

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	50 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj16gs502-50i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF), including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS Register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

~ ^

or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

• SB: ACCB saturated (bit 31 overflow and saturation)

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0** "Interrupt Controller"). This allows the user application to take immediate action, for example, to correct system gain.

TABLE 4-25: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS101 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	_	GSWTRG	-	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	_	_	_	_	-	_	_	PCFG7	PCFG6	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306			—	—	—	_	_	—					P3RDY	—	P1RDY	P0RDY	0000
ADBASE	0308								ADBASE<1	5:1>							_	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3	TRGSRC34	TRGSRC33	TRGSRC32	TRGSRC31	TRGSRC30	_	_	_	_	_	_	_	_	0000
ADCBUF0	0320								ADC D	ata Buffer	0							xxxx
ADCBUF1	0322								ADC D	ata Buffer	1							xxxx
ADCBUF2	0324								ADC D	ata Buffer	2							xxxx
ADCBUF3	0326	ADC Data Buffer 3								xxxx								
ADCBUF6	032C	ADC Data Buffer 6								xxxx								
ADCBUF7	032E	ADC Data Buffer 7									xxxx							

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY

File Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	_	ADSIDL	SLOWCLK	—	GSWTRG	—	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	—	ADCS2	ADCS1	ADCS0	0003
ADPCFG	0302	_	_	_	_	_	_	_	_	_	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306	_	_	_	_	_	_	_	_	_	_	_	_	_	P2RDY	P1RDY	PORDY	0000
ADBASE	0308								ADBASE<15	:1>							_	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1	TRGSRC14	TRGSRC13	TRGSRC12	TRGSRC11	TRGSRC10	IRQEN0	PEND0	SWTRG0	TRGSRC04	TRGSRC03	TRGSRC02	TRGSRC01	TRGSRC00	0000
ADCPC1	030C	_	_	_	_	_	_	_	_	IRQEN2	PEND2	SWTRG2	TRGSRC24	TRGSRC23	TRGSRC22	TRGSRC21	TRGSRC20	0000
ADCBUF0	0320								ADC Da	ata Buffer	0							xxxx
ADCBUF1	0322								ADC Da	ata Buffer	1							xxxx
ADCBUF2	0324								ADC Da	ata Buffer	2							xxxx
ADCBUF3	0326	ADC Data Buffer 3								xxxx								
ADCBUF4	0328	ADC Data Buffer 4								xxxx								
ADCBUF5	032A	ADC Data Buffer 5									xxxx							

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	ADCP5IP2	ADCP5IP1	ADCP5IP0	—	ADCP4IP2	ADCP4IP1	ADCP4IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	ADCP3IP2	ADCP3IP1	ADCP3IP0	—	ADCP2IP2	ADCP2IP1	ADCP2IP0
bit 7							bit 0
l egend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	emented bit. read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
·							
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	ADCP5IP<2:0	0>: ADC Pair 5	Conversion E	Done Interrupt	t Priority bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	ADCP4IP<2:0	0>: ADC Pair 4	Conversion E	Done Interrupt	t Priority bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1	ablad				
hit 7		pt source is als					
			U Conversion F)ono Interrupi	t Driarity bita		
DIL 0-4	111 - Interru	u>: ADC Pail 3 of is Priority 7 (bighest priorit	v interrunt)	I Phoney bits		
	•	prior nonty /	ingricat phone	y interrupt)			
	•						
	• 001 – Interru	ot in Driarity 1					
	001 = Interruption 000 = Inter	pt is Fliolity 1 pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	ADCP2IP<2:0	0>: ADC Pair 2	Conversion E	Done Interrupt	t Priority bits		
	111 = Interru	ot is Priority 7 (highost priorit	v interrupt)			
			nighest phone	,			
	•		nignest phone	,,			
	•			,			
	• • • 001 = Interrup	pt is Priority 1		,, ,			

DECISTED 7 22. IDC29, INTERDURT PRIORITY CONTROL RECISTER 29

_	-						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	_	—			—	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ROON: Refe	rence Oscillato	r Output Enab	ole bit			
	1 = Referenc	e oscillator out	out is enabled	on the REFCL	.K0 pin ⁽²⁾		
	0 = Referenc	e oscillator out	out is disabled	b			
bit 14	Unimplemer	nted: Read as '	0'				
bit 13	ROSSLP: Re	eference Oscilla	tor Run in Sle	eep bit			
	1 = Referenc	e oscillator outp	out continues	to run in Sleep			
	0 = Referenc	e oscillator out	out is disabled	d in Sleep			
bit 12	ROSEL: Ref	erence Oscillato	or Source Sel	ect bit			
	1 = Oscillator $0 = System c$	r crystal is used clock is used as	as the reference	ence clock e clock			
bit 11-8	RODIV<3:0>	Reference Os	cillator Divide	er bits ⁽¹⁾			
	1111 = Refe	rence clock divi	ded by 32.76	8			
	1110 = Refe	rence clock divi	ded by 16,38	4			
	1101 = Refe	rence clock divi	ded by 8,192				
	1100 = Refe	rence clock divi	ded by 4,096				
	1011 = Refe	rence clock divi	ded by 2,048				
	1010 = Refe	rence clock divi	ded by 1,024 ded by 512				
	1000 = Refe	rence clock divi	ded by 256				
	0111 = Refe	rence clock divi	ded by 128				
	0110 = Refe	rence clock divi	ded by 64				
	0101 = Refe	rence clock divi	ded by 32				
	0100 = Refe	rence clock divi	ded by 16				
	0011 = Refe	rence clock divi	ded by 0 ded by 4				
	0001 = Refe	rence clock divi	ded by 2				
	0000 = Refe	rence clock	-				
bit 7-0	Unimplemer	nted: Read as '	0'				

REGISTER 8-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. Refer to Section 10.6 "Peripheral Pin Select" for more information.

8.5 Clock Switching Operation

Users can switch applications among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from primary oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.5.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 21.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC<2:0> control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.5.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- 1. If required, read the COSC<2:0> bits to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSC<2:0> control bits for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

After the basic sequence is completed, the system clock hardware responds as follows:

 The clock switching hardware compares the COSC<2:0> status bits with the new value of the NOSC<2:0> control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC<2:0> bit values are transferred to the COSC<2:0> status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to "Oscillator (Part IV)" (DS70307) in the "dsPIC33F/PIC24H Family Reference Manual" for details.

8.6 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

During an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a Warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

REGISTER 10-5: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7			•			•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0

OCFAR<5:0>: Assign Output Capture A (OCFA) to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32

•

00000 = Input tied to RP0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—		_	—			—	
bit 15							bit 8	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	SYNCI2R5	SYNCI2R4	SYNCI2R3	SYNCI2R2	SYNCI2R1	SYNCI2R0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-6	Unimplemen	ted: Read as '	0'					
bit 5-0	SYNCI2R<5: Correspondin	0>: Assign PW Ig RPn Pin bits	M Master Tim	e Base Extern	al Synchronizati	ion Signal to th	e	
	111111 = Inp	out tied to Vss						
	100011 = Inp	out tied to RP3	5					
	100010 = Inp	out tied to RP34	1					
	100001 = Inp	out fied to RP3	3					
	100000 = Inb		2					
	•							
	•							
	-	it find to DDO						
	00000 = inpu	IL LIEU LO RPU						

REGISTER 10-14: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34

REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	างพท		
bit 15-14	Unimplemen	ted: Read as '	0'						
bit 13-8	bit 13-8 RP1R<5:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-2 for peripheral function numbers)								
bit 7-6	Unimplemen	ted: Read as '	0'						

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

	IN 13-13. FOLC		AULICUN				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMC	DD CLSRC4 ^(2,3)	CLSRC3 ^(2,3)	CLSRC2 ^(2,3)	CLSRC1 ^(2,3)	CLSRC0 ^(2,3)	CLPOL ⁽¹⁾	CLMOD
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSRC4	(2,3) FLTSRC3 ^(2,3)	FLTSRC2 ^(2,3)	FLTSRC1 ^(2,3)	FLTSRC0 ^(2,3)	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0
bit 7							bit (
l egend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown
bit 15	IFLTMOD: In	dependent Fau	lt Mode Enabl	e bit			
	1 = Independ	dent Fault mode	: Current-limit	t input maps FL	TDAT1 to PWM	KH output and	the Fault inpu
	maps FL	TDAT0 to the P	WMxL output	. The CLDAT<1	:0> bits are not	used for overr	ide functions.
	0 = Normal I	Fault mode: Cu	irrent-limit fea	ture maps CLI	DAT<1:0> bits t	o the PWMxH	and PWMxL
	outputs.	The PWM Faul	t feature maps	SFLIDAI<1:0>	to the PWMXH		outputs.
bit 14-10	CLSRC<4:0>	: Current-Limit	Control Signa	al Source Selec	t for PWM # Ge	nerator bits ^{(2,3}	7
	11111 = Res	served					
	•						
	•						
	01000 = Res	erved					
	00111 = Fau	lt 8					
	00110 = Fau	lt 7					
	00101 = Fau	11 6 11 5					
	00100 = Fau	lt 4					
	00011 = Fau	lt 3					
	00001 = Fau	lt 2					
	00000 = Fau	lt 1					
bit 9	CLPOL: Curr	rent-Limit Polari	ty for PWM G	enerator # bit ⁽¹⁾)		
	1 = The selec	cted current-lim	it source is ac	tive-low			
	0 = The selec	cted current-lim	it source is ac	tive-high			
bit 8	CLMOD: Cur	rent-Limit Mode	e Enable bit fo	r PWM Genera	tor # bit		
	1 = Current-li	mit function is e	enabled				
	0 = Current-li	mit function is o	lisabled				
Note 1:	These bits should	be changed on	ly when PTEN	I = 0. Changing	the clock selec	tion during op	eration will
_	yield unpredictable	e results.					
2:	When Independer	t Fault mode is	enabled (IFL	TMOD = 1), and	d Fault 1 is used	for Current-Li	imit mode
	(ULSKU<4:0> = b	00000), the Fau	IT CONTROL SOU	rce Select bits ((FLISKC<4:0>) and P\//MyU	snould be set	to an unused
0-	Mhan Indener der					for Foult rest	_

REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- The I2CxADD register holds the slave address
- A status bit, ADD10, indicates 10-Bit Addressing mode
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾ (CONTINUED)

bit 12-8	TRGSRC5<4:0>: Trigger 5 Source Selection bits
	Selects trigger source for conversion of Analog Channels AN11 and AN10. 11111 = Timer2 period match
	•
	•
	•
	11011 = Reserved 11010 = PWM Generator 4 current-limit ADC trigger 11001 = PWM Generator 3 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger 10111 = PWM Generator 1 current-limit ADC trigger 10110 = Reserved
	•
	•
	10010 = Reserved
	10001 = PWM Generator 4 secondary trigger is selected
	10000 = PWM Generator 3 secondary trigger is selected
	01111 = PWW Generator 2 secondary trigger is selected
	01101 = Reserved
	01100 = Timer1 period match
	•
	•
	•
	01000 = Reserved
	00111 = PWM Generator 3 primary trigger is selected
	00101 = PWM Generator 2 primary trigger is selected
	00100 = PWM Generator 1 primary trigger is selected
	00011 = PWM Special Event Trigger is selected
	00010 = Global software trigger is selected
	00001 = Individual software trigger is selected
	00000 = No conversion is enabled
bit 7	IRQEN4: Interrupt Request Enable 4 bit
	 1 = Enables IRQ generation when requested conversion of Channels AN9 and AN8 is completed 0 = IRQ is not generated
bit 6	PEND4: Pending Conversion Status 4 bit
	 1 = Conversion of Channels AN9 and AN8 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	SWTRG4: Software Trigger 4 bit
	 1 = Starts conversion of AN9 and AN8 (if selected by the TRGSRCx bits)⁽²⁾ This bit is automatically cleared by hardware when the PEND4 bit is set.
	0 = Conversion has not started
Note 1:	This register is only implemented in the dsPIC33FJ16GS504 devices.

2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

REGISTER 19-7: ADCPC2: ANALOG-TO-DIGITAL CONVERT PAIR CONTROL REGISTER 2⁽¹⁾ (CONTINUED)

```
bit 4-0
               TRGSRC4<4:0>: Trigger 4 Source Selection bits
               Selects trigger source for conversion of Analog Channels AN9 and AN8.
               11111 = Timer2 period match
               11011 = Reserved
               11010 = PWM Generator 4 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               10111 = PWM Generator 1 current-limit ADC trigger
               10110 = Reserved
               10010 = Reserved
               10001 = PWM Generator 4 secondary trigger is selected
               10000 = PWM Generator 3 secondary trigger is selected
               01111 = PWM Generator 2 secondary trigger is selected
               01110 = PWM Generator 1 secondary trigger is selected
               01101 = Reserved
               01100 = Timer1 period match
               01000 = Reserved
               00111 = PWM Generator 4 primary trigger is selected
               00110 = PWM Generator 3 primary trigger is selected
               00101 = PWM Generator 2 primary trigger is selected
               00100 = PWM Generator 1 primary trigger is selected
               00011 = PWM Special Event Trigger is selected
               00010 = Global software trigger is selected
               00001 = Individual software trigger is selected
               00000 = No conversion is enabled
```

- Note 1: This register is only implemented in the dsPIC33FJ16GS504 devices.
 - 2: The trigger source must be set as a global software trigger prior to setting this bit to '1'. If other conversions are in progress, then the conversion will be performed when the conversion resources are available.

23.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

23.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

23.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

TABLE 24-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА	ARACTERIS	TICS	Standard Op (unless othe Operating ter	erating rwise sta nperatur	Conditio ated) e -40° -40°	ONS: 3.0 C ≤ TA ≤ C ≤ TA ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCKx Input Frequency	_		15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	_			ns	See Parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See Parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	Ι	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 4
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	35	ns	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns	
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2

TABLE 25-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 25-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$ for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	_	35	ns	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	_	ns	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—		ns	
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	55	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

Section Name	Update Description
Section 16.0 "Inter-Integrated Circuit (I ² C™)"	 Removed the following sections, which are now available in the related section of the dsPIC33F/PIC24H Family Reference Manual: 16.3 "I²C Interrupts" 16.4 "Baud Rate Generator" (retained Figure 16-1: I²C Block Diagram) 16.5 "I²C Module Addresses 16.6 "Slave Address Masking" 16.7 "IPMI Support" 16.8 "General Call Address Support" 16.9 "Automatic Clock Stretch" 16.10 "Software Controlled Clock Stretching (STREN = 1)" 16.12 "Clock Arbitration"
Section 17.0 "Universal Asynchronous Receiver Transmitter (UART)"	 16.13 "Multi-Master Communication, Bus Collision, and Bus Arbitration Removed the following sections, which are now available in the related section of the dsPIC33F/PIC24H Family Reference Manual: 17.1 "UART Baud Rate Generator" 17.2 "Transmitting in 8-bit Data Mode 17.3 "Transmitting in 9-bit Data Mode 17.4 "Break and Sync Transmit Sequence" 17.5 "Receiving in 8-bit or 9-bit Data Mode" 17.6 "Flow Control Using UxCTS and UxRTS Pins" 17.7 "Infrared Support" Removed IrDA references and Note 1, and updated the bit and bit value descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control Register (see Register 17-2).
Section 18.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Updated bit value information for Analog-to-Digital Control Register (see Register 18-1). Updated TRGSRC6 bit value for Timer1 period match in the Analog-to- Digital Convert Pair Control Register 3 (see Register 18-8).

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 23.0 "Electrical	Updated Typ values for Thermal Packaging Characteristics (Table 23-3).
Characteristics"	Removed Typ value for DC Temperature and Voltage Specifications Parameter DC12 (Table 23-4).
	Updated all Typ values and conditions for DC Characteristics: Operating Current (IDD), updated last sentence in Note 2 (Table 23-5).
	Updated all Typ values for DC Characteristics: Idle Current (IIDLE) (see Table 23-6).
	Updated all Typ values for DC Characteristics: Power Down Current (IPD) (see Table 23-7).
	Updated all Typ values for DC Characteristics: Doze Current (IDOZE) (see Table 23-8).
	Added Note 4 (reference to new table containing digital-only and analog pin information, as well as Current Sink/Source capabilities) in the I/O Pin Input Specifications (Table 23-9).
	Updated Max value for BOR electrical characteristics Parameter BO10 (see Table 23-11).
	Swapped Min and Typ values for Program Memory Parameters D136 and D137 (Table 23-12).
	Updated Typ values for Internal RC Accuracy Parameter F20 and added Extended temperature range to table heading (see Table 23-19).
	Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer Parameter SY20 and updated conditions, which now refers to Section 20.4 "Watchdog Timer (WDT)" and LPRC Parameter F21a (see Table 23-22).
	Added specifications to High-Speed PWM Module Timing Requirements for Tap Delay (Table 23-29).
	Updated Min and Max values for 10-bit High-Speed Analog-to-Digital Module Parameters AD01 and AD11 (see Table 23-36).
	Updated Max value and unit of measure for DAC AC Specification (see Table 23-40).

Revision G (May 2014)

The values for the TUN<5:0> bits in Register 8-4 (OSCTUN) have changed.

The DC Characteristics Idle Current values in **Section 24.0 "Electrical Characteristics"** have been updated.

The timer specifications in Section 26.0 "50 MIPS Electrical Characteristics" have been removed.

All diagrams in **Section 28.0 "Packaging Information"** have been updated.

Minor text edits have been applied throughout the document.