

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502-50i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF), including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS Register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

~ ^

or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

• SB: ACCB saturated (bit 31 overflow and saturation)

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0** "Interrupt Controller"). This allows the user application to take immediate action, for example, to correct system gain.

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

TABLE 4-29:	HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS502 DEVICES ONLY
--------------------	--

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	_	GSWTRG	-	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	-	—	_	_	_	_	_	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_		_	_	-	-	_	_	_	P6RDY	_	_	P3RDY	P2RDY	P1RDY	P0RDY	0000
ADBASE	0308		ADBASE<15:1>											_	0000			
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCPC3	0310	_		_	_	-	-	_	_	IRQEN6	PEND6	SWTRG6	TRGSRC64	TRGSRC63	TRGSRC62	TRGSRC61	TRGSRC60	0000
ADCBUF0	0320								ADC D	ata Buffer	0							xxxx
ADCBUF1	0322								ADC D	ata Buffer	1							xxxx
ADCBUF2	0324								ADC D	ata Buffer	2							xxxx
ADCBUF3	0326								ADC D	ata Buffer	3							xxxx
ADCBUF4	0328								ADC D	ata Buffer	4							xxxx
ADCBUF5	032A								ADC D	ata Buffer	5							xxxx
ADCBUF6	032C								ADC D	ata Buffer	6							xxxx
ADCBUF7	032E		ADC Data Buffer 7 xxx										xxxx					
ADCBUF12	0338	ADC Data Buffer 12 xx										xxxx						
ADCBUF13	033A		ADC Data Buffer 13 xxxx											xxxx				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and Program Space Visibility (PSV) is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during Table Reads/Writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	PWM2IP2	PWM2IP1	PWM2IP0	_	PWM1IP2	PWM1IP1	PWM1IP0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set	1	'0' = Bit is c	leared	x = Bit is unki	nown
bit 15	Unimplemen	ited: Read as '	0'				
bit 14-12	PWM2IP<2:0)>: PWM2 Inter	rupt Priority bi	its			
	111 = Interru	pt is Priority 7	(highest priorit	y)			
	•						
	•						
	001 – Interru	nt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	PWM1IP<2:0	>: PWM1 Inter	rupt Priority bi	its			
	111 = Interru	pt is Priority 7 ((highest priorit	y)			
	•						
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	sabled				
bit 7-0	Unimplemen	nted: Read as '	0'				

REGISTER 7-28: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 15				·			bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0
bit 7							bit 0
Legend:	L.14		L :4			1 (0)	
R = Readable		vv = vvritable	DIT	U = Unimpler	nented bit, read		
-n = value at l	POR	$1^{\circ} = Bit is set$		0' = Bit is cle	ared	x = Bit is unkr	nown
hit 15-1/	Unimplemen	tad: Read as '	רי				
bit 12.9		· Assign Timor	2 R Extornal Cla	ok (T2CK) to t	ha Carraspondi	ng PDn Din hite	-
DIL 13-0	1111111 - Inc	Assign Timer.	s External Cio		ne Correspondi	ng RPh Pin bit	5
	$100011 = \ln p$	but tied to RP35	5				
	$100011 = \ln p$	out tied to RP34	ļ				
	100001 = Inp	out tied to RP33	3				
	100000 = Inp	out tied to RP32	2				
	•						
	•						
	•						
	00000 = Inpu	it tied to RP0					
bit 7-6	Unimplemen	ted: Read as '	o'				
bit 5-0	T2CKR<5:0>	: Assign Timer	2 External Clo	ck (T2CK) to t	he Correspondi	ng RPn Pin bits	5
	111111 = Inc	out tied to Vss		, , , , , , , , , , , , , , , , , , ,	•	0	
	100011 = Inp	out tied to RP35	5				
	100010 = Inp	out tied to RP34	Ļ				
	100001 = Inp	out tied to RP33	3				
	100000 = Inp	out tied to RP32	2				
	•						
	•						
	•						
	00000 = Inpu	it tied to RP0					

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	_		—		
bit 7							bit 0	
r								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-8	FLT1R<5:0>:	Assign PWM I	Fault Input 1 (FLT1) to the C	orresponding R	Pn Pin bits		
	111111 = Inp	out tied to Vss						
	100011 = Inp	out tied to RP35	5					
	$100010 = \ln p$	but fied to RP34	+ >					
	100001 = Inp	but fied to RP32)					
	•		-					
	•							
	•							
	00000 = Inpu	It tied to RP0						
bit 7-0	Unimplemen	ted: Read as '	0'					
	-							

REGISTER 10-9: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	_	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0		
bit 15					1		bit 8		
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_		FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0		
bit 7									
-									
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as ')' - ··· · · - /						
bit 13-8	FLT5R<5:0>:	Assign PWM F	ault Input 5 (FLT5) to the C	orresponding R	Pn Pin bits			
	111111 = Inp	out fied to VSS							
	100011 = Inp	out fied to RP35)						
	100010 = Inp	out fied to RP34	•						
	$100001 = \ln p$	out tied to RP32)						
	•		-						
	•								
	•								
	00000 = Inpu	t tied to RP0							
bit 7-6	Unimplemen	ted: Read as 'd)'						
bit 5-0	FLT4R<5:0>:	Assign PWM F	ault Input 4 (FLT4) to the C	orresponding R	Pn Pin bits			
	111111 = Inp	out tied to Vss							
	100011 = Inp	out tied to RP35	5						
	100010 = Inp	out tied to RP34	Ļ						
	100001 = Inp	out tied to RP33	5						
	100000 = Inp	out tied to RP32	2						
	•								
	•								
	•								
	00000 = Inpu	t tied to RP0							

REGISTER 10-11: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

D/M/ O	DAM 0	RAM 0	DAM 0		11.0		11.0
				0-0	0-0	0-0	0-0
IKGDIV3	TRGDIV2	IKGDIVI	IKGDIVU	—	_	_	— –
UIT 15							8 Jia
DAMO		DAMA	DAMO	DAMA	DAMO	DAMO	DAM 0
R/VV-0	0-0						
		IRGSIRIS	IRGSIR14	IRGSIRI3	IRGSIRIZ	IRGSIRI1	IRGSIRIO
DIT 7							DIT U
Legend:							
R – Readable I	bit	W – Writable	hit	II – I Inimpler	mented hit read	las 'O'	
r = Value at P		'1' = Bit is set	bit	$0^{\circ} = \text{Bit is cle}$	ared	v – Bitis unkr	
	OK				aleu		IOWIT
bit 15-12	TRGDIV_2.0	• Trigger # Ou	tout Divider bi	ts			
	1111 - Trioge		erv 16th triage	or event			
	1110 = Triage	er output for ev	ery 15th triace	erevent			
	1101 = Trigge	er output for ev	ery 14th trigge	er event			
	1100 = Trigge	er output for ev	ery 13th trigge	er event			
	1011 = Trigge	er output for ev	ery 12th trigge	erevent			
	1010 = Trigge	er output for ev	ery 11th trigge	er event			
	1001 = Trigge	ar output for ev	ery 9th triager				
	0111 = Triage	er output for ev	erv 8th triager	event			
	0110 = Trigge	er output for ev	ery 7th trigger	event			
	0101 = Trigge	er output for ev	ery 6th trigger	event			
	0100 = Trigge	er output for ev	ery 5th trigger	event			
	0011 = Irigge	er output for ev	ery 4th trigger	event			
	0010 = Trigge	ar output for ev	ery 2nd trigger	event			
	0000 = Trigge	er output for ev	ery trigger eve	ent			
bit 11-8	Unimplement	ted: Read as '	0'				
bit 7	DTM: Dual Tri	igger Mode bit	(1)				
	1 = Secondar	ry trigger even	t is combined	with the prima	ry trigger event	to create the P	WM trigger.
	0 = Secondar	ry trigger event	is not combin	ed with the prir	mary trigger eve	ent to create the	PWM trigger;
	two separ	rate PWM trigg	jers are gener	ated			
bit 6	Unimplement	ted: Read as '	0'				
bit 5-0	TRGSTRT<5:	0>: Trigger Po	stscaler Start	Enable Select	bits		
	111111 = Wa	iit 63 PWM cyc	les before ger	nerating the fire	st trigger event	after the modul	e is enabled
	•						
	•						
	000010 = Wa	it 1 PWM cycle	es before gene	erating the first	trigger event a	fter the module	is enabled
	000001 = Wa	it 1 PWM cycle	e before gener	ating the first t	trigger event aft	er the module i	s enabled
	000000 = Wa	it 0 PWM cycle	es before gene	erating the first	trigger event a	fter the module	is enabled

REGISTER 15-13: TRGCONx: PWMx TRIGGER CONTROL REGISTER

Note 1: The secondary generator cannot generate PWM trigger interrupts.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 device families. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 12.5 Mbps to 38 bps at 50 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART module is shown in Figure 1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 1: UART1 SIMPLIFIED BLOCK DIAGRAM

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic			Min.	Тур.	Max.	Units	Conditions	
TB10	ТтхН	T2CK High Time	Synchr	onous	Greater of: 20 ns or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)	
TB11	ΤτχL	T2CK Low Time	Synchr	onous	Greater of: 20 ns or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256)	
TB15	ТтхР	T2CK Input Period	Synchr	onous	Greater of: 40 ns or (2 TcY + 40)/N		_	ns	N = Prescale value (1, 8, 64, 256)	
TB20 TCKEXTMRL Delay from External T20 Clock Edge to Timer Increment			T2CK	0.75 Tcy + 40		1.75 Tcy + 40	ns			

TABLE 24-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

TABLE 24-25: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No. Symbol Characteristic			cteristic	Min	Тур	Max	Units	Conditions		
TC10	ТтхН	T3CK High Time	Synchronous	Tcy + 20		_	ns	Must also meet Parameter TC15		
TC11	ΤτxL	T3CK Low Time	Synchronous	Tcy + 20	—	—	ns	Must also meet Parameter TC15		
TC15	ΤτχΡ	T3CK Input Synchron Period with press		, 2 TCY + 40 r	—	—	ns			
TC20 TCKEXTMRL Delay from External Clock Edge to Timer Increment			xternal T3CK to Timer	0.75 Tcy + 40		1.75 Tcy + 40				

TABLE 24-30: SPIX MAXIMUM DATA/CLOCK RATE SUMMARY											
AC CHARA	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	СКЕ	СКР	SMP					
15 MHz	Table 24-31	—	—	0,1	0,1	0,1					
9 MHz	—	Table 24-32	—	1	0,1	1					
9 MHz	_	Table 24-33	_	0	0,1	1					
15 MHz		_	Table 24-34	1	0	0					
11 MHz	_	_	Table 24-35	1	1	0					
15 MHz	_	_	Table 24-36	0	1	0					
11 MHz	—	_	Table 24-37	0	0	0					

SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING FIGURE 24-11: **CHARACTERISTICS**

SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING FIGURE 24-12: **CHARACTERISTICS**

AC CHA	RACTERI	STICS		Standard Op (unless other Operating terr	erating (rwise sta nperature	Conditio ated) e -40°C -40°C	bns: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended
Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 pF to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 pF to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽¹⁾	100		ns	
IS26	THD:DAT	Data Input	100 kHz mode	0		μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μS	Start condition
			1 MHz mode ⁽¹⁾	0.25		μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25		μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μS	
		Setup Time	400 kHz mode	0.6	—	μS	
			1 MHz mode ⁽¹⁾	0.6	—	μS	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns	
		Hold Time	400 kHz mode	600	—	ns	
			1 MHz mode ⁽¹⁾	250	—	ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	petore a new transmission
			1 MHz mode ⁽¹⁾	0.5	—	μS	
IS50	Св	Bus Capacitive Lo	bading		400	рF	

TABLE 24-39: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

	Units	Ν	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		44	
Number of Terminals per Side	ND		12	
Number of Terminals per Side	NE	10		
Pitch	е	0.50 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	4.40 4.55 4.70		4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.20	0.25	0.30
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157D Sheet 2 of 2

Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Third-Party Tools	
Doze Mode	148
DSP Engine	
Multiplier	

Е

Electrical Characteristics	
50 MIPS	
AC	
AC Characteristics and	
Timing Parameters	300, 345
BOR	
Equations	
Device Operating Frequency	
Fosc Calculation	
Maximum Row Write Time	
Minimum Row Write Time	
Programming Time	
XT with PLL Mode Example	
Errata	14
External Reset (EXTR)	

F

Fail-Safe Clock Monitor (FSCM)	146
Flash Program Memory	
Control Registers	
Operations	
Programming Algorithm	
RTSP Operation	
Table Instructions	
Flexible Configuration	

G

Guidelines for Getting Started with 16	δ-Bit DSCs21
--	--------------

Н

High-Speed 10-Bit Analog-to-Digital	
Converter (ADC)	
High-Speed Analog Comparator	
Digital Logic	
Input Range	
Interaction with I/O Buffers	
High-Speed PWM	
Control Registers	
High-Temperature Electrical Characteristics	333
I	
I/O Ports	
Parallel I/O (PIO)	155
Write/Read Timing	
l ² C	
Control Registers	
Operating Modes	
In-Circuit Debugger	

In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	267, 272
Input Capture	191
Control Register	
Input Change Notification	156

Instruction Addressing Modes	73
File Register Instructions	73
Fundamental Modes Supported	74
MAC Instructions	74
MCU Instructions	
Move and Accumulator Instructions	74
Other Instructions	74
Instruction Set	
Overview	278
Summary	275
Instruction-Based Power-Saving Modes	147
Idle	148
Sleep	147
Interfacing Program and Data Memory Spaces	
Internal RC Oscillator	
Use with WDT	271
Internet Address	392
Interrupts	
Alternate Interrupt Vector Table (AIVT)	97
Control and Status Registers	100
IECx	100
IFSx	100
INTCON1	100
INTCON2	100
INTTREG	100
IPCx	100
Interrupt Vector Table (IVT)	
Reset Sequence	
Setup Procedures	134
Initialization	134
Interrupt Disable	134
Interrupt Service Routine	134
Trap Service Routine	134
Interrupts Coincident with Power Save Instructions	148

J

JTAG Boundary Scan Interface	. 267
JTAG Interface	. 272

Μ

Memory Organization	43
Microchip Internet Web Site	392
Modulo Addressing	75
Applicability	
Operation Example	75
Start and End Address	
W Address Register Selection	
MPLAB Assembler, Linker, Librarian	284
MPLAB ICD 3 In-Circuit Debugger	
MPLAB PM3 Device Programmer	285
MPLAB REAL ICE In-Circuit Emulator System	285
MPLAB X Integrated Development	
Environment Software	
MPLAB X SIM Software Simulator	285
MPLIB Object Librarian	
MPLINK Object Linker	

0

Open-Drain Configuration	156
Oscillator Configuration	135
Control Registers	139
Output Compare	193
Modes	
Operation Diagram	