-3: DC CHARACTERISTICS: IDLE CURRENT (lidle)

DC CHARACT	ERISTICS		Standard O (unless oth Operating te	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical	Max	Units Conditions					
Idle Current (II	DLE): Core Of	f, Clock On	Base Current	(1)				
MDC45d	64	105	mA	-40°C				
MDC45a	64	105	mA	+25°C 3.3V 50 MIPS				
MDC45b	64	105	mA	+85°C				

Note 1: Base Idle current (IIDLE) is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- JTAG is disabled

DC CHARACTER	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Parameter No. Typical Max			Doze Ratio	Units	Conditions		
MDC74a	80	105	1:2	mA			
MDC74f	65	105	1:64	mA	-40°C	9°C 3.3V	50 MIPS
MDC74g	65	105	1:128	mA			
MDC75a	81	105	1:2	mA			50 MIPS
MDC75f	65	105	1:64	mA	+25°C	3.3V	
MDC75g	65	105	1:128	mA			
MDC76a	81	105	1:2	mA			
MDC76f	65	105	1:64	mA	+85°C	3.3V	50 MIPS
MDC76g	65	105	1:128	mA]		

TABLE 26-4: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)⁽¹⁾

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

 Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU executing while(1) statement
- JTAG is disabled

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E	0.65 BSC				
Optional Center Pad Width	W2			6.60		
Optional Center Pad Length	T2			6.60		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B