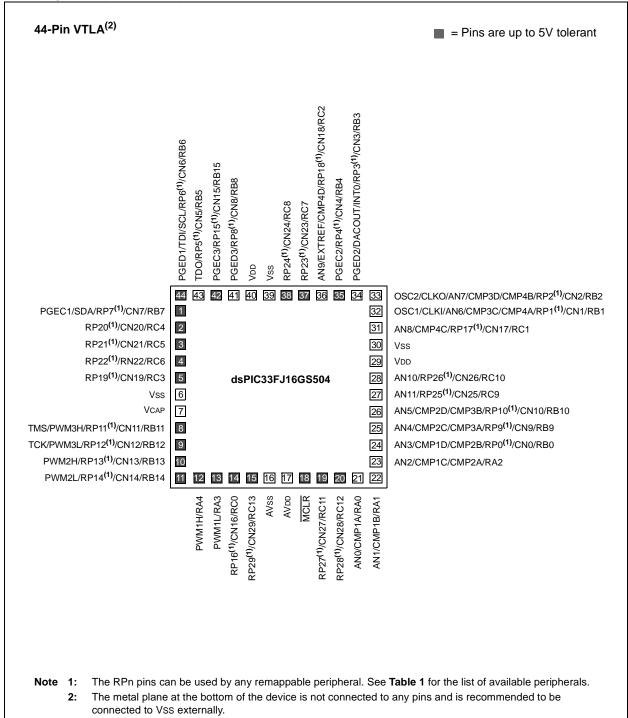


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

D-4-9-	
Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs404t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

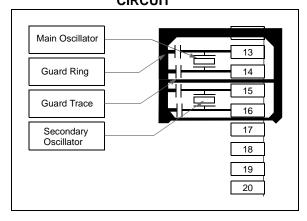
2.5 ICSP™ Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (ViH) and input low (ViL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB® ICD 3 or MPLAB® REAL ICE™.

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB® ICD 3" (poster) DS51765
- "MPLAB® ICD 3 Design Advisory" DS51764
- "MPLAB® REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB® REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV, and PLLFBD to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or Integer DSP Multiply (IF)
- · Signed or Unsigned DSP Multiply (US)
- Conventional or Convergent Rounding (RND)
- Automatic Saturation On/Off for ACCA (SATA)
- · Automatic Saturation On/Off for ACCB (SATB)
- Automatic Saturation On/Off for Writes to Data Memory (SATDW)
- Accumulator Saturation mode Selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

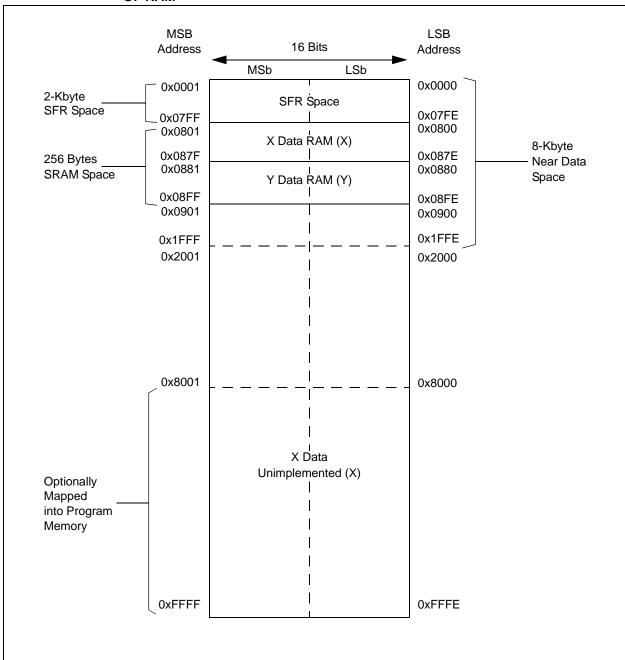


FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ06GS101/102 DEVICES WITH 256 BYTES OF RAM

Û	٦
_	Į
\subseteq	2
9	
70003	
>	
~	š
_	
വ	٥
2	٥
Ģ	
96-5	
og-ba	5
ob-page	5
o agad-age	
oc-page os	

TΔRI F 4-14·	INPUT CAPTURE REGISTER MAP FOR	dsPIC33FJ16GSX02 AND dsPIC33FJ16GSX04
IADLL 4-14.	INFUT CAFTURE REGISTER WAFT OR	. USF 10331 3 10037AUZ MIND USF 10331 3 10037AU4

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140		Input Capture 1 Register														xxxx	
IC1CON	0142	_	_	ICSIDL	-	1	_	_	_	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2BUF	0144		Input Capture 2 Register												xxxx			
IC2CON	0146	_	_	ICSIDL	-		_	_	-	ICTMR	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180	Output Compare 1 Secondary Register														xxxx		
OC1R	0182		Output Compare 1 Register												xxxx			
OC1CON	0184	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	ОСМ0	0000

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-16: OUTPUT COMPARE REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ06GSX04

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Co	mpare 1 Se	condary Re	gister							xxxx
OC1R	0182		Output Compare 1 Register														xxxx	
OC1CON	0184			OCSIDL		-	_	_	_		_		OCFLT	OCTSEL	OCM2	OCM1	ОСМ0	0000
OC2RS	0186							Output Co	mpare 2 Se	condary Re	gister							xxxx
OC2R	0188		Output Compare 2 Register														xxxxx	
OC2CON	018A	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL	OCM2	OCM1	ОСМ0	0000

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: HIGH-SPEED PWM REGISTER MAP

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0400	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	I	SYNCSRC1	SYNCSRC0	SEVTPS3	SEVTPS2	SEVTPS1	SEVTPS0	0000
PTCON2	0402	_	_	_	_	_	_	_	_	_	_	_	_	_	PCLKDIV2	PCLKDIV1	PCLKDIV0	0000
PTPER	0404									PTPER<15	:0>							FFF8
SEVTCMP	0406		SEVTCMP<15:3>										_	0000				
MDC	040A		SEVTCMP<15:3>												0000			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-45: PMD REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
PMD1	0770	_	_		T2MD	T1MD	_	PWMMD	_	I2C1MD	_	U1MD	_	SPI1MD	_	-	ADCMD	0000
PMD2	0772		_	-	_	_	_	_	IC1MD	_	_	_	_	_	_	_	OC1MD	0000
PMD3	0774		_	-	_	_	CMPMD	_	_	_	_	_	_	_	_	_	_	0000
PMD4	0776		_	-	_	_	_	_	_	_	_	_	_	REFOMD	_	_	_	0000
PMD6	077A		_	-	_	_	_	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	077C		_	-	_	_	_	CMP2MD	CMP1MD	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-46: PMD REGISTER MAP FOR dsPIC33FJ16GS402 AND dsPIC33FJ16GS404 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	_	T3MD	T2MD	T1MD	_	PWMMD	_	I2C1MD	_	U1MD	_	SPI1MD	_	_	ADCMD	0000
PMD2	0772	_	_	-	_	ı	_	IC2MD	IC1MD	_	_	_	_	_	_	OC2MD	OC1MD	0000
PMD3	0774	_	_	I	_	I	_	I	I	_	1	_	_	_	_	_	-	0000
PMD4	0776	_	_	I	_	I	_	I	I	_	1	_	_	REFOMD	_	_	-	0000
PMD6	077A	_	_	-	_	ı	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	077C	_	_	_	_	ı	_	1	_	_	1	_	_	_	_	_	1	0000

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

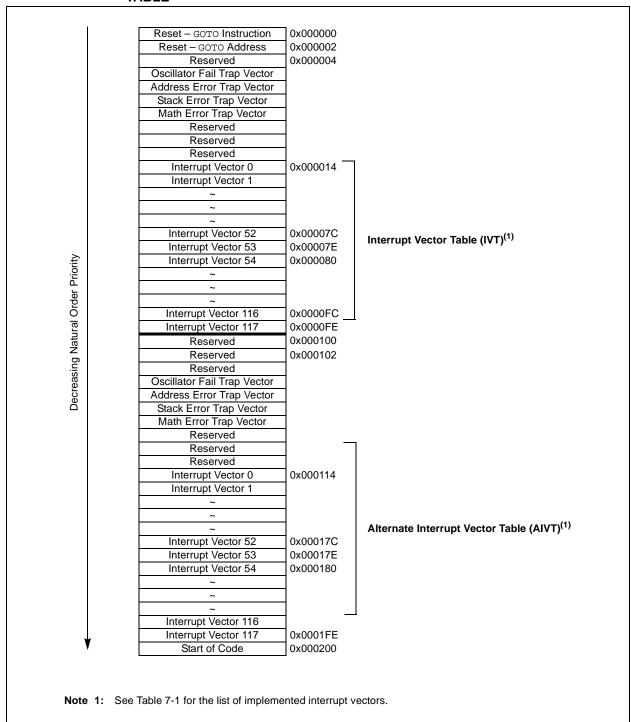

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PMD REGISTER MAP FOR dsPIC33FJ16GS502 AND dsPIC33FJ16GS504 DEVICES ONLY

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	_	T3MD	T2MD	T1MD	_	PWMMD	_	I2C1MD	_	U1MD	_	SPI1MD	_	_	ADCMD	0000
PMD2	0772		-	-	_	-	_	IC2MD	IC1MD	_	_	_	_	_	_	OC2MD	OC1MD	0000
PMD3	0774		-	-	_	-	CMPMD	_	_	_	_	_	_	_	_	_	_	0000
PMD4	0776		-	-	_	-	_	_	_	_	_	_	_	REFOMD	_	_	_	0000
PMD6	077A	_	_	_	_	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	077C	_	_		_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	I	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 7-1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 INTERRUPT VECTOR TABLE

REGISTER 7-32: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	ADCP1IP2	ADCP1IP1	ADCP1IP0	_	ADCP0IP2	ADCP0IP1	ADCP0IP0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 ADCP1IP<2:0>: ADC Pair 1 Conversion Done Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)

•

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 ADCP0IP<2:0>: ADC Pair 0 Conversion Done Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)

_

_

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 9-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11 **PWM4MD**: PWM Generator 4 Module Disable bit

1 = PWM Generator 4 module is disabled 0 = PWM Generator 4 module is enabled

bit 10 **PWM3MD**: PWM Generator 3 Module Disable bit

1 = PWM Generator 3 module is disabled 0 = PWM Generator 3 module is enabled

bit 9 **PWM2MD**: PWM Generator 2 Module Disable bit

1 = PWM Generator 2 module is disabled 0 = PWM Generator 2 module is enabled

bit 8 **PWM1MD**: PWM Generator 1 Module Disable bit

1 = PWM Generator 1 module is disabled 0 = PWM Generator 1 module is enabled

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 10-9: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	-	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 FLT1R<5:0>: Assign PWM Fault Input 1 (FLT1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss

100011 = Input tied to RP35

100010 = Input tied to RP34

100001 = Input tied to RP33

100000 = Input tied to RP32

•

•

•

00000 = Input tied to RP0

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 10-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP19R<5:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits

(see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP18R<5:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits

(see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP21R<5:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits

(see Table 10-2 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits

(see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits⁽¹⁾

1111 = 1:16 Postscaler generates a Special Event Trigger trigger on every sixteenth compare match event

•

•

0001 = 1:2 Postscaler generates a Special Event Trigger on every second compare match event

0000 = 1:1 Postscaler generates a Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN	SPRE2 ⁽²⁾	SPRE1 ⁽²⁾	SPRE0 ⁽²⁾	PPRE1 ⁽²⁾	PPRE0 ⁽²⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12 **DISSCK:** Disable SCKx Pin bit (SPI Master modes only)

1 = Internal SPI clock is disabled; pin functions as I/O

0 = Internal SPI clock is enabled

bit 11 DISSDO: Disable SDOx Pin bit

1 = SDOx pin is not used by module; pin functions as I/O

0 = SDOx pin is controlled by the module

bit 10 MODE16: Word/Byte Communication Select bit

1 = Communication is word-wide (16 bits)

0 = Communication is byte-wide (8 bits)

bit 9 SMP: SPIx Data Input Sample Phase bit

Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

Slave mode:

SMP must be cleared when SPIx is used in Slave mode.

bit 8 **CKE:** SPIx Clock Edge Select bit⁽¹⁾

1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)

0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)

bit 7 SSEN: Slave Select Enable bit (Slave mode)⁽³⁾

 $1 = \overline{SSx}$ pin is used for Slave mode

0 = SSx pin is not used by module; pin controlled by port function

bit 6 CKP: Clock Polarity Select bit

1 = Idle state for clock is a high level; active state is a low level

0 = Idle state for clock is a low level; active state is a high level

bit 5 MSTEN: Master Mode Enable bit

1 = Master mode

0 = Slave mode

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

2: Do not set both primary and secondary prescalers to a value of 1:1.

3: This bit must be cleared when FRMEN = 1.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - **2:** Do not set both primary and secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

19.0 HIGH-SPEED 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed 10-Bit Analog-to-Digital Converter (ADC)" (DS70000321) in the "dsPIC33/PIC24 Family Reference Manual", which is available on the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices provide high-speed, successive approximation Analog-to-Digital conversions to support applications, such as AC/DC and DC/DC power converters.

19.1 Features Overview

The ADC module comprises the following features:

- 10-bit resolution
- · Unipolar inputs
- Up to two Successive Approximation Registers (SARs)
- Up to 12 external input channels
- · Up to two internal analog inputs
- · Dedicated result register for each analog input
- ±1 LSB accuracy at 3.3V
- · Single supply operation
- 4 Msps conversion rate at 3.3V (devices with two SARs)
- 2 Msps conversion rate at 3.3V (devices with one SAR)
- Low-power CMOS technology

19.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- · AC/DC power supplies
- DC/DC Converters
- Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This module can sample and convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated Sample-and-Hold circuits and one from the shared Sample-and-Hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1, AN0), (AN3, AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on Independent Time Bases (ITBs).

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP-based application.

- · Result alignment options
- · Automated sampling
- External conversion start control
- Two internal inputs to monitor the INTREF internal reference and the EXTREF input signal

19.3 Module Functionality

The high-speed, 10-bit ADC module is designed to support power conversion applications when used with the high-speed PWM module. The ADC may have one or two SAR modules, depending on the device variant. If two SARs are present on a device, two conversions can be processed at a time, yielding 4 Msps conversion rate. If only one SAR is present on a device, only one conversion can be processed at a time, yielding 2 Msps conversion rate. The high-speed 10-bit ADC produces two 10-bit conversion results in a 0.5 microsecond.

The ADC module supports up to 12 external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN12 and AN13, are connected to the EXTREF and INTREF voltages, respectively.

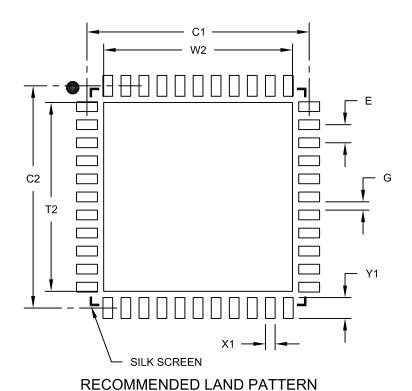
The analog reference voltage is defined as the device supply voltage (AVDD/AVSS).

Block diagrams of the ADC module are shown in Figure 19-1 through Figure 19-6.

TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Parameter No.	Typical ⁽¹⁾	Max	Units	Jnits Conditions				
Idle Current (II	DLE): Core Of	f Clock On	Base Current ⁽	2)				
DC40d	48	_	mA	-40°C				
DC40a	48	_	mA	+25°C	3.3V	10 MIPS		
DC40b	48	_	mA	+85°C	3.3 V	TO WIFS		
DC40c	48	_	mA	+125°C				
DC41d	60	_	mA	-40°C				
DC41a	60	_	mA	+25°C	3.3V	16 MIPS ⁽³⁾		
DC41b	60	_	mA	+85°C	3.34	TO MIPS		
DC41c	60	_	mA	+125°C				
DC42d	68	_	mA	-40°C				
DC42a	68	_	mA	+25°C	3.3V	20 MIPS ⁽³⁾		
DC42b	68	_	mA	+85°C	3.34	20 MIP3. 7		
DC42c	68	_	mA	+125°C				
DC43d	77	_	mA	-40°C				
DC43a	77	_	mA	+25°C	3.3V	30 MIPS ⁽³⁾		
DC43b	77	_	mA	+85°C	3.34	30 MIF3(*)		
DC43c	77	_	mA	+125°C	7			
DC44d	86	_	mA	-40°C				
DC44a	86	_	mA	+25°C	2.21/	40 MIDS		
DC44b	86	_	mA	+85°C	3.3V	40 MIPS		
DC44c	86	_	mA	+125°C				

- Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - 2: Base Idle current (IIDLE) is measured as follows:
 - CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
 - CLKO is configured as an I/O input pin in the Configuration Word
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD, WDT and FSCM are disabled
 - No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
 - · JTAG is disabled
 - **3:** These parameters are characterized but not tested in manufacturing.


TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended				
Parameter No.	Typical ⁽¹⁾	Max	Doze Ratio	Units	Conditions		
Doze Current (IDO	ZE) ⁽²⁾						
DC73a	75	105	1:2	mA			
DC73f	60	105	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	60	105	1:128	mA			
DC70a	75	105	1:2	mA			
DC70f	60	105	1:64	mA	+25°C	3.3V	40 MIPS
DC70g	60	105	1:128	mA			
DC71a	75	105	1:2	mA			
DC71f	60	105	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	60	105	1:128	mA			
DC72a	75	105	1:2	mA			
DC72f	60	105	1:64	mA	+125°C	3.3V	40 MIPS
DC72g	60	105	1:128	mA			

- **Note 1:** Data in the Typical column is at 3.3V, +25°C unless otherwise stated.
 - 2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:
 - Oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
 - CLKO is configured as an I/O input pin in the Configuration Word
 - · All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDD, WDT and FSCM are disabled
 - · CPU, SRAM, program memory and data memory are operational
 - No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
 - CPU executing while(1) statement
 - JTAG disabled

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units MILLIMETERS Dimension Limits MIN MAX NOM 0.65 BSC Contact Pitch Ε Optional Center Pad Width W2 6.60 Optional Center Pad Length T2 6.60 8.00 Contact Pad Spacing C1 Contact Pad Spacing C2 8.00 Contact Pad Width (X44) X1 0.35 Contact Pad Length (X44) <u>Y1</u> 0.85 Distance Between Pads G 0.25

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

Timing Diagrams	
Analog-to-Digital Conversion per Input	329
Brown-out Situations	94
External Clock	301
High-Speed PWMx	311
High-Speed PWMx Fault	
I/O	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits Slave Mode)	
Input Capture x (ICx)	
OCx/PWMx	
Output Compare x (OCx)	
Reset, Watchdog Timer, Oscillator Start-up Timer	309
	205
and Power-up Timer	305
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	315
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, CMP = 1)	314
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	312
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	312
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	322
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	320
SPIx Slave Mode (Full-Duplex, CKE = 1,	0_0
CKP = 0, SMP = 0)	316
SPIx Slave Mode (Full-Duplex, CKE = 1,	310
CKP = 1, SMP = 0)	210
System Reset	93
Timer1, 2, 3 External Clock	307
Timing Requirements	
10-Bit, High-Speed ADC Requirements	
External Clock301,	
I/O	304
Input Capture x	309
Simple OCx/PWMx Mode	345
SPIx Master Mode (CKE = 0)	339
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	315
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	314
SPIx Master Mode (Half-Duplex,	517
Transmit Only)	212
SPIx Module Master Mode (CKE = 1)	
SPIx Module Slave Mode (CKE = 0)	
SPIx Module Slave Mode (CKE = 1)	340
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	323
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	321
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	317
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	319

Timing Specifications	
10-Bit High-Speed ADC Module	328
Auxiliary PLL Clock	302
Comparator Module	
DAC Module	330
DAC Output Buffer DC	33′
High-Speed PWMx Requirements	311
I2Cx Bus Data Requirements (Master Mode)	325
I2Cx Bus Data Requirements (Slave Mode)	327
Output Compare x Requirements	309
PLL Clock 302,	
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	
Requirements	306
Simple OCx/PWMx Mode Requirements	310
Timer1 External Clock Requirements	307
Timer2 External Clock Requirements	308
Timer3 External Clock Requirements	308
U	
Universal Asynchronous Receiver	
Transmitter (UART)	233
Using the RCON Status Bits	
v	
Voltage Regulator (On-Chip)	270
W	
Watchdog Timer (WDT)267,	271
Programming Considerations	271
Watchdog Timer Time-out Reset (WDTO)	
WWW Address	
WWW, On-Line Support	
• •	