

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs404t-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "*dsPIC33F/PIC24H Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")VCAP
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP[™] Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-6: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R-0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC
bit 15							bit 8
R/W-0 ⁽³) R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
bit 7							bit 0
]
Legend:		C = Clearable	e bit				
R = Reada	ble bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is c	leared	'x = Bit is unk	nown	U = Unimpler	mented bit, read	l as '0'	
1.1.45							
bit 15		ator A Overflow	v Status bit				
	1 = Accumula 0 = Accumula	ntor A has over	overflowed				
bit 14	OB: Accumul	ator B Overflov	v Status bit				
	1 = Accumula	tor B has over	flowed				
	0 = Accumula	tor B has not o	overflowed				
bit 13	SA: Accumula	ator A Saturation	on 'Sticky' Stat	tus bit ⁽¹⁾			
	1 = Accumula	tor A is satura	ted or has bee	en saturated at	some time		
h:+ 40		ator A Is not sat	turated				
DIT 12		ator B is saturation	on Sticky Stat	US DIL on saturated at	some time		
	0 = Accumula	ator B is not sat	turated		some time		
bit 11	0AB: OA O	B Combined A	ccumulator O	verflow Status	bit		
	1 = Accumula	tor A or B has	overflowed				
	0 = Neither A	ccumulator A c	or B has overfl	owed			
bit 10	SAB: SA SI	B Combined A	ccumulator 'St	icky' Status bit	(1,4)		
	1 = Accumula	ator A or B is sa	aturated or has	s been saturat	ed at some time	in the past	
hit 9		Active hit		,u			
bit 0	1 = DO loop in	progress					
	0 = DO loop n	ot in progress					
bit 8	DC: MCU AL	U Half Carry/B	orrow bit				
	1 = A carry-o	ut from the 4th	low-order bit (for byte-sized of	data) or 8th low-	order bit (for wo	ord-sized data)
	of the res	sult occurred	th low-order h	vit (for byte-siz	ed data) or 8th	low-order bit (f	or word-sized
	data) of t	he result occur	red				
Note 1:	This bit can be rea	d or cleared (n	ot set).				
2:	The IPL<2:0> bits	are concatena	ted with the IP	L<3> bit (COF	RCON<3>) to for	rm the CPU Inte	errupt Priority
	Level (IPL). The va	alue in parenth	eses indicates	the IPL if IPL	<3> = 1. Úser in	terrupts are dis	sabled when

- IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
- 4: Clearing this bit will clear SA and SB.

FIGURE 7-1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
rity	Interrupt Vector 54	0x000080	
rio	~		
<u>د</u>	~		
rde	~		
ō	Interrupt Vector 116	0x0000FC	
Iral	Interrupt Vector 117	0x0000FE	
att	Reserved	0x000100	
Z	Reserved	0x000102	
sinç	Reserved		
eas	Oscillator Fail Trap Vector		
ecr	Address Error Trap Vector		
ă	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		
	Interrupt Vector 116]	
Ļ	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
		-	

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	_	_	—	_	—	—				
bit 15						-	bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	AC4IP2	AC4IP1	AC4IP0	_	AC3IP2	AC3IP1	AC3IP0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-7	Unimplemented: Read as '0'										
bit 6-4	AC4IP<2:0>:	Analog Compa	arator 4 Interr	upt Priority bits	6						
	111 = Interru	pt is Priority 7 (highest priorit	y)							
	•										
	•										
	•										
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled								
bit 3	Unimplemen	ted: Read as '	כי								
bit 2-0	AC3IP<2:0>:	Analog Compa	arator 3 Interr	upt Priority bits	3						
	111 = Interru	pt is Priority 7 (highest priorit	y)							
	•										
	•										
	•										
	001 = Interru	pt is Priority 1									
	000 = Interru	pt source is dis	abled								

REGISTER 7-31: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0
bit 15					1		bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0
bit 7							bit 0
-							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as ')' - ··· · · - /				
bit 13-8	FLT5R<5:0>:	Assign PWM F	ault Input 5 (FLT5) to the C	orresponding R	Pn Pin bits	
	111111 = Inp	out fied to VSS					
	100011 = Inp	out fied to RP35)				
	100010 = Inp	out fied to RP34	•				
	$100001 = \ln p$	out tied to RP32)				
	•		-				
	•						
	•						
	00000 = Inpu	t tied to RP0					
bit 7-6	Unimplemen	ted: Read as 'd)'				
bit 5-0	FLT4R<5:0>:	Assign PWM F	ault Input 4 (FLT4) to the C	orresponding R	Pn Pin bits	
	111111 = Inp	out tied to Vss					
	100011 = Inp	out tied to RP35	5				
	100010 = Inp	out tied to RP34	Ļ				
	100001 = Inp	out tied to RP33	5				
	100000 = Inp	out tied to RP32	2				
	•						
	•						
	•						
	00000 = Inpu	t tied to RP0					

REGISTER 10-11: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP15R5	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl			x = Bit is unkr	nown			

REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7⁽¹⁾

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP15R<5:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP14R<5:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits

(see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$					
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8	RP17R<5:0> : (see Table 10	Peripheral Ou -2 for periphera	Itput Function	is Assigned to mbers)	RP17 Output F	Pin bits			
bit 7-6	Unimplemen	ted: Read as '	0'						
bit 5-0	RP16R<5:0> : (see Table 10	RP16R<5:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-2 for peripheral function numbers)							

REGISTER 10-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
Legend:							
							bit 0
bit 7							bit 0
_	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
—	—	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

REGISTER 10-28: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13⁽¹⁾

Dit 15-14	Unimplemented: Read as 0
bit 13-8	RP27R<5:0>: Peripheral Output Function is Assigned to RP27 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP26R<5:0>: Peripheral Output Function is Assigned to RP26 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

REGISTER 10-29: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 13-8	RP29R<5:0>: Peripheral Output Function is Assigned to RP29 Output Pin bits					
	(see Table 10-2 for peripheral function numbers)					
bit 7-6	Unimplemented: Read as '0'					

bit 5-0 **RP28R<5:0>:** Peripheral Output Function is Assigned to RP28 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in the dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

© 2008-2014 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_	_	_	P	CLKDIV<2:0> ⁽¹)
bit 7							bit 0

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

Γ.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide-by-64, maximum PWM timing resolution
 - 101 = Divide-by-32, maximum PWM timing resolution
 - 100 = Divide-by-16, maximum PWM timing resolution
 - 011 = Divide-by-8, maximum PWM timing resolution
 - 010 = Divide-by-4, maximum PWM timing resolution
 - 001 = Divide-by-2, maximum PWM timing resolution
 - 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will vield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				id as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur				x = Bit is unkı	nown		

bit 15-0 PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

REGISTER 19-5: ADCPC0: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)

bit 12-8	TRGSRC1<4:0>: Trigger 1 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN3 and AN2. 11111 = Timer2 period match
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 1000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved
	10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected 10000 = PWM Generator 3 secondary trigger is selected 01111 = PWM Generator 2 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected 01101 = Reserved
	01100 = Timer1 period match
	01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected 00000 = No conversion is enabled
bit 7	IRQEN0: Interrupt Request Enable 0 bit 1 = Enables IRQ generation when requested conversion of Channels AN1 and AN0 is completed 0 = IRQ is not generated
bit 6	PEND0: Pending Conversion Status 0 bit 1 = Conversion of Channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	 SWTRG0: Software Trigger 0 bit 1 = Starts conversion of AN1 and AN0 (if selected by the TRGSRCx bits)⁽¹⁾ This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion has not started

Note 1: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-6: ADCPC1: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

TRGSRC2<4:0>: Trigger 2 Source Selection bits⁽²⁾ bit 4-0 Selects trigger source for conversion of Analog Channels AN5 and AN4. 11111 = Timer2 period match 11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved 10010 = Reserved 10001 = PWM Generator 4 secondary trigger is selected 10000 = PWM Generator 3 secondary trigger is selected 01111 = PWM Generator 2 secondary trigger is selected 01110 = PWM Generator 1 secondary trigger is selected 01101 = Reserved 01100 = Timer1 period match 01000 = Reserved 00111 = PWM Generator 4 primary trigger is selected 00110 = PWM Generator 3 primary trigger is selected 00101 = PWM Generator 2 primary trigger is selected 00100 = PWM Generator 1 primary trigger is selected 00011 = PWM Special Event Trigger is selected 00010 = Global software trigger is selected 00001 = Individual software trigger is selected 00000 = No conversion is enabled

- Note 1: These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.
 - 2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
 - **3:** The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN5	PEND5	SWTRG5	TRGSRC54	TRGSRC53	TRGSRC52	TRGSRC51	TRGSRC50
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN4	PEND4	SWTRG4	TRGSRC44	TRGSRC43	TRGSRC42	TRGSRC41	TRGSRC40
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	IRQEN5: Interrupt Request Enable 5 bit
	 1 = Enables IRQ generation when requested conversion of Channels AN11 and AN10 is completed 0 = IRQ is not generated
bit 14	PEND5: Pending Conversion Status 5 bit
	 1 = Conversion of Channels AN11 and AN10 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 13	SWTRG5: Software Trigger 5 bit
	 1 = Starts conversion of AN11 and AN10 (if selected by the TRGSRCx bits)⁽²⁾ This bit is automatically cleared by hardware when the PEND5 bit is set. 0 = Conversion has not started

- **Note 1:** This register is only implemented in the dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP

FIGURE 24-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

TABLE 24-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T A \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Co				Conditions
OC15	Tfd	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns	
OC20	TFLT	Fault Input Pulse Width	TCY + 20	_		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-17: SPIX SLAVE MODE (FULL-DUPLEX CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

NOTES:

TABLE 25-6: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	—	_	E/W	-40°C to +150°C ⁽²⁾
HD134	Tretd	Characteristic Retention	20	_		Year	1000 E/W cycles or less and no other specifications are violated

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is not allowed above +125°C.

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6 mm Body [UQFN] With 0.60mm Contact Length And Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W1			4.05
Optional Center Pad Length	T2			4.05
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.00
Corner Pad Width (X4)	X2			0.90
Corner Pad Length (X4)	Y2			0.90
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2209B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX
Number of Leads	Ν	44		
Lead Pitch	е	0.80 BSC		
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B